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Abstract

Many of today's algorithms for Inductive Logic Programming (ILP)

put a heavy burden and responsibility on the user, because their declara-

tive bias have to be de�ned in a rather low-level fashion. To address this

issue, we developed a method for generating declarative language bias for

top-down ILP systems from high-level declarations. The key feature of our

approach is the distinction between a user level and an expert level of lan-

guage bias declarations. The expert provides abstract meta-declarations,

and the user declares the relationship between the meta-level and the given

database to obtain a low-level declarative language bias. The suggested

languages allow for compact and abstract speci�cations of the declarative

language bias for top-down ILP systems using schemata. We veri�ed sev-

eral properties of the translation algorithm that generates schemata, and

applied it successfully to a few chemical domains. As a consequence, we

propose to use a two-level approach to generate declarative language bias.

1 Introduction

Many of today's Inductive Logic Programming (ILP) algorithms put a heavy

burden and responsibility on the user, because their declarative language biases

have to be de�ned in a rather low-level fashion. While all sorts of declarative

biases have been proposed in the past (e.g., [21, 1], or [17] for an excellent

overview) and the things that could be speci�ed are relatively clear, the level of

abstraction of current formal languages leaves much to be desired.

As a consequence, ILP algorithms can currently only be applied by ILP

experts.

1

It might also be the reason why apparently ILP algorithms have not

yet been adopted by tool vendors o�ering tools for Knowledge Discovery and

Data Mining (KDD). We thus think that one way to improve the acceptance
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There have been, nevertheless, several successful applications of ILP algorithms to real-

world problems, e.g., [20, 10, 13, 15].
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could be to devise easy-to-use methods for the speci�cation of declarative lan-

guage bias for relational application domains.

In particular, generating or compiling a low-level speci�cation from an ab-

stract high-level speci�cation appears to be an option. In fact, this has been

hinted at in [4] and in [14]. In this paper we propose a method for generating

the declarative language bias of top-down ILP algorithms based on schemata.

2

Schemata as used in several ILP algorithms (e.g., FOCL [19], FOSSIL [12], SRT

[14], and TILDE [2]) are a comparably useful and practical form of declarative

bias for ILP, but their de�nition is still a hard and error-prone task.

The suggested solution amounts to a two-level approach, where the user just

has to declare the relationship between the meta-level and the given database

properly, and the expert has to declare the meta-level information (consisting

of the available meta-literals and the meta-schemata). From these two kinds of

declarations, schemata for top-down ILP systems can be generated.

The main bene�t of this approach is that more abstract and compact decla-

rations are possible. This can be compared with the bene�ts of abstraction in

high-level programming languages. High-level statements serve as a shorthand

for more complex statements, they are easier to specify and easier to understand.

The �rst part of this paper will illustrate the basic ideas, mostly by means of

examples. The de�nition of the syntax of the suggested language can be found

in appendix A. The algorithm generating schemata is described in appendix B.

In the next section, we brie
y describe the use of schemata as declarative

language bias. In section 3, we present the two-level approach to generating

schemata from meta-declarations. Section 4 deals with the veri�cation and

validation of our approach. In section 5, we discuss related work on declarative

language bias.

2 Schemata as Declarative Bias

Several ILP systems, such as FOCL, FOSSIL, SRT and TILDE use schemata as

declarative bias. The idea of schemata can easily be explained using an example:

schema((sym_bond(A,B,C,D), atm(A,C,E,F,G), G>H),

[A:chemical:'+', B:atomid:'+', C:atomid:'-',

D:bondtype:'-', E:element:'-', F:atomtype:'-',

G:charge:'-', H:charge:'=']).

This expression speci�es an admissible re�nement of a given clause by the

addition of a conjunction of literals (sym bond(A,B,C,D), atm(A,C,E,F,G),

G>H). The �rst subexpression can also consist of a single condition only. The

re�nement is constrained by the speci�cations in the second subexpression, a

2

We employ the term \schemata" for speci�cations of admissible re�nements of clauses at

the �rst-order level. In contrast to this, rule models [16], also sometimes referred to as rule

schemata, are second-order declarations of complete rules.
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list containing type and mode declarations of the variables. The variables in

the list refer to argument positions in the conjunction of literals. This kind of

reference to argument positions is used throughout the paper, both on the \user

level" and on the \expert level". All variables occurring in the literals have to

occur in the second subexpression, and vice versa.

If a given clause is to be re�ned by means of such a schema, the variables

labeled as '+' are uni�ed with variables already bound, provided that the types

are matching as well. If a variable is labeled as '{', it means that this variable

is not yet bound before the application of the schema. A new variable can be

used in subsequent applications of the schemata, given that the mode is '+'

there and the types are matching. So, in the example, variable C can be used

in any subsequent literal, if all constraints are ful�lled. The mode declaration

'=' means that a constant will be inserted at the respective argument position.

In practice, schemata are a comparably convenient form of specifying a

declarative language bias. Their declaration is nevertheless a burdensome task,

and the declared schemata tend to look very similar for many application do-

mains (e.g., for chemical domains). So, generating schemata from abstract

high-level declarations appears to be possible as well as desirable.

3 Generating Schemata from Meta-Schemata:

A Two-Level Approach

In this section we present a two-level approach to generating schemata fromwhat

we call \meta-schemata". The approach distinguishes two levels of declarations,

namely the \expert level", and the \user level". The expert level consists of

high-level declarations (e.g., the meta-schemata), and the user level consists of

declarations to relate the given relations to the expert level.

For convenience, we will also make use of the common distinction between

\meta" and \object": the second-order declarations will be said to be on the

\meta-level", and the �rst-order declarations to be on the \object-level".

