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Abstract

In this paper, we study the effect of using -grams (sequences of words of length ) for
text categorization. We use an efficient algorithm for generating such -gram features in two
benchmark domains, the 20 newsgroups data set and 21,578 REUTERS newswire articles.
Our results with the rule learning algorithm RIPPER indicate that, after the removal of stop
words, word sequences of length 2 or 3 are most useful. Using longer sequences reduces
classification performance.

1 Introduction

After Lewis’ influential thesis (Lewis 1992c), the use of Machine Learning techniques for Text
Categorization has gained in popularity (see, e.g., (Hearst and Hirsh 1996; Sahami 1998)). One
requirement for the use of most Machine Learning algorithms is that the training data can be
represented as a set of feature vectors. A straight-forward approach for representing text as
feature vectors is the set-of-words approach: A document is represented by a feature vector that
contains one boolean attribute for each word that occurs in the training collection of documents.
If a word occurs in a particular training document, its corresponding attribute is set to 1, if not it
is set to 0. Thus, each document is represented by the set of words it consists of.1

In this paper, we study the effect of generalizing the set-of-words approach by using word
sequences, so-called -grams, as features. We describe an algorithm for efficient generation and
frequency-based pruning of -gram features in section 2. In section 3 we present the results on
two benchmark tasks, Ken Lang’s 20 newsgroups data set and the 21,578 REUTERS newswire
articles. The results indicate that word sequences of length 2 or 3 usually improve classification

1A related approach, the bag-of-words approach, uses the frequencies of occurrence of the individual words as
feature values. The differences between both approaches in the context of naive Bayes classifiers were studied by
McCallum and Nigam (1998).
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performance, while longer sequences are not as useful. They also show that moderate frequency-
based pruning of the feature set is useful, while heavy frequency-based pruning results in a
performance decrease on the studied datasets.

2 Efficiently Generating -gram Features

For small values of , the number of different -gram features that can be discovered in a col-
lection of documents increases monotonically with . For every -gram there is at least one

-gram that has the -gram as a starting sequence. The only exception is the final sequence
in the document. -grams that occur more than once will produce more than one -gram
if the different occurrences of the -gram are followed by different words. On the other hand,
for similar reasons, the number of occurrences of most -grams will decrease with increasing

. Thus, although the number of features grows at least linearly with , the number of features
with a certain minimum frequency will grow much slower. An efficient algorithm for generating
these feature sets should therefore avoid to generate all -grams.

We implemented such an algorithm based on the APRIORI algorithm for efficiently gener-
ating association rules (Agrawal et al. 1995). The proposed technique is quite similar (if not
identical) to the one that was (independently) developed by Mladenić and Grobelnik (1998). The
basic idea of the algorithm is to utilize a user-specified lower bound on the minimum number
of occurrences of a feature. -grams that occur less frequently than this bound will not be used
as features for the learning algorithm. For generating such pruned feature sets efficiently, the
algorithm exploits a simple property:

Sub-sequence Property: The number of occurrences of a sequence of words in a docu-
ment collection is bounded from above by the number of occurrences of each of its sub-
sequences.

This property can be exploited in order to obtain a simple but efficient algorithm. The -gram
features are generated by different passes over the documents. In each pass, the number of
occurrences of each feature is counted, and a user-specified threshold is used to prune infrequent
features. In order to avoid the combinatorial explosion in the feature space, we can use the sub-
sequence property for pruning the search space: We only have to count sequences of words
for which the sequences of the first and the last words have previously passed the
frequency threshold. Other sequences can be ignored.

Figure 1 shows the resulting algorithm. It takes three parameters: the collection of Docu-
ments, the maximum length of the features (MaxNGramSize), and a lower bound on the number
of occurrences of a feature (MinFrequency). The algorithm then computes all Features of length
at most MaxNGramSize that occur at least MinFrequency times in the Documents.

For computing this result, it performs MaxNGramSize passes over the document collection,
one for each possible feature length. In principle, however, one pass over the database would
be sufficient. Instead of merely counting the occurrences of each word, the algorithm has to
keep pointers to the positions where each feature in the text occurs. After computing this list of
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procedure GENERATEFEATURES(Documents,MaxNGramSize,MinFrequency)

Features[0]
for MaxNGramSize

Candidates
Features[n]
foreach Doc Documents

foreach NGram NGrams(Doc, )
InitialGram NGram LastWord(NGram)
FinalGram NGram FirstWord(NGram)
if InitialGram Features[ ]
and FinalGram Features[ ]

Counter NGram Counter NGram
Candidates Candidates NGram

foreach NGram Candidates
if Counter NGram MinFrequency

Features[ ] Features[ ] NGram
return Features

Figure 1: Efficiently generating features with an APRIORI-like algorithm.

pointers in the first pass over the documents, the feature set of length can be computed
from the feature set of length by the following algorithm:

1. Find pairs of features that intersect (e.g. find pairs of and pairs of features)

2. For each such pair, compute the intersection of the position pointers of the two features.
This is defined as the subset of the position pointers of the first feature for which a pointer
to the immediately following position is contained in the set of position pointers of the
second feature.

