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Abstract

In this paper we argue that chess databases have a signi�cant poten-

tial as a test-bed for techniques in the area of Knowledge Discovery in

Databases (KDD). Conversely, we think that research in Arti�cial Intel-

ligence has not yet come up with reasonable solutions for the knowledge

representation and reasoning problems that are posed by knowledge-based

computer chess programs, and consequently argue that KDD techniques

could be useful for the advancement of various types of knowledge-based

computer chess systems. Although we cannot present any concrete re-

sults, we hope to outline some fruitful directions for further research and

exchange of ideas between the KDD and computer chess communities.

1 Introduction

Knowledge Discovery in Databases (KDD) or Data Mining is a rapidly grow-

ing research area which focuses on the discovery of useful and understandable

pieces of knowledge from databases [12, 11]. On the other hand, the rapid

increase in computing power of personal computers and the simultaneous fall

of hardware prices had a considerable impact on the chess playing community.

Most serious chess players use huge game databases, opening databases, and/or

endgame databases that they can access and use for home preparation with

various commercial programs. There is practically no upper limit to the size

of these databases, and it is quite likely that with some e�ort useful knowledge

can be extracted from them. However, state-of-the-art programs for analyzing

these databases have only very restricted capabilities. What is needed is the

support for high-level concepts that can be used for describing the knowledge

contained in these databases, and allow high-level interactions like \How should

I develop my pieces in this opening?", \What are promising plans in this pawn

formation?", or \Show me a winning strategy for this type of endgame!". We

believe that inductive learning techniques have the potential for supporting such

tasks.
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The purpose of this paper is to draw attention to research in Knowledge

Discovery in Chess Databases. To that end, we will review previous work,

discuss shortcomings, present directions for future work. In short, we will try

to argue that chess is an interesting test-bed for ideas in the �eld of Knowledge

Discovery in Databases.

2 Previous Work on KDD and Chess

There are a variety of approaches that employ machine learning techniques in

the domain of chess [13]. Several of them can be viewed in the KDD framework.

This section will brie
y discuss previous work that aimed at discovering chess

knowledge from databases.

The induction of chess concepts from databases is probably the task in com-

puter chess that has been most intensively studied in machine learning research.

Typically, positions from a certain chess endgame are preclassi�ed into the cat-

egories won or not-won. Most inductive machine learning algorithms need a

so-called attribute-value representation as an input. Each position in the train-

ing set has to be speci�ed with exactly one value for a �xed set of prede�ned

attributes. The learned concept description is limited to tests for certain values

of the given attributes. If the positions are only represented with obvious at-

tributes like the location of the pieces and the side to move, the programs are

not capable of making useful generalizations. Additional attributes that encode

potentially useful patterns like kings' opposition or the distance between certain

pieces must be provided to the learning system.

The earliest work on learning from a chess database is reported in [26], where

the inductive rule learning algorithm AQ [25] is applied to the KPK database

described in [6]. The positions in the database were coded into 17 attributes

describing important relations between the pieces. In this representation, rules

with 80% predictive accuracy were learned from about 250 training examples.

Quinlan [40] describes several experiments for learning rules for the KRKN

endgame. In [41], he used his decision tree learning algorithm ID3 to discover

recognition rules for positions of the KRKN endgame that are lost-in-2-ply

and lost-in-3-ply respectively. From less than 10% of the possible KRKN

positions, ID3 was able to derive a tree that committed only 2 errors on a test set

of 10,000 randomly chosen positions (these errors were later corrected in [49]).

Quinlan noted that this achievement was only possible with a careful choice of

the attributes that were used to represent the positions. Finding the right set of

attributes for the lost-in-2-ply task required three weeks. Adapting this set

to the slightly di�erent task of learning lost-in-3-ply positions took almost

two months. Thus for the lost-in-4-ply task, which he intended to tackle

next, Quinlan experimented with methods for automating the discovery of new

useful attributes. However, no results from this endeavor have been published.