The goal in the design of the languages was to keep the declarations to be

made by the user as simple as possible, and to keep the languages for both

levels as similar as possible. There is a correspondence between the object-level

and the meta-level: at the object-level, there are variables, types, literals, and

schemata, and at the meta-level, there are meta-variables, meta-types, meta-

literals and meta-schemata. This correspondence is intended to increase the

ease of use.

In the following subsections, we will use a running example to illustrate

the generation of schemata. In the example, the meta-schemata are de�ned

for labeled graphs, and the user declarations are made to match these graph-

based meta-schemata with a given chemical database (containing descriptions

of molecules at the atom- and bond level).
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3.1 The Expert Level

This subsection describes the expert-level declarations. First of all, the liter-

als that can be used in the declarations of the meta-schemata are stated. In

the following, the literals at the meta-level will be called \meta-literals", the

variables of the meta-literals \meta-variables" and the types of meta-variables

\meta-types". In our approach, meta-variables denote sets of variables at the

\object"-level.

This is an example of a declaration of a meta-literal:

meta_literal(arc_relation(A,B,C,D,E,F),

[A:example:'1-1',

B:node:'1-1', C:node:'1-1',

D:sym_arc_feature:'0-n',

E:num_arc_feature:'0-n',

F:other_arc_arg:'0-n']).

meta_literal(node_relation(A,B,C,D,E),

[A:example:'1-1',

B:node:'1-1',

C:sym_node_feature:'0-n',

D:num_node_feature:'0-n',

E:other_node_arg:'0-n']).

These statements declare that node relation has �ve arguments, and that

node relation has six arguments. The second subexpression in such a decla-

ration assigns meta-types (e.g., node, sym node feature meaning a symbolic

property of a node, and num arc feature meaning a numeric property of an

arc) and cardinality constraints (1-1, 0-1, 1-n or 0-n) to meta-variables.

Cardinality constraints refer to the sets of variables assigned to a meta-

variable. They provide upper and lower bounds for the admissible number of

assignments of variables to a meta-variable.

Note that in the declaration of meta-literals (and of meta-schemata) the

order of the meta-variables is irrelevant. The order of variables is relevant only

at the \object"-level, when conjunctions of literals are variabilized during the

construction of schemata.

Such meta-literals are used in the declarations of meta-schemata. The decla-

ration of meta-literals has to be consistent with the usage in the meta-schemata

(with respect to cardinality constraints and meta-types). All meta-literals used

in meta-schemata have to be declared before.

The following expression is an example for a speci�cation of a meta-schema:
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meta_schema((arc_relation(A,B,C,D,E,F), node_relation(A,C,G,H,I,J)),

[A:example:'1-1':'+', B:node:'1-1':'+', C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-', E:num_arc_feature:'0-n':'-',

F:other_arc_arg:'0-n':'-', G:sym_node_feature:'1-1':'=',

H:sym_node_feature:'0-n':'-',I:num_node_feature:'0-n':'-',

J:other_node_arg:'0-n':'-']).

Such a declaration consists of the declaration of a conjunction of meta-

literals, and meta-types, cardinality constraints and modes for the meta-

variables used.

Note that in the example meta-variables of meta-type sym node feature

occur twice. For one of them, a single variable of mode '=' will occur in the

generated schema(ta), and for the other, an arbitrary number of variables of

mode '{' may occur.

The cardinality constraints in such a declaration have to be consistent with

the declarations of the meta-literals so that the sum of the cardinalities of meta-

variables of the same meta-type used in the same meta-literal is within the range

speci�ed in the meta-literal declaration (i.e., it should not violate the cardinality

constraint de�ned there).

In general, meta-schemata should best be read as conditionals: if there is a

match with declarations at the object-level, a corresponding schema is gener-

ated.

3.2 The User Level

This subsection describes the declarations to be made by the user. One of the

main di�erences between the expert level and the user level is that at the user

level there are no cardinality constraints.

Firstly, the user has to declare the relations that are to be considered in the

translation. This declaration includes the types of variables, since they are used

in the generated schemata:

relation(atm(A,B,C,D,E),

[A:chemical, B:atomid, C:element,

D:atomtype, E:charge]).

relation(sym_bond(A,B,C,D),

[A:chemical, B:atomid, C:atomid,

D:bondtype]).

Obviously, this way of labeling argument positions could be made simpler,

but our aim was to keep the di�erent sorts of declarations as similar as possible.

Secondly, the connection between the relations of the domain and the meta-

level has to be declared. Here, each relation is declared to be of some meta-

relation, and the argument positions are labeled with meta-types:
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node_relation(atm(A,B,C,D,E),

[A:example, B:node, C:sym_node_feature,

D:sym_node_feature, E:num_node_feature]).

arc_relation(sym_bond(A,B,C,D),

[A:example, B:node, C:node,

D:sym_arc_feature]).

The �rst declaration states that relation atm contains information about

properties of nodes according to the graph-based declarations at the meta-level.

It says, e.g., that variable B of type atomid is of meta-type node, and that

variable E of type charge is of meta-type num node feature. The second dec-

laration states that relation sym bond \contains" the arcs of the graphs as well

as their properties.

At the user level, meta-types are merely used for labeling the argument

positions. So, meta-types have a di�erent meaning at the user level.

Note that at this level only a subset of all potential meta-variables of some

meta-type declared at the expert level has to occur. The declaration at the user

level, however, has to be consistent with the lower bounds of the cardinality

constraints de�ned there.

The above declarations are su�cient to generate a schema based on them.