3. Discard all features for which the number of associated position pointers is below the
frequency threshold.

This algorithm is inspired by the APRIORITID algorithm, which is also described in (Agrawal
et al. 1995). It only has to read the documents once, but the memory requirements are much
higher than for the algorithm of figure 1 because it has to store a list of position pointers for
each feature (instead of using only a counter). For each iteration, the number of accesses to the
hash table that stores these position pointers is quadratic in the number of features found in the
previous iteration, while it is linear in the size of the document collection for the APRIORI-based
algorithm. Consequently, we have found that additional passes over the document collection are
cheaper if the number of features is large. Only for higher -gram sizes, when the size of the
feature sets becomes small (ca. ), the use of position pointers begins to pay off.

We have implemented both algorithms in perl. The implementation has an additional pa-
rameter that can be used to specify with which iteration the mode should switch from making
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additional passes through the document collection to using position indices. Another parameter
allows the user to not only specify a minimum term frequency (number of times a feature occurs
in the collection) but also a minimum document frequency (minimum number of documents in
which a feature must appear). A feature will be accepted if it is above both thresholds.

3 Experimental Results

We used the inductive rule learning algorithm RIPPER for experiments in two domains: the
21578 REUTERS newswire data and Ken Lang’s 20 newsgroups data set. In the following, we
briefly describe RIPPER, our experimental setup, and the results in both domains.

3.1 RIPPER

William Cohen’s RIPPER2 (Cohen 1995) is an efficient, noise-tolerant rule learning algo-
rithm based on the incremental reduced-error-pruning algorithm (Fürnkranz and Widmer 1994;
Fürnkranz 1997). What makes RIPPER particularly well-suited for text categorization problems
is its ability to use set-valued features (Cohen 1996). For conventional machine learning al-
gorithms, a document is typically represented as a set of boolean features, each encoding the
presence or absence of a particular word (or -gram) in that document. This results in a very
inefficient encoding of the training examples because much space is wasted for specifying the
absence of words in a document. RIPPER allows to represent a document as a single set-valued
feature that simply lists all the words occurring in the text. Conceptually, this does not differ
from the use of boolean features in conventional learning algorithms, but RIPPER makes use of
some clever optimizations. In the remainder of this paper, we will frequently continue to refer to
each -gram as a separate boolean feature.

3.2 Experimental Setup

For each of the two datasets, we represented each document with set-valued features, one for
each -gram size MaxNGramSize. This means that all experiments using 3-grams also
included 2-grams (bigrams) and 1-grams (unigrams). We generated several different versions of
the datasets, for various settings of the parameters DF (minimum document frequency) and TF
(minimum term frequency) as described at the end of section 2.

It is important to note that we used a stop-list3 in order to reduce the number of -grams.
Many frequent -grams that consist of a concatenation of frequent but uninformative prepositions
and articles can be avoided that way. However, it should be mentioned that there is some evidence
that important information might be thrown away with such a technique (see, e.g., (Riloff 1995)).
We also ignored sentence boundaries, converted all characters to lower case, and replaced all
digits with a ’D’ and all special characters with an ’ ’.

2Available from .
3We used the stop list that is publicly available at

.
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3.3 20 Newsgroups

The first dataset we experimented with was Ken Lang’s 20-newsgroups data. This is a collection
of 20,000 netnews articles, about 1,000 from each of 20 different newsgroups. The dataset
is available from . The task is to
identify to which newsgroup an article belongs to.

We evaluated RIPPER with various feature sets using its built-in cross-validation. Because of
the complexity, we chose to use only 5 folds. Note, however, that this procedure is problematic
because of the characteristics of newsgroup articles: It happens quite frequently that portions
of an articles are quoted in several subsequent articles of the same newsgroup. As such related
articles may appear in both, training and test sets, there is a danger of over-optimistic accuracy
estimates. However, we believe that the estimates are good enough for comparing different
versions of the same learning setup.

Table 1 shows the results. The first column shows the pruning parameters. We measured the
average error rate, the average run-time for the learning algorithm in CPU seconds (this does not
include the time needed for generating the feature set), and the (cumulative) number of generated
features for several different settings of the algorithm’s parameters, and for several different
maximal -gram sizes. DF and TF stand for minimum document frequency and minimum term
frequency, respectively. The set-of-words setting refers to the conventional text learning setting
where each word is treated as a separate boolean feature.

