
Multivariate Normals (MVN) Octave/Matlab

Toolbox (Version 1)

Wednesday 31st August, 2011

Contents

1 The Toolbox 1
1.1 Initialization . 2
1.2 Divergences . 2
1.3 Centroids . 3
1.4 Clustering . 3
1.5 Additional Functions . 4
1.6 Usage Examples . 4
1.7 License . 6

1 The Toolbox

The MVN (MultiVariate Normal) Matlab/Octave toolbox implements diver-
gences, centroids and algorithms (k-means, Self-Organizing Maps) to work with
this non-vectorial of features. The toolbox is freely available on the Internet.1.

Multivariate Gaussians are used in Music Similarity Algorithms, to represent
timbre music features. Multivariate Gaussians and their attached Kullback-
Leibler divergences are currently established as the de-facto standard method
to compute music similarity. In this documentation we use Elias Pampalks
music analysis (MA) Matlab toolbox [Pam04] to demonstrate how to use this
toolbox (skip to Section 1.6 for some examples). Of course usage is not limited
to music similarity models, any multivariate Gaussian features can be processed
with this toolbox.

The centroid computing algorithms are implemented after Nielsen and
Nock [NN09]. The k-means algorithms as it is described in Banjeree et
al. [BMDG05], the Self-Organizing Maps algorithm for the Gaussians as in
Schnitzer et al. [SFWG10].

1http://www.ofai.at/~dominik.schnitzer/mnv

1

1.1 Initialization

Initialization of MVN Gaussians is done using a single function call:

� mvn1 = mvn new(co, m). To instantiate a new n-dimensional multivari-
ate Normal (MVN) object with the toolbox, pass the covariance matrix
(co) and mean vector (m) of your Gaussian to the mvn new() function.
The return value mvn1 is a Matlab structure with the following attributes:

– co: The full n × n covariance matrix. If the matrix is not positive-
definite an exception is thrown and execution aborted.

– m: The n-dimensional mean vector of the Gaussian.

– ico: For speed reasons we also pre-compute the inverse of the co-
variance matrix (n× n) using the fast Cholesky-decomposition.

– logdet: We store the logarithm of the determinant of the covariance
matrix co. logdet is computed from the Cholesky-decomposition.

To estimate a n-dimensional Gaussian from a m×n data matrix (like a ma-
trix of MFCC vectors) just use the built-in Matlab functions cov(data)
and mean(data).

1.2 Divergences

The toolbox implements a variety of divergences which can be used to compute
a distance or similarity between two MVN models.

� d = mvn div kl(m1, m2)

Computes the (asymmetric) Kullback-Leibler divergence between the
MVN m1 and m2.

� d = mvn div skl(m1, m2)

Computes the symmetric Kullback-Leibler divergence between the MVN
m1 and m2.

� d = mvn div js(m1, m2)

Computes the Jensen-Shannon-like divergence between MVN m1 and m2.
Since it is not possible to compute the Jensen-Shannon divergence between
two multivariate Normals, we use an approximation which works quite well
in our approximations (cf. [PSS+09]).

� D = mvn divmat(models, divergence)

This is a meta-function to quickly compute the whole similarity matrix for
the given models and divergence. The parameter models is a struct-
array of MVN models and divergence is a string specifying the divergence
to use: 'kl left', 'kl right', 'skl', 'js'. The full distance matrix D

is returned in single precision to save memory.

2

1.3 Centroids

� c = mvn bregmancentroid kl left(models)

Computes the left-sided Kullback-Leibler centroid of the given MVN mod-
els.

� c = mvn bregmancentroid kl right(models)

Computes the right-sided Kullback-Leibler centroid of the given MVN
models.

� c = mvn bregmancentroid kl skl(models, approx)

Computes the symmetrized Kullback-Leibler centroid of the given MVN
models. If the parameter approx is not set, the centroid is computed using
a geodesic walk algorithm. If approx is set to the value 1, an approxima-
tive centroid is returned. The approximative centroid is computed very
fast, and is in many cases sufficiently exact.