The output generated in our example looks like this:

schema((sym_bond(A,B,C,D),atm(A,C,E,F,G)),

[A:chemical:'+', B:atomid:'+', C:atomid:'-',

D:bondtype:'-', E:element:'=', F:atomtype:'-',

G:charge:'-']).

A translation algorithm generating such schemata can be found in appendix

B. One of the main tasks of the algorithm is the assignment of variables to meta-

variables, which is heavily constrained by types, meta-types and cardinality

constraints. We employ a simple generate-and test algorithm for this task. A

more sophisticated constraint satisfaction algorithm would make more informed

choices from the beginning and thus avoid unnecessary backtracking.

4 Veri�cation and Validation of the Approach

In appendix C, we verify some of the properties of the translation algorithm.

Most importantly, it can be shown that the cardinality constraints are never

violated by the algorithm. Secondly, the algorithm, by design, always ful�lls the

type constraints for the assignment of variables. This also holds with respect to

meta-types.

We also did some initial validation of the approach: the algorithm has been

applied to several chemical domains ([9], [20], [13]) using all graph-based meta-

schemata (see appendix D). Subsequently, we compared the results generated

6



by the algorithm with the manually engineered declarative language bias. Not

surprisingly, there were only a few observed di�erences. Some of the generated

schemata were not included in the manually engineered declarations, mostly for

e�ciency reasons.

The ultimate validation of such an approach are usability tests with real

users, which will show the utility of the approach. Such tests checking the

user-friendliness of the suggested language are under way.

5 Related Work

Closely related approaches in the literature can be described along two dimen-

sions: �rstly, there are languages for the speci�cation of complete rules, and

languages for the speci�cation of re�nements only. Secondly, these declarations

can be at the meta-level or at the object-level. Using these two dimensions,

various existing systems and languages can be categorized as follows

3

:

1. Speci�cation of complete clauses, meta-level:

Rule schemata [11], rule models [16], second-order schemata [6]

2. Speci�cation of re�nement, meta-level:

Relational clich�es [19, 18]

3. Speci�cation of re�nement, object-level:

FOSSIL [12], SRT [14], TILDE [2]

The approach presented here belongs to the second group of methods, as it

allows for the speci�cation of re�nements at the meta-level. Next, we will com-

pare it with probably the closest work in the literature, the approach based on

relational clich�es. Subsequently, we will compare it with two other well-known

techniques for specifying declarative language bias, ADGs [4] and Dlab [7].

5.1 Relational Clich�es

In [19], a meta-level approach to look-ahead for top-down ILP systems is pre-

sented. The look-ahead is based on so-called relational clich�es, which are second-

order expressions de�ning admissible re�nements of a clause. If there is a match

with predicates at the object-level, the clich�e is applied. The subsequent expres-

sions are examples of relational clich�es as de�ned in [18]:

Pattern: part-of(A,B) & ext-pred(...,B,...)

var restr: {[introduces-new-var non-numeric 2],

[include-old-variable non-numeric 1]} &

{[include-new-var non-numeric *ANY*]}

pred restr: {[pred-type = ext-pred, include-pred(part-of)]} &

3

This list contains just a small fraction of the approaches described in the literature.
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{[pred-type = ext-pred]}

Pattern: ext-pred(...,A,...) & thresh-comp(A, Thresh)

var restr: {[introduces-new-var numeric *ANY*]} &

{[include-new-var numeric 1]}

pred restr: {[pred-type = ext-pred} &

{[pred-type = thresh]}

In the \variable restrictions" (var restr), the second term denotes the type

of the variable, and the third one the position of the variable in the respective

literal. The following meta-schemata express exactly the same thing:

meta_schema((part_of(A,B), ext_pred(B,C)),

[A:non_numeric:'1-1':'+',

B:non_numeric:'1-1':'-',

C:other:'0-n':'-']).

meta_schema((ext_pred(A, B), thresh_comp(A, Thresh)),

[A:numeric:'1-1':'+',

B:other:'0-n':'+',

Thresh:numeric:'1-1':'=']).

The main di�erence between our approach and [19] is that we propose a two-

level, generative approach, and that in [19] clich�es are applied \on the 
y". We

think there are several advantages of our approach over [19]. Firstly, it allows

for a degree of user-control that cannot be accomplished with a \dynamic"

approach. The user can inspect the generated schemata, and delete some of

them, if needed, to restrict the search space. Secondly, it is more transparent

in that the users cannot mix up the levels. Thirdly, the same schemata are

repeatedly used during learning. Thus, it is not necessary to derive them anew

every time they are applied.

Besides, the representation developed in [18] (see the example above) is

not as expressive as the language proposed in this paper. The representation

proposed there is especially restricted with respect to variables.

5.2 ADGs and Augmented ADGs

ADGs [4] are grammars for the declaration of antecedents of rules. In ADGs,

variables are logical variables. Variables in a right-hand side of a grammar rule

that are not in the left-hand side are distinct for each application of the rule.

So, generating new variables is easy with ADGs. The hard task is to keep track

of them so that they can be reused [5].

To illustrate the reuse of variables with ADGs, we present an example that

is �rst formulated in terms of meta-schemata and schemata, and then in terms

of ADGs. For completeness, we include all declarations that are used for the

generation of schemata.
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/* P A R T - O F E X A M P L E */

/* EXPERT LEVEL */

/* meta-literals */

meta_literal(part_of(A,B),

[A:non_numeric:'1-1',

B:non_numeric:'1-1']).

meta_literal(ext_pred(B,C),

[B:non_numeric:'1-1',

C:other:'0-n']).