The best results could be obtained with fairly moderate frequency-based pruning (all features
that occur at least 5 times in at least 3 documents are admitted) and the use of sequences with
maximum size 3. In all groups with identical pruning parameters (except for the ones with very
heavy pruning), the use of -grams improves the results. However, sequences of length do
no longer improve the results (and make them worse in some cases). Frequency-based pruning
works well if the parameter settings are fairly low, but the results get worse with increasing
amounts of pruning. Obviously, several good features have a fairly low coverage and are thrown
away with higher settings of the pruning parameters.

A look at the highest ranked features shows that they are not very indicative of any of the
classes. The top ten features and their frequencies are shown in figure 2.

Obviously, none of the words are predictive of any of the classes. The first
word that seems to be predictive for some classes (soc.talk.religion.misc,
soc.religion.christian, and alt.atheism) is god, which is ranked 31 with 4550
occurrences. For higher -gram sizes, the situation is similar. These problems could be alleviated
by tailoring the stop list to the domain specifics. However, this not only requires a considerable
effort but it also does not solve all problems: The repetitive nature of this domain (entire para-
graphs may be repeated in several documents) may lead to overfitting. For example the fragment
”closed roads mountain passes serve ways escape” produced the 4 highest ranked 4-grams that do
not contain any numerical patterns or special characters, each one of them occurring 153 times.
Most likely, an article that contains this passage has been quoted 152 times.
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Pruning -grams Error rate CPU secs. No. Features

set-of-words 47.07 0.92 n.a. 71,731
1 46.18 0.94 12686.12 36,534

DF: 3 2 45.28 0.51 15288.32 113,716
TF: 5 3 45.05 1.22 15253.27 155,184

4 45.18 1.17 14951.17 189,933
1 45.51 0.83 12948.31 22,573

DF: 5 2 45.34 0.68 13280.73 44,893
TF: 10 3 46.11 0.73 12995.66 53,238

4 46.11 0.72 13063.68 59,455
1 45.88 0.89 10627.10 13,805

DF: 10 2 45.53 0.86 13080.32 20,295
TF: 20 3 45.58 0.87 11640.18 22,214

4 45.74 0.62 11505.92 23,565
1 48.23 0.69 10676.43 n.a.

DF: 25 2 48.97 1.15 8870.05 n.a.
TF: 50 3 48.69 1.04 10141.25 n.a.

4 48.36 1.01 10436.58 n.a.
5 48.36 1.01 10462.65 n.a.
1 51.54 0.60 8547.43 n.a.

DF: 50 2 49.71 0.53 8164.27 n.a.
TF: 100 3 51.21 1.26 8079.59 n.a.

4 51.21 1.26 8078.55 n.a.
5 51.21 1.26 8147.75 n.a.
1 52.59 0.71 6609.05 n.a.

DF: 75 2 52.83 0.25 6532.80 n.a.
TF: 150 3 52.36 0.48 6128.49 n.a.

4 52.36 0.48 6128.49 n.a.
5 52.36 0.48 6119.27 n.a.

Table 1: Results in the 20 newsgroups domain.

3.4 21578 REUTERS newswire data

The REUTERS newswire dataset has been frequently used as a benchmark for text categorization
tasks. We used the version with 21,578 documents and evaluated it on the so-called ModApte-
Split, which uses 9,603 documents for training and 3,299 for testing (and does not use the re-
maining documents). The standard evaluation procedure consists of a sequence of 90 binary
classification tasks, one for each category. The results of these tasks are combined using micro-
averaging. A more detailed description of this setup can be found in (Lewis 1997).

Figure 3 shows our results. We report recall and precision, the F1 value (the geometric
mean between recall and precision), the predictive accuracy, and the number of features. In all
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Feature Frequency
ax 62063
D 61603
DD 48247
DDD 31188

19484
DDDD 18331
writes 14684
article 12567
dont 10255
like 10047

Table 2: 10 most frequent features in the 20 newsgroups domain.

representations it seems to be the case that the use of bigrams results in the highest recall and
the lowest precision. In terms of F1 and predictive accuracy, bigrams have a clear advantage at
moderate pruning, while with more heavy pruning, the unigrams representation seems to catch
up.

It is also obvious that precision is correlated to the number of features. Unigrams give higher
precision (but lower recall) than multi-grams, and an increase in the minimum frequency require-
ments also increases precision. For interpreting these results, it should be remembered that this
domain is fairly simple, and for many of the classes the occurrence of a single word is sufficient
to classify many of the articles.