A severe problem with this and similar experiments was that, although the

derived decision trees were shown to be correct and faster in classi�cation than

extensive search algorithms, they were also incomprehensible to chess experts.
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Shapiro [46] tried to alleviate this problem by decomposing it into a hierarchy

of smaller sub-problems that could be tackled independently. A set of rules

was induced for each of the sub-problems which together yielded a more un-

derstandable result. This process of structured induction has been employed to

learn correct classi�cation procedures for the KPK and the KPa7KR endgames

[44]. An endgame expert helped to structure the search space and to design

the relevant attributes. The rules for the KPa7KR endgames were generated

without using a database as an oracle. The rules were interactively re�ned by

the expert by specifying new training examples and suggesting new attributes

if the available attributes were not able to discriminate between some of the

positions. This rule-debugging process was aided by a self-commenting facility

that displayed traces of the classi�cation rules in plain English [45]. A simi-

lar semi-autonomous process for re�ning the attribute set was used in [50] to

generate decision trees for the KQKQ endgame.

However, the problem of decomposing the search space into easily manage-

able subproblems again is a task that requires extensive collaboration with a

human expert. Thus there have been several attempts to automate this pro-

cess. Paterson [38] tried to automatically structure the KPK endgame using a

clustering algorithm. The results have been negative, as the found hierarchy

had no meaning to human experts. Muggleton [30] has applied Duce to the

KPa7KR task studied by [44]. Duce is a machine learning algorithm that is able

to autonomously suggest high-level concepts to the user. It looks for common

patterns in the rule base (which initially consists of a set of rules each describ-

ing one example board position) and tries to reduce its by replacing the found

patterns with new concepts. In machine learning the autonomous introduction

of new concepts during the learning phase is commonly known as constructive

induction [24]. Using constructive induction Duce reduces the role of the chess

expert to a mere evaluator of the suggested concepts instead of an inventor of

new concepts. Duce structured the KPa7KR task into a hierarchy of 13 con-

cepts de�ned by a total of 553 rules. Shapiro's solution, however, consisted of

9 concepts with only 225 rules. Nevertheless Duce's solution was found to be

meaningful for a chess expert.

Bain [2, 3] tried to learn rules that predict the number of plies to a win with

optimal play on both sides in the KRK endgame. This series of experiments dif-

fers from previous work in two aspects: First, the problem was not represented

as a single relational table, but instead an inductive logic programming algo-

rithm was used that could incorporate relational background knowledge such

as checking whether two pieces are on the same �le or row and checking the

distances between two pieces. The other di�erence was that these experiments

did not aim at learning predictive rules from a subsample of the database, but

aimed at compressing the database by learning rules that could reproduce the

entire database, but use only a fraction of the disk space that would be required

for storing the entire database.

In [15] we have tried to use the same database (with slightly more complex

background knowledge) for learning a playing strategy from the database. For

this purpose, we generated 100 games of a player using an optimal strategy (rook
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side) vs. a player that plays randomly. From all positions and their associated

optimal moves and bad mistakes (dropping the rook or stale-mating), we had

the ILP system ICL [8] learn predicates that check whether a given move is

optimal or a bad mistake. These predicates were then used in an arti�cial

player that generates all legal moves, rules out all moves that were deemed bad

mistakes, and randomly plays one of the remaining moves that was judged to be

an optimalmove. The results obtained so far were quite interesting: the induced

player was able to beat a random opponent quite consistently, but failed to do

so within 50 moves against an optimal opponent. The learned rules were rather

complicated, because the provided background knowledge was at a fairly low

level of abstraction (distances between pieces). All in all, the results had a

striking similarity with results obtained in the area of behavioral cloning [43].

The approaches discussed so far induced concepts from simple endgame

databases and suitable background knowledge. Databases of middle-game po-

sitions or entire games have so far only been used for the tuning of evaluation

functions. These techniques are usually concerned with the adjustment of nu-

merical weights and cannot be considered to be at the core of KDD research.

The most notable approach is the work of [17], where statistical techniques and

limited look-ahead were combined to tune the weights of their world champi-

onship program Deep Thought to yield optimal performance in a database

of grandmaster moves. However, with the success of Tesauro's backgammon

player, research in this area shifted gradually from tuning on databases to tun-

ing by self-play via temporal-di�erence learning [47].

3 Why Chess for KDD?

Many of the datasets that have been extensively studied in inductive symbolic

machine learning have become standard benchmark problems. For example, the

KRK, KRKN and KRKPa7 datasets are part of the UCI collection of machine

learning databases (along with datasets of other games, like Othello, Abalone,

Connect-4, etc., and many \real-world" datasets). However, many researchers

still consider applications of machine learning algorithms to game-playing do-

mains as fairly trivial. While this may be true for some of the datasets in the

UCI repository, we think that this is certainly not true for game playing domains

in general. In fact, our opinion is that chess might yield a �rst-class test-bed

for many ideas that have developed in KDD, as we attempt to illustrate in this

section.