/* meta-schemata */

meta_schema((part_of(A,B), ext_pred(B,C)),

[A:non_numeric:'1-1':'+',

B:non_numeric:'1-1':'-',

C:other:'0-n':'-']).

meta_schema(ext_pred(B,C),

[B:non_numeric:'1-1':'+',

C:other:'0-n':'-']).

/* USER LEVEL */

/* object-level declarations */

relation(part_of(A, B), [A:object, B:object]).

relation(test1(A), [A:object]).

relation(test2(A), [A:object]).

/* meta-level declarations */

part_of(part_of(A, B), [A:non_numeric, B:non_numeric]).

ext_pred(test1(A), [A:non_numeric]).

ext_pred(test2(A), [A:non_numeric]).

/* generated schemata */

schema((part_of(A,B),test1(B)), [A:object:'+',B:object:'-']).

schema((part_of(A,B),test2(B)), [A:object:'+',B:object:'-']).

schema((part_of(A,B),test1(A)), [A:object:'-',B:object:'+']).

schema((part_of(A,B),test2(A)), [A:object:'-',B:object:'+']).

9



schema(test1(A), [A:object:'+']).

schema(test2(A), [A:object:'+']).

The following ADG de�nes the same language bias:

body(X) --> schemata(X).

schemata(X) --> schema(X),schemata(X).

schemata(X) --> [].

schema(X) --> ext_pred(X).

schema(X) --> [part_of(X,Y)],ext_pred(Y),schemata(Y).

ext_pred(Z) --> [test1(Z)].

ext_pred(Z) --> [test2(Z)].

As can be seen in the example, reuse works by a kind of recursion. This

is of course problematic, when more than one variable needs to be used for

subsequent variabilizations of literals. This is shown in the following example:

/* EXPERT LEVEL */

/* meta-literals */

meta_literal(mp(X,Y),

[X:non_numeric:'1-1',

Y:non_numeric:'1-1']).

/* meta-schemata */

meta_schema(mp(X, Y),

[X:non_numeric:'1-1':'+', Y:non_numeric:'1-1':'+']).

meta_schema(mp(X, Y),

[X:non_numeric:'1-1':'+', Y:non_numeric:'1-1':'-']).

/* USER LEVEL */

/* object-level declarations */

relation(p(X, Y), [X:object, Y:object]).

relation(q(X, Y), [X:object, Y:object]).

/* meta-level declarations */

mp(p(X,Y), [X:non_numeric, Y:non_numeric]).

mp(q(X,Y), [X:non_numeric, Y:non_numeric]).

/* generated schemata */
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schema(p(A,B), [A:object:'+',B:object:'+']).

schema(q(A,B), [A:object:'+',B:object:'+']).

schema(p(A,B), [A:object:'+',B:object:'-']).

schema(p(A,B), [A:object:'-',B:object:'+']).

schema(q(A,B), [A:object:'+',B:object:'-']).

schema(q(A,B), [A:object:'-',B:object:'+']).

Given this speci�cation, clauses like this will be generated:

h(X) :- p(X Y), q(X, Z).

h(X) :- p(X,X), p(X, Y), q(Y,Z), p(Z, X).

...

Since binary literals need to be variabilized, and the variablizations depend

on the variables \introduced" so far, ADGs cannot express this in a compact

form.

Augmented ADGs [3], however, provide a mechanism for reusing variables in

a 
exible way. Among other things, Augmented ADGs include meta-variables,

which can be used to denote sets of variables. So, meta-variables can serve the

same purpose as in our approach.

One advantage of schemata over ADGs is that one does not have to specify

a \global" grammar, but only \local" schemata used for re�nement. Admissible

variabilizations might be easier to declare using types and modes than using

ADGs [4].

5.3 Dlab

A Dlab [7] grammar is a declaration of all literals that can be used in a clause

using sets of literals, including some cardinality constraints on the number of

literals to be selected from these sets of literals.

The number of variables in a Dlab grammar is restricted. So, all variables to

be used have to be speci�ed in such a grammar. There is no way of introducing

an arbitrary number of new variables as with ADGs or with schemata.

To allow for more compact declarations, meta-variables can be used as well,

but they only denote function symbols and predicate symbols, not variables.

Consequently, Dlab does not o�er a 
exible way of expressing various vari-

abilizations of a literal { the user has to enumerate all possibilities. Variables

introduced in a literal cannot be handled elegantly in subsequent literals.

This is illustrated using our example from above, this time as a Dlab gram-

mar. The example shows only variabilizations for variables X and Y, as more

variables would complicate the declaration considerably. In the example, all

\dependent" variabilizations have to be enumerated.

example_temps = {h(X) <---

1-2:[mp(X,X), 0-1:[mp(X,Y),

len-len:[mp(X,Y), mp(Y,Y)]]
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example_vars = {

dlab_variable{mp, 1-1, [p, q]}

}

However, it is also possible to specify type and mode information in Dlab.

These declarations are checked after the generation of a clause. In this sense,

they are not embedded in Dlab itself, but act as a �lter on Dlab's output. For

e�ciency, this kind of information should be encoded in the language templates

whenever possible, because then unwanted clauses are never generated [8].

One of the main di�erences between Dlab and schemata is that schemata

are usually a lot easier to declare, but they also produce a lot more unwanted

clauses. This does not pose a serious problem to greedy algorithms such as

SRT, but probably to algorithms inducing interesting patterns (e.g., Claudien).

In the latter case, the algorithms have to minimize the number of queries for

e�ciency reasons [8]. To reduce the number of queries also in the former case,

SRT o�ers the possibility to check the output generated by schemata using

arbitrary conditions that can be speci�ed by the user.

