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Abstract

We report about an automatic continuous sleep stager which is based on probabilistic principles
employing Hidden Markov Models (HMM). Our sleep stager offers the advantage of being objective by
not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second),
and being based on solid probabilistic principles rather than a predefined set of rules (Rechtschaffen &
Kales). Results obtained for nine whole night sleep recordings are reported.

1 Introduction

Our aim is to built an automatic continuous sleep stager, based on probabilistic principles which overcomes
the known drawbacks of traditional Rechtschaffen & Kales [14] (R&K) sleep staging. Sleep staging is one
of the most important steps in sleep analysis. It is a very time consuming task consisting of classifying all
30 second pieces of an approximately 8 hour recording into one of six sleep stages. A sleep recording is
made with a minimum setting of four channels: electro-encephalogram (EEG) from electrodes C3 and C4,
electro-myogram (EMG) and electro-oculogram (EOG). In order to classify each 30 second segment of sleep,
the human scorer looks for defined patterns of waveforms in the EEG, for rapid eye movements in the EOG
and for EMG level. Quite some work has already been done in trying to replicate R&K sleep staging with
automatic methods (see [2] and [11] for overviews) including neural networks (e.g. [12] and [17]).

There is however a considerable dissatisfaction within the sleep research community concerning the very
basics of R&K sleep staging [11]: R&K is based on a predefined set of rules leaving much room for subjective
interpretation; it is a very time consuming and tedious task; it is designed for young normal subjects only;
it has a low 30 second temporal resolution; it is defined in terms of six stages neglecting the micro-structure
of sleep; it cannot be automized reliably due to the large inter-scorer variability and insufficient rules for
staging.

Our aim is therefore not to replicate R&K scoring but to find a new description of human sleep which
is based on the comparably unambiguous “extreme” cornerstones of traditional sleep staging. We use a
Hidden Markov Model (HMM) initialized with information from the unambiguous R&K sleep stages “wake”,
“deep” and “rem” to produce three continuous probabilities P(wake), P(deep) and P(rem) with a one second
resolution. Our sleep stager overcomes the known drawbacks of traditional sleep staging by being objective
and automatic and having a 30-fold increased temporal resolution compared to R&K. Results for nine whole
night recordings are compared to R&K standard. Problems with detection of REM sleep are pointed out
and discussed.



2 Data

Data consisted of nine whole night sleep recordings from a group of healthy adults (total sleep time = 70.5h,
age ranges from 20 to 60, 5 females and 4 males). We use only channels C3, C4 and EMG for further analysis.
Five recordings are used to train our automatic sleep stager (training set), four are set aside to evaluate it
(test set). Both sets are matched for sex and age.

3 Methods

HMMs [13] allow analysis of non-stationary multi-variate time series by modeling, both, the probability
density functions of locally stationary multi-variate data and the transition probabilities between these
stable states. In the context of sleep analysis, the locally stable states can be thought of as sleep stages.

Following the classical text by Rabiner and Juang [13], an HMM can be characterized as (i) having a
finite number of N states; (ii) a new state is entered based upon a transition probability distribution A which
depends on the previous state (the Markovian property); (iii) after each transition an observation output
symbol is produced according to a probability distribution B which depends on the current state. Although
the classical HMM wuses a set of discrete symbols as observation output, Rabiner and Juang [13] already
discuss the extension to continuous observation symbols. Such a Gaussian Observation HMM (GOHMM)
[10] has already been proposed as a model for EEG analysis. We use a GOHMM where the observation
symbol probability distribution for state j is given by

bj(z) = Nz, pj, Uj] (1)

where A is the normal density and p; and U; are the mean vector and covariance matrix associated
with state j. Please note that this a simple version of the Gaussian M-component mixture given in [13]
with M equal one. The Expectation-Maximization (EM) algorithm [1] is used to train the GOHMM thereby
estimating the parameter sets A and B as well as the p; and U;. Viterbi decoding is used to identify
most likely state sequences corresponding to a particular time series and enables the computation of the
probabilities of being in any of the N states at each point in time. Full details of the algorithms can be
found in [13].

A GOHMM is defined over the first reflection coefficients and stochastic temporal complexity measures,
computed for EEG signals (electrodes C3 and C4), and a measure of EMG power. Reflection coefficients
are the coefficients of the order recursive representation of autoregressive (AR) processes [7]. Stochastic
temporal complexity [15] is computed using the method of delays [18] to construct embedding matrices for
the temporal EEG signals. The numbers of significant singular values of these matrices obtained via singular
value decomposition serve as measures of complexity by quantifying the temporal information content of the
signals. The EMG signals are reduced to frequencies between 20 and 45 Hz via FIR-filtering and absolute
values of EMG are summed up for non-overlapping one second windows (following an approach given in
[19]). These EMG measures are normalized for each subject by subtracting the lower 10% percentile and
dividing through the interquartile range to minimize differences in EMG level between subjects. All EEG
and EMG features are computed with a one second resolution.

Our aim is not to replicate R&K scoring but to find a new description of human sleep which is based on
the comparably unambiguous “extreme” cornerstones of traditional sleep staging. Since R&K sleep staging
is based on a predefined set of rules which leave much room for subjective interpretation there can be
considerable disagreement between human scorers analysing the same sleep recording. The three R&K sleep
stages “wake”, “deep” and “rapid eye movement (rem)” sleep are the sleep stages that can be detected most
reliably by human scorers. Some studies on inter-scorer reliability report overall good agreement of around
90% for all sleep stages (see [6]). Others report high inter-scorer reliability of around 80% only for stages
“wake”, “deep” and “rem” and low reliability of 40% to 60% for all other R&K stages (S1, S2, S3) (see
[3]). Previous related research [16] on continuous sleep staging also confirmed that only the three “extreme”
R&K sleep stages are relatively unambiguous.