A look at the features is not much different from the results in the 20 newsgroups domain:
the most frequent features seem to bear no obvious relationship to any of the classes. Interesting
is a comparison of the number of features: Although REUTERS contains only slightly more
than 12,000 articles compared to the 20,000 of the 20 newsgroups dataset, the number of found
features differs an order of magnitude. We think that the reasons for this phenomenon are that
newsgroups articles are slightly longer on average, originate from a variety of authors and thus
use a diverse vocabulary, the diversity of the topics of the newsgroups, and the repetitiveness
of newsgroups articles which produces many -grams by repetition of entire paragraphs of an
article.

However, both, tables 1 and 3, exhibit a sub-linear growth of the number of features. Thus,
the algorithm effectively avoids the super-linear growth of the number of features (see section 2).

4 Related Work

Feature generation and feature selection are important topics in information retrieval. Lewis
(1992c) has emphasized their importance and studied several techniques on the REUTERS
newswire data. Contrary to our results with -gram features (in particular bigrams), Lewis
(1992a) concludes that in the REUTERS dataset phrasal features (as well as term clustering)
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Pruning -grams Recall Precision F1 Accuracy No. Features

set-of-words 76.71 83.42 79.92 99.5140 n.a.
1 77.22 83.55 80.26 99.5211 9,673

DF: 3 2 80.34 82.03 81.18 99.5302 28,045
TF: 5 3 77.56 82.74 80.07 99.5130 38,646

4 78.18 82.31 80.19 99.5130 45,876
1 77.19 83.65 80.29 99.5221 6,332

DF: 5 2 80.05 82.06 81.04 99.5278 13,598
TF: 10 3 77.96 82.29 80.07 99.5106 17,708

4 78.21 82.13 80.12 99.5106 20,468
1 76.92 83.99 80.30 99.5241 4,068

DF: 10 2 79.06 82.04 80.52 99.5177 7,067
TF: 20 3 77.32 82.67 79.91 99.5096 8,759

4 76.98 82.91 79.84 99.5096 9,907

Table 3: Results in the 21,578 REUTERS newswire domain.

provide no advantage over conventional set-of-words features. Notwithstanding these results,
Fürnkranz, Mitchell, and Riloff (1998) could show that phrases can yield precision gains at low
levels of recall.

Mladenić and Grobelnik (1998) performed a similar study using a naive Bayesian classifier
for classifying WWW-documents into the hierarchy used by www.yahoo.com. They also con-
clude that sequences of length up to 3 can improve the performance, while longer sequences
do not improve performance. The main difference to our study are the use of a different clas-
sifier, a different domain, and some differences in the setup of the experiments (e.g., Mladenić
and Grobelnik (1998) used a fixed number of features, while we used a frequency-threshold for
determining the number of features).

5 Discussion

We presented a simple but efficient algorithm for generating -gram features and investigated
their utility in two benchmark domains. The algorithm is based on the APRIORI-algorithm for
discovering frequent item subsets in databases. A similar adaptation of the algorithm has been
independently developed and studied by Mladenić and Grobelnik (1998). In both studies, the
results seem to indicate that the addition of -grams to the set-of-words representation frequently
used by text categorization systems improves performance. However, sequences of length
are not useful and may decrease the performance.

Note that the results in this paper were obtained using a simple frequency-based feature
subset selection. Although there is some evidence that frequency based pruning of feature sets
is quite competitive in text categorization domains (Yang and Pedersen 1997; Mladenić 1998),
it might be worth-while to study the use of more sophisticated pruning techniques that take the
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class information into account. On the other hand, Yang and Pedersen (1997) and Lewis (1992b)
report that heavy pruning may improve performance, which is not consistent with our results.

The main reason for our choice of frequency-based pruning was that it can be easily integrated
into the APRIORI-based feature generation algorithm. In principle, however, any other feature
subset selection technique could be used as a post-processor to the algorithm. Furthermore, some
techniques could be directly integrated into the algorithm. The only condition that the algorithm
imposes is that if a feature is acceptable to the pruning criterion, all its subsequences have to be
acceptable as well. For some measures that do not implement this condition, upper and/or lower
bounds on the measures could be implemented that allow to weed out unpromising candidates
(such as, e.g., the techniques that are used for pruning candidate conditions with unpromising
information gain bounds in C4.5 (Quinlan 1993) and FOIL (Quinlan 1990)). Extending the
feature generation techniques used in this paper into that direction is subject to further research.
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FÜRNKRANZ, J. (1997). Pruning algorithms for rule learning. Machine Learning 27(2), 139–171.
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