5.4 Di�erences between Meta-Declarations in Augmented

ADGs, Dlab and Meta-Schemata

In contrast to Augmented ADGs and Dlab, the meta-level and the object-level

in our approach (by design) look very much the same. Meta-level declarations

in Augmented ADGs and in Dlab have a kind of macro 
avor. One technical

di�erence is that in our approach meta-variables have types and modes. The

advantages of types and modes at the meta-level are the same as those at the

object-level { they allow for very compact and abstract declarations.

6 Conclusion and Further Work

In essence, this work shows that declarative bias for top-down ILP systems

can be generated from high-level declarations speci�ed by the user. Meta-

declarations have been used for declarative language bias before, but they have

not yet been used to generate schemata. Of course, schemata cannot be gen-

erated out of nothing: some high-level speci�cation has to be available. In our

case, meta-schemata serve this purpose.

The suggested languages allow for a compact and abstract speci�cation of

the declarative language bias of top-down ILP systems. The key feature of our

approach is the distinction between the user level and the expert level, which

roughly corresponds to the distinction between the \object"-level and the meta-

level. This distinction is intended to make the bias declaration task easier for

the user. If the idea of such a separation turns out to be useful in practice, it

might contribute to a wider usage of ILP algorithms.
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Apart from the suggested distinction between a user level and an expert

level, our work o�ers a number of technical novelties, such as types, modes, and

cardinality constraints of meta-variables.

One of the limitations is that this work is applicable only to top-down ILP

algorithms. However, schemata and the idea of generating schemata might be

even wider applicable. For instance, the most speci�c clause constructed by

Progol could be sorted according to schemata in order to enable more e�cient

proofs.
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A De�nition of Syntax of Language

The suggested language L is a tuple (MV ;MT ;MP;V; T ;P; EL;UL), where

� MV is a set of meta-variables,

� MT is a set of meta-types,

� MP is a set of meta-predicates,

� V is a set of variables,

� T is a set of types,
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� P is a set of predicates,

� EL are expert-level declarations as de�ned below, and

� UL are user-level declarations as de�ned below.

In the following, CC is de�ned as f

0

0� 1

0

;

0

0� n

0

;

0

1� 1

0

;

0

0� n

0

g, the set of

cardinality constraints, and M is de�ned as f

0

+

0

;

0

�

0

;

0

=

0

g, the set of modes.

Expert-level declarations EL are a pair (ML;MS), where ML are declarations

of the meta-literals, and MS are declarations of the meta-schemata.

ML are the meta-literals, i.e., expressions of the form:

meta literal(mp(mv

1

; :::;mv

n

);

[mv

1

: mt

1

: cc

1

; :::;mv

n

: mt

n

: cc

n

]);

where mp 2 MP, mv

i

2MV and mt

i

2MT , cc

i

2 CC.

MS are the meta-schemata, i.e., expressions of the form:

meta schema((mp

1

(mv

1;1

; :::;mv

1;m

); :::;mp

n

(mv

n;1

; :::;mv

n;m

));

[mv

1;1

: mt

1;1

: cc

1;1

: mode

1;1

; :::;

mv

n;m

: mt

n;m

: cc

n;m

: mode

n;m

]);

where mp

i

2MP , mv

i;j

2MV , mt

i;j

2 MT , cc

i;j

2 CC and mode

i;j

2M.

User-level declarations UL are a pair (OD;MD), where OD are object-level

declarations, and MD are meta-level declarations.

OD are the object-level declarations, i.e., expressions of the form:

relation(p(v

1

; :::; v

n

); [v

1

: t

1

; :::; v

n

: t

n

]);

where p 2 P, v

i

2 V and t

i

2 T .

MD are the meta-level declarations, i.e., expressions of the form:

mp(p(v

1

; :::; v

n

); [v

1

: mt

1

; :::; v

n

: mt

n

]);

where mp 2 MP, p 2 P, v

i

2 V and mt

i

2MT .

B Generate-And-Test Algorithm for Generat-

ing Schemata

The algorithm 1 proceeds in the following way: the meta-literals of the

meta-schemata are processed one by one, from left to right, and one literal
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Conjunction true (1)

M  initialize mapping(MS) (2)

for each meta-literal ML in MS do (in the order occurring in MS) (3)

V arList [] (4)

choose P from the predicates matching the meta-predicate of ML (5)

M

0

 M (6)

for each argument position N in the type declarations (7)

of the relation corresponding to P , from left to right, do

MT  meta-type at N in meta-level declaration of the (8)

relation corresponding to P

T  type at N in declaration of the relation (9)

corresponding to P

either: (10)

/* create new variables */

choose MV from mapping M; such that (11)

MV occurs in ML ^ (12)

meta type(MV ) = MT ^ (13)

MV is not yet marked as set in M ^ (14)

the upper bound of the cardinality constraints in M

0

(15)

would not be violated if a new variable would be

assigned to MV

"create" a new variable NV and assign it to MV: In (16)

other words, add it, with its type T , to the entry

of the meta-variable MV in M

0

V arList append(V arList; [NV ]) (17)

or: (18)

/* reuse variables */

choose EV , a variable assigned to an MV in M; (19)

such that

MV occurs in ML ^ (20)

meta type(MV ) = MT ^ (21)

type(EV ) = T (22)

V arList append(V arList; [EV ]) (23)

end for /* literal is fully variabilized */

if (not all meta-variables of ML are used properly for the (24)

variabilization or any lower bound of a cardinality

constraint in M

0

is violated)

then

backtrack (25)

M  M

0

(26)

mark all meta-variables of ML as set in M (27)

NewLiteral =.. [P jV arList] (28)

Conjunction (Conjunction;NewLiteral) (29)

end for /* all meta-literals of meta-schema are processed */

Schema  create schema(Conjunction;M) (30)

if Schema has not yet been generated before (31)

then

output(Schema) (32)

if possible then backtrack (33)

Figure 1: Pseudocode of the procedure for generating schemata.
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is created for each meta-literal. For each meta-literal, the basic task of the

algorithm is the assignment of variables to meta-variables. This assignment is

heavily constrained, e.g. by meta-types and by cardinality constraints. So, the

algorithm has to perform some kind of constraint satisfaction.