We therefore model the human sleep as a mixture of three different processes: wakefulness, deep sleep
and rem sleep. The other three stages (S1, S2 and S3) can be seen as mixtures of the three basic processes.
Consequently, we use a fully connected 3-state GOHMM to build our sleep stager. We use only data labelled



as “extreme” R&K stages “wake”, “rem” and “deep”to train a 3-state Gaussian Mixture Model which is
needed to initialize the Gaussian kernels (p;,U;;5 = 1,...,3 see Equ. 1) of the 3-state GOHMM. The
GOHMM is trained on all available data from the training set and the probabilities of being in any of the 3
states are computed at each point in time. From the results we obtain 3 continuous probability plots which
indicate the amount of wakefulness, rem and deep sleep with a one second resolution (P(wake), P(rem) and
P(deep)). Although it is not the purpose of our approach to replicate R&K sleep staging, we nevertheless
like to compare our results to the R&K standard. We construct a classifier for 30sec sections as suggested
in [16] by computing mean values of P(wake), P(rem) and P(deep) for each of the six human scored R&K
stages of all the recordings in the training set. For classification of recordings from the test set we find the
minimum Euclidean distance between these mean values and the current probabilities.

4 Results

Table 1: R&K scores vs. GOHMM classification; GOHMM classification is given in percentages, separately
for each sleep stage.

GOHMM
wake | S1|S2|S3| deep | REM
wake 86 11 0 0 0 3
R|S1 52 22 | 6 6 0 13
& 1S2 13 12 1 14 | 14 1 37
K|[S3 2 2 17 | 20 51 8
deep 1 0 4 14 81 0
REM | 32 16 | 13 | 12 1 26

The trained GOHMM is evaluated using 4 whole night recordings from our test set. The newly obtained
continuous sleep profiles are compared to traditional R&K scoring. R&K scores are taken as true scores and
for each sleep stage separately the percentages of GOHMM classification into each of the 6 stages are given
in Tab. 1. We expected that the GOHMM would be able to correctly classify data from the unambiguous
“extreme” R&K stages “wake”, “rem” and “deep” which we used during initialization. Whereas this is true
for “wake” and “deep” (86% and 81%) it is not for “rem” (26%). Probability plots plus R&K and HMM
scoring for one whole night recording (subject from the test data group) are given in Fig. 1. Whereas the
overall structure of sleep plus short periods of wakefulness are clearly visible in the probability plots, there
is substantial mix up between rem sleep and S2 at the end of the night.

We also evaluated a GOHMM with random initialization of the Gaussian kernels instead of initialization
with data from the “extreme” R&K stages “wake”, “rem” and “deep”. Results in terms of agreement with
R&K stages were only little worse than with proper initialization and the obtained kernels were very similar
in terms of mean vectors p and covariance matrices UU. This further strengthens our belief that human sleep
indeed i1s a mixture of three processes.

5 Discussion

We presented an approach towards automatic sleep staging that is innovative in two major respects. It goes
beyond mere replication of the traditional R&K standard and offers a new continuous description of human
sleep which is based on probabilistic principles. It is therefore in line with previous recommendations [4] and
work [16] on continuous sleep staging. It applies the method of Hidden Markov Models to analysis of EEG
which seems to be a natural choice given the multi-variate temporal nature of the data. However, very little
work has been done on applying HMMs to EEG analysis until now (see [10], [5], [8] and [9]).

Our GOHMM has great problems discriminating rem sleep from wakefulness and stages 1, 2 and even
3. Whereas it is known that detection of rem is difficult from EEG alone, EMG should help in this respect.
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Figure 1: Whole night results for one test subject; from top to bottom: R&K scoring, GOHMM scoring,
P(wake), P(deep), P(rem).

Close inspection of our EMG recordings reveals that discrimination even within subjects is very difficult.
This seems to be due to a too coarse quantification resolution during recording which does not allow to
detect the often very small drop in muscle tone in rem sleep.

The two other “extreme” R&K stages “wake” and “deep” can be detected very satisfactory. There is
only minor mix up between wake and S1, and deep and S3. S1 (light sleep) is mainly mixed up with wake,
S2 with rem but also with all other stages. Both phenomena might in part be due to the EMG problem
described above. S2 has already been described as a “compound” state not easily discriminable from other
states (see [16]). S3 is mainly mixed up with deep sleep, which is as expected.

When judging the results concerning the comparison between R&K and GOHMM one should bear in
mind that (i) our model is unsupervised and uses class information only partly during initialization, (ii) R&K
scoring is done for 30sec sections and therefore not necessarily true for each single second of such epochs.
Averaging the GOHMM class labels for each 30sec section would maybe allow fairer comparison. Last but
not least it was not our intention to replicate R&K sleep staging but rather to develop a new description of
human sleep which is only loosely based on traditional standards.

We conclude that, apart from our EMG problem, our results confirm manual scoring of the “extreme”
states of sleep but do so automatically and at 30-fold increased time resolution. Future work will focus on
getting around the EMG problem by including EOG, as well as on applying the new method to disturbed
sleep in order to demonstrate the advantage of the increased temporal resolution.
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