1.4 Clustering

� [centers, assig, qe] = mvn kmeans(models, k, divergence)

This function implements the k-means clustering algorithm for MVN
models. It does that in regard to the selected divergence. Similar to
the mvn divmat() function the divergence parameter selects the diver-
gence to use for the k-means clustering: 'kl left', 'kl right', 'skl',
'skl mid'.

Return values are a struct-array with the centers in centers, a vector
which assigns each MVN to a centroid (assig) and a quantization error
(qe) according to the divergence chosen.

� [mapunits D] = mvn som skl(models, n)

This function trains a basic self-organizing map with the generalized SOM
algorithm (as defined in [SFWG10]). The dimensions are specified by
the parameter n which in turn creates a square SOM with the dimension
n×n. To compute the SOM the function uses the MVN models in param-
eter models and the divergence selected by divergence. The divergence
paramter can be one of these divergences: 'kl left', 'kl right', 'skl',
'skl mid'.

The first return value mapunits is a n×n SOM grid where each map unit
is represented by an MVN model. The whole SOM has n2 map units. The
structure array has the following structure:

– x, y the x/y-axis position of the map unit

– n An array which stores the indices of the models which are assigned
to this map unit.

The return value D is an (n ∗ n) ×m matrix, where m is the number of
models used during computation.

3

1.5 Additional Functions

� h = mvn entropy(m1)

Computes the entropy of the given an N -dimensional MVN m1 with the
covariance Matrix Σ. The entropy h is computed as:

h =
1

2
(N +N ln (2π) + ln |Σ|) (1)

� p = mvn ismetric(D)

Given a divergence matrix D, returns the fraction of triples elements obey-
ing the triangle inequality.

1.6 Usage Examples

Feature Extraction We use the Music Analysis (MA) Matlab toolbox2 by
Elias Pampalk to extract audio music similarity features for the ISMIR2004
Genre/Artist Identification/Classification collection which is available freely on
the web3. To do so we extract the features with the command:

1 ma g1c FeatureExtraction('ismir04 filelist.txt', 'features dir/');

The the text file ismir04 filelist.txt lists all filenames of the ISMIR
2004 dataset introduced before. The above command does the feature extrac-
tion for all songs given in the text file and writes the features in the specified
directory.

Loading the Features To load the features which, we first load the features
from the ”G1C features.mat” file to memory:

1 load features dir/G1C features.mat

After that we prepare the features for MVN processing and load the filenames
which encode the music genre in their path.

1 models = mvn new(squeeze(data.feat.g1.co(1,:,:)),...
2 squeeze(data.feat.g1.m(1,:,:)));
3

4 for i = 2:length(data.filenames)
5 models(i) = mvn new(squeeze(data.feat.g1.co(i,:,:)),...
6 squeeze(data.feat.g1.m(i,:,:)));
7 end
8

9 filenames = importdata('ismir04 files.txt');
10 [genres grene assignment] = mvn fn2class(filenames, 4, '/');

2http://www.pampalk.at/ma/
3http://ismir2004.ismir.net/genre_contest/index.htm

4

Lines 1-7 initialize the MVN models, line 9-10 loads the filenames and ex-
tracts the genre names from the filenames. We will use the genres of the indi-
vidual files for classification experiments later on.

Similarity and K-Means Clustering In this step we compute a divergence
matrix using the Symmetric Kullback-Leibler divergence (line 1). For complete-
ness and to check if everything was done correctly, we compute the 1-nearest
neighbor classification accuracy (line 2, nn1 accuracy = 0.7819 in the exam-
ple).

1 D = mvn divmat(models, 'skl');
2 nn1 accuracy = mvn knnclass(D, genre assignment, 1);
3

4 [centroids c assignment] = mvn kmeans(models, 10, 'skl');

In line 4 we compute a randomly initialized k-means clustering of our MVN
models. In the return value centroids we return the 10 centroids found with
the k-means clustering. The variable c assignment stores the index of the
centroid a MVN model is assigned.