The algorithm maintains a data structure M , containing the mapping or

assignment of variables to meta-variables. This assignment can easily be il-

lustrated by a \snapshot" of data structure M . Consider the following meta-

schema:

meta_schema((arc_relation(A,B,C,D,E,F,G),

node_relation(A,C,H,I,J)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-',

E:sym_arc_feature:'1-1':'=',

F:num_arc_feature:'0-n':'-',

G:other_arc_arg:'0-n':'-',

H:sym_node_feature:'0-n':'-',

I:num_node_feature:'0-n':'-',

J:other_node_arg:'0-n':'-']).

The following expression is a state of data structure M , the one after having

processed the �rst meta-literal of the meta-schema. It contains one entry for

each meta-variable of the meta-schema, each entry containing its meta-type, its

cardinality constraints, its mode and the assigned variables:

[A:example:'1-1':'+':[T:chemical]:set,

B:node:'1-1':'+':[U:atomid]:set:

C:node:'1-1':'-':[V:atomid]:set,

D:sym_arc_feature:'0-n':'-':[]:set,

E:sym_arc_feature:'1-1':'=':[W:bondtype]:set,

F:num_arc_feature:'0-n':'-':[]:set,

G:other_arc_arg:'0-n':'-':[]:set,

H:sym_node_feature:'0-n':'-':[]:not_set,

I:num_node_feature:'0-n':'-':[]:not_set,

J:other_node_arg:'0-n':'-':[]:not_set]

In the example, variable T of type chemical is assigned to meta-variable A

of meta-type example. Note that the cardinality constraints are not violated

in the example. The number of assigned variables is in accordance with the

respective cardinality constraints. Our generate-and-test algorithm generates

such (valid or invalid) data structures, and backtracks if, e.g., the cardinality

constraints are not ful�lled.

Once a literal is generated, and the assignment of variables to the meta-

variables is made properly, this assignment is �xed and cannot be changed
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afterwards. A meta-variable reused in another meta-literal means that all vari-

ables assigned to the meta-variable have to be reused in the corresponding literal

as well. On the other hand, all newly introduced meta-variables have to be set

properly, i.e. in accordance with the lower bounds of the cardinality constraints,

with each meta-literal processed.

Since our goal was to keep the algorithm as simple as possible, we employ a

generate-and-test algorithm for the assignment task. Usually several alternative

assignments can be made during the construction of a schema. So, our algorithm

makes heavy use of backtracking in the construction process. A smarter algo-

rithm performing the assignment would probably make more informed choices

and thus avoid some unnecessary backtracking.

The algorithm is non-deterministic, and all possible solutions are calculated.

The number of solutions is �nite, as the number of possible assignments of

variables to meta-variables is �nite.

C Proof Sketches

Proposition 1: In the output of algorithm 1, the cardinality constraints are

never violated.

This holds if neither the lower bound (1.) nor the upper bound (2.) is ever

violated.

1.) The lower bound of a cardinality constraint is never violated.

Condition (24) checks whether after an assignment the lower bound is vio-

lated. If it is, then (25) backtracks to a previous choice. Only if (24) is ful�lled,

the algorithm proceeds to (26). So, at (26), this condition is never violated.

2.) The upper bound of a cardinality constraint is never violated.

There is just one statement (16) in the algorithm at all, where a variable

is assigned to a meta-variable. If the condition is not violated before, the car-

dinality constraint will also not be violated if an inadmissible assignment does

not take place at (16). Condition (15) guarantees, that such an assignment is

never made at (16). So, after (16), the upper bound can never be violated, if it

is not violated before. As the mapping is empty right from the beginning, the

upper bound can never be violated by the algorithm.

Proposition 2: Meta-types and types are always matched correctly.

There are two statements where meta-level and object-level are matched:

Statement (13) and statement (21). Both conditions have to be ful�lled, if

an assignment takes place. So, trivially, the meta-types and types are always

matched correctly.

Proposition 3: Meta-types of both levels are always matched correctly.

This just matters, when a meta-variable is reused in another literal. Reuse

only occurs in the block after (18). As condition (22) has to be ful�lled before

the assignment is made, proposition 3 also holds trivially, by algorithm design.
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D Graph-Based Meta-Schemata

/* G R A P H - B A S E D M E T A - S C H E M A T A */

/* EXPERT LEVEL */

/* meta-literals */

meta_literal(arc_relation(A,B,C,D,E,F),

[A:example:'1-1',

B:node:'1-1',

C:node:'1-1',

D:sym_arc_feature:'0-n',

E:num_arc_feature:'0-n',

F:other_arc_arg:'0-n']).

meta_literal(node_relation(A,B,C,D,E),

[A:example:'1-1',

B:node:'1-1',

C:sym_node_feature:'0-n',

D:num_node_feature:'0-n',

E:other_node_arg:'0-n']).

meta_literal(equal(A,B),

[A:num_arc_feature:'1-1',

B:num_arc_feature:'1-1']).

meta_literal(equal(A,B),

[A:num_node_feature:'1-1',

B:num_node_feature:'1-1']).

meta_literal(equal(A,B),

[A:sym_arc_feature:'1-1',

B:sym_arc_feature:'1-1']).

meta_literal(equal(A,B),

[A:sym_node_feature:'1-1',

B:sym_node_feature:'1-1']).

meta_literal(gteq(A,B),

[A:num_arc_feature:'1-1',

B:num_arc_feature:'1-1']).

meta_literal(gteq(A,B),

[A:num_node_feature:'1-1',

B:num_node_feature:'1-1']).
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/* meta-schemata */

/*

1) Introducing a "detached" new node and testing some property of it.

*/

meta_schema((node_relation(A,B,C,D,E,F)),

[A:example:'1-1':'+',

B:node:'1-1':'-',

C:sym_node_feature:'0-n':'-',

D:sym_node_feature:'1-1':'=',

E:num_node_feature:'0-n':'-',

F:other_node_arg:'0-n':'-']).

meta_schema((node_relation(A,B,C,D,E,F), gteq(E, G)),

[A:example:'1-1':'+',

B:node:'1-1':'-',

C:sym_node_feature:'0-n':'-',

D:num_node_feature:'0-n':'-',

E:num_node_feature:'1-1':'-',

F:other_node_arg:'0-n':'-',

G:num_node_feature:'1-1':'=']).

/*

2) Testing the existence of an arc between two "existing" nodes.

*/

meta_schema((arc_relation(A,B,C,D,E,F)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'+',

D:sym_arc_feature:'0-n':'-',

E:num_arc_feature:'0-n':'-',

F:other_arc_arg:'0-n':'-']).

/*

3) Testing a property of an arc between two "existing" nodes.

*/
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meta_schema((arc_relation(A,B,C,D,E,F,G)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'+',

D:sym_arc_feature:'0-n':'-',

E:sym_arc_feature:'1-1':'=',

F:num_arc_feature:'0-n':'-',

G:other_arc_arg:'0-n':'-']).

meta_schema((arc_relation(A,B,C,D,E,F,G), gteq(E, H)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'+',

D:sym_arc_feature:'0-n':'-',

E:num_arc_feature:'1-1':'-',

F:num_arc_feature:'0-n':'-',

G:other_arc_arg:'0-n':'-',

H:num_arc_feature:'1-1':'=']).

/*

4) Testing the existence of an arc between a known node and

some other yet unknown node.

*/

meta_schema((arc_relation(A,B,C,D,E,F),

node_relation(A,C,G,H,I)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-',

E:num_arc_feature:'0-n':'-',

F:other_arc_arg:'0-n':'-',

G:sym_node_feature:'0-n':'-',

H:num_node_feature:'0-n':'-',

I:other_node_arg:'0-n':'-']).

/*

5) Introducing a new node by means of an arc and test one

of the arc's properties.

*/

meta_schema((arc_relation(A,B,C,D,E,F,G),
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node_relation(A,C,H,I,J)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-',

E:sym_arc_feature:'1-1':'=',

F:num_arc_feature:'0-n':'-',

G:other_arc_arg:'0-n':'-',

H:sym_node_feature:'0-n':'-',

I:num_node_feature:'0-n':'-',

J:other_node_arg:'0-n':'-']).

meta_schema((arc_relation(A,B,C,D,E,F,G),

gteq(E, H),

node_relation(A,C,I,J,K)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-',

E:num_arc_feature:'1-1':'-',

F:num_arc_feature:'0-n':'-',

G:other_arc_arg:'0-n':'-',

H:num_arc_feature:'1-1':'=',

I:sym_node_feature:'0-n':'-',

J:num_node_feature:'0-n':'-',

K:other_node_arg:'0-n':'-']).

/*

6) Introducing a new node by means of an arc and test one

of the new node's properties.

*/

meta_schema((arc_relation(A,B,C,D,E,F),

node_relation(A,C,G,H,I,J)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-',

E:num_arc_feature:'0-n':'-',

F:other_arc_arg:'0-n':'-',

G:sym_node_feature:'1-1':'=',

H:sym_node_feature:'0-n':'-',

I:num_node_feature:'0-n':'-',

J:other_node_arg:'0-n':'-']).
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meta_schema((arc_relation(A,B,C,D,E,F),

node_relation(A,C,G,H,I,J),

gteq(H,K)),

[A:example:'1-1':'+',

B:node:'1-1':'+',

C:node:'1-1':'-',

D:sym_arc_feature:'0-n':'-',

E:num_arc_feature:'0-n':'-',

F:other_arc_arg:'0-n':'-',

G:sym_node_feature:'0-n':'-',

H:num_node_feature:'1-1':'-',

I:num_node_feature:'0-n':'-',

J:other_node_arg:'0-n':'-',

K:num_node_feature:'1-1':'=']).

/*

7) Testing some "feature variable": equal to some constant?

*/

meta_schema(equal(A, B), [A:sym_node_feature:'1-1':'+',

B:sym_node_feature:'1-1':'=']).

meta_schema(gteq(A, B), [A:num_node_feature:'1-1':'+',

B:num_node_feature:'1-1':'=']).

meta_schema(equal(A, B), [A:sym_arc_feature:'1-1':'+',

B:sym_arc_feature:'1-1':'=']).

meta_schema(gteq(A, B), [A:num_arc_feature:'1-1':'+',

B:num_arc_feature:'1-1':'=']).

/*

8) Testing the equality of two bound "feature variables".

*/

meta_schema(equal(A, B), [A:sym_node_feature:'1-1':'+',

B:sym_node_feature:'1-1':'+']).

meta_schema(gteq(A, B), [A:num_node_feature:'1-1':'+',

B:num_node_feature:'1-1':'+']).