Figure 1 displays the cluster/music genre assignment confusion matrix which
is generated from the k-means clustering. We clustered the collection into 10
clusters. In the figure it can be seen that the clustering which was emerging
has a jazz/blues cluster (3), multiple classical/world clusters (1, 2, 4, 5, 6,
8), a strong metal/punk cluster (9), a pop/rock/electronic cluster (7) and an
electronic/pop/rock/jazz cluster (10).

Centroid

G
e
n
re

2 4 6 8 10

classical

electronic

jazz_blues

metal_punk

pop_rock

world

0

0.2

0.4

0.6

0.8

Figure 1: Confusion matrix displaying the genre to k-means cluster assignment.
The various clusters with their relative genre composition can be seen. An
optimal clustering

Computing and visualizing a SOM In the next code snippet we compute
the SOM and their labels.

1 [som grid, som D] = mvn som skl(models, [20 20]);

5

2

3 % Compute the labels for the SOM
4 labels = cell(length(som grid), 1);
5 for i=1:length(som grid)
6 if (isempty(som grid(i).n)) continue; end
7 ng = genre assignment(som grid(i).n);
8 check = unique(ng);
9 maxct = 0; maxj = 0;

10 for j=1:length(check)
11 nct = length(find(ng == check(j)));
12 if (nct > maxct)
13 maxj = j;
14 maxct = nct;
15 end
16 end
17 if (maxct < 3) continue; end
18 labels{i} = genres{check(maxj)};
19 end

Finally we visualize the SOM using the Smoothed-Data Histograms Matlab
Toolbox4 and label it according to the genre label names we just prepared in
the last code snippet (line 4-19)

1 M.dist codebook = 1:(20*20);
2 M.topol.msize = [20 20];
3 S = sdh calculate(som D, M, 'spread', 10);
4

5 % Visualize SOM using the SDH Toolbox
6 sdh visualize(S, 'sofn', 0, 'labels', labels);

Figure 2 shows the Matlab Figure displaying the SOM using very rudimen-
tary music similarity features. The Smoothed-Datagram visualization which
was first presented for Music Collections in [Pam03] is called Islands of Music.
When looking at the map we can see that large Classical Music islands emerged.
On the bottom of the visualization we can see an Electronic Music island which
is connected to a Metal island. On top of the map there is a World Music island.

4http://www.ofai.at/~elias.pampalk/sdh/

6

Figure 2: Islands Of Music visualization of the ISMIR 2004 collection using
standard timbre music similarity features extracted with the MA Matlab tool-
box.

1.7 License

The MVN toolbox is (c) 2010-2011, Dominik Schnitzer,
dominik.schnitzer@ofai.at

http://www.ofai.at/~dominik.schnitzer/mvn

MVN is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

MVN is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with MVN. If not, see <http://www.gnu.org/licenses/>.

7

References

[Pam04] E. Pampalk. A matlab toolbox to compute music similarity from
audio. In Proceedings of the 5th International Conference on Music
Information Retrieval. ISMIR’04, pages 254–257, 2004.

[BMDG05] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Cluster-
ing with bregman divergences. The Journal of Machine Learning
Research, 6:1705–1749, 2005.

[NN09] F. Nielsen and R. Nock. Clustering multivariate normal distri-
butions. Emerging Trends in Visual Computing, pages 164–174,
2009.

[SFWG10] D. Schnitzer, A. Flexer, G. Widmer, and M. Gasser. Islands of
Gaussians: The Self Organizing Map and Gaussian Music Similar-
ity Features. In Proceedings of the 11th International Conference
on Music Information Retrieval. ISMIR’10, 2010.

[PSS+09] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and G. Widmer.
On rhythm and general music similarity. In Proceedings of the
10th International Conference on Music Information Retrieval. IS-
MIR’09, 2009.

[Pam03] E. Pampalk. Islands of music: Analysis, organization, and visu-
alization of music archives. Journal of the Austrian Society for
Artificial Intelligence, 22(4):20–23, 2003.

8