23



meta_schema(equal(A, B), [A:sym_arc_feature:'1-1':'+',

B:sym_arc_feature:'1-1':'+']).

meta_schema(gteq(A, B), [A:num_arc_feature:'1-1':'+',

B:num_arc_feature:'1-1':'+']).

/* USER LEVEL */

/* object-level declarations */

relation(atm(A,B,C,D,E),

[A:chemical, B:atomid, C:element,

D:atomtype, E:charge]).

relation(sym_bond(A,B,C,D),

[A:chemical, B:atomid, C:atomid,

D:bondtype]).

relation(equal(A,B), [A:element, B:element]).

relation(equal(A,B), [A:charge, B:charge]).

relation(equal(A,B), [A:atomtype, B:atomtype]).

relation(equal(A,B), [A:bondtype, B:bondtype]).

relation(gteq(A,B), [A:charge, B:charge]).

/* meta-level declarations */

node_relation(atm(A,B,C,D,E),

[A:example,

B:node,

C:sym_node_feature,

D:sym_node_feature,

E:num_node_feature]).

arc_relation(sym_bond(A,B,C,D),

[A:example, B:node, C:node, D:sym_arc_feature]).

equal(equal(A,B), [A:sym_node_feature, B:sym_node_feature]).

24



equal(equal(A,B), [A:sym_arc_feature, B:sym_arc_feature]).

equal(equal(A,B), [A:num_node_feature, B:num_node_feature]).

equal(equal(A,B), [A:num_arc_feature, B:num_arc_feature]).

gteq(gteq(A,B), [A:num_node_feature, B:num_node_feature]).

gteq(gteq(A,B), [A:num_arc_feature, B:num_arc_feature]).

/* generated schemata */

schema(atm(A,B,C,D,E),

[A:chemical:'+',B:atomid:'-',C:element:'-',

D:atomtype:'=',E:charge:'-']).

schema(atm(A,B,C,D,E),

[A:chemical:'+',B:atomid:'-',C:element:'=',

D:atomtype:'-',E:charge:'-']).

schema((atm(A,B,C,D,E),gteq(E,F)),

[A:chemical:'+',B:atomid:'-',C:element:'-',

D:atomtype:'-',E:charge:'-',F:charge:'=']).

schema(sym_bond(A,B,C,D),

[A:chemical:'+',B:atomid:'+',C:atomid:'+',D:bondtype:'-']).

schema(sym_bond(A,B,C,D),

[A:chemical:'+',B:atomid:'+',C:atomid:'+',D:bondtype:'=']).

schema((sym_bond(A,B,C,D),atm(A,C,E,F,G)),

[A:chemical:'+',B:atomid:'+',C:atomid:'-',D:bondtype:'-',

E:element:'-',F:atomtype:'-',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,B,E,F,G)),

[A:chemical:'+',B:atomid:'-',C:atomid:'+',D:bondtype:'-',

E:element:'-',F:atomtype:'-',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,C,E,F,G)),

[A:chemical:'+',B:atomid:'+',C:atomid:'-',D:bondtype:=,

E:element:'-',F:atomtype:'-',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,B,E,F,G)),

[A:chemical:'+',B:atomid:'-',C:atomid:'+',D:bondtype:'=',

E:element:'-',F:atomtype:'-',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,C,E,F,G)),
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[A:chemical:'+',B:atomid:'+',C:atomid:'-',D:bondtype:'-',

E:element:'=',F:atomtype:'-',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,C,E,F,G)),

[A:chemical:'+',B:atomid:'+',C:atomid:'-',D:bondtype:'-',

E:element:'-',F:atomtype:'=',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,B,E,F,G)),

[A:chemical:'+',B:atomid:'-',C:atomid:'+',D:bondtype:'-'

E:element:'=',F:atomtype:'-',G:charge:'-']).

schema((sym_bond(A,B,C,D),atm(A,B,E,F,G)),

[A:chemical:'+',B:atomid:'-',C:atomid:'+',D:bondtype:'-',

E:element:'-',F:atomtype:'=',G:charge:'-']).

schema(((sym_bond(A,B,C,D),atm(A,C,E,F,G)),gteq(G,H)),

[A:chemical:'+',B:atomid:'+',C:atomid:'-',D:bondtype:'-',

E:element:'-',F:atomtype:'-',G:charge:'-',H:charge:'=']).

schema(((sym_bond(A,B,C,D),atm(A,B,E,F,G)),gteq(G,H)),

[A:chemical:'+',B:atomid:'-',C:atomid:'+',D:bondtype:'-',

E:element:'-',F:atomtype:'-',G:charge:'-',H:charge:'=']).

schema(equal(A,B), [A:element:'+',B:element:'=']).

schema(equal(A,B), [A:element:'=',B:element:'+']).

schema(equal(A,B), [A:charge:'+',B:charge:'=']).

schema(equal(A,B), [A:charge:'=',B:charge:'+']).

schema(equal(A,B), [A:atomtype:'+',B:atomtype:'=']).

schema(equal(A,B), [A:atomtype:'=',B:atomtype:'+']).

schema(equal(A,B), [A:bondtype:'+',B:bondtype:'=']).

schema(equal(A,B), [A:bondtype:'=',B:bondtype:'+']).

schema(gteq(A,B), [A:charge:'+',B:charge:'=']).

schema(gteq(A,B), [A:charge:'=',B:charge:'+']).

schema(equal(A,B), [A:element:'+',B:element:'+']).

schema(equal(A,B), [A:charge:'+',B:charge:'+']).

schema(equal(A,B), [A:atomtype:'+',B:atomtype:'+']).

schema(equal(A,B), [A:bondtype:'+',B:bondtype:'+']).

schema(gteq(A,B), [A:charge:'+',B:charge:'+']).
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