3.1 E�ciency

An important requirement for knowledge discovery techniques is that they scale

up to large amounts of data. With the decline of hardware prices more and more

data can be stored at low cost and it is the task of KDD algorithms to discover

signi�cant regularities in these huge databases. Thus an often heard question

that is raised for new KDD techniques is how they scale up to databases with
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signi�cant sizes. Usually these techniques are evaluated on databases from the

UCI repository of machine learning databases, where only a few datasets have

more than 10,000 examples.

Chess databases, on the other hand, are available in all sizes. Typical game

databases consist of several hundreds of thousands games, each consisting of,

say, 30 positions on average, not counting variations and comments. Every

commercial chess playing program has access to huge opening databases. All

endgames with up to 5 pieces are available on three CD-Roms and certain

types of 6-piece endgames are on the way. These endgames, however, already

pose serious challenges to commonly available storage media [48]. A simple 3-

piece endgame database already has about 64

3

entries (including some illegal

positions), which are usually stored in a highly compressed format (for example

by using board symmetries).

3.2 Background Knowledge

Most KDD techniques assume a data representation in the so-called attribute-

value format. Encoding chess positions in this format would result in databases

that have one entry per training position, where each entry encodes several

important predicates that are true or not true in this particular training posi-

tion. This requires that each concept from the background knowledge has to

be represented as a new attribute of the dataset, which makes it tedious to

provide additional background knowledge that might help to focus the learner

on interesting concepts. Most available chess databases, like the KRKN and

the KRKPa7 datasets from the UCI repository of machine learning databases,

conform to this format.

However, research in the �eld of Inductive Logic Programming (ILP) [31,

7] has lead to the development of algorithms that are able to make use of

background knowledge in full �rst-order horn-clause logic. Roughly speaking,

these algorithms are concerned with the induction of PROLOG programs. The

ability to use background knowledge in the form of PROLOG clauses allows

systems such as PAL [28] to formulate rules with complex predicates in the

background knowledge. The rules may even employ a limited look-ahead by

including conditions like make_move(Side,Piece,From,To,Pos,NewPos) and

looking for discriminating patterns in the new position that results from the

speci�ed move. We believe that due to its ability to incorporate relational

background knowledge, inductive logic programming is a very promising line

of research for knowledge discovery in chess domains, because chess concepts

usually depend on spatial relations between pieces on the board and/or temporal

relations between moves in a plan. This type of knowledge can be elegantly

coded into a relational �rst-order logic representation.

3.3 Data Selection

An important step in the KDD process [11], that is widely neglected in KDD

research, is the step of data selection, i.e., the creation of a training set from
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the raw data, which is suitable for the selected data mining technique. While

this step is in general domain-dependent, there might be some general princi-

ples that can be inferred from case studies. Interesting questions that have to

be dealt with in the domain of chess are, e.g., \What constitutes a training

examples, an entire game, the sequence of moves, the sequence of positions, or

single positions?", \How to encode chess positions into feature vectors of �xed

length, which are needed for most KDD algorithms?", or \How to deal with the

temporal sequence that is inherent within move sequences in a chess game?".

Consider for example the case of learning the best pawn move in a certain

pawn structure. One could try with a simple classi�er learning approach. An

important question, however, is what positions should be used for training the

classi�er? A simple approach would be to select all games with the pawn struc-

ture in question and use those positions as training examples, in which a pawn

move is made thus destroying the structure. The di�erent pawn moves that have

occurred in the various games could be used as the dependent variable that has

to be predicted by the classi�er. However, it is quite likely that this approach

would over-generalize in the sense that pawn moves would also be suggested

for many positions where it would be premature. This could be prevented by

adding all positions in which non-pawn moves have been tried as additional neg-

ative examples that constrain the learned concept. This approach, however, will

treat all positions with a certain pawn structure as equal and will neglect the

temporal sequence of positions in a game, which might contain important in-

formation. A systematic investigation of the various options in this or a similar

task is certainly a promising endeavor.

3.4 Irrelevant Features

A common problem in KDD is that the data sets usually contain many irrel-

evant features. This problem is typically solved with techniques for feature

subset selection [5, 18], i.e., techniques that �lter out those attributes of the

training set that appear to be irrelevant for the learning problem at hand. It is

obvious, that in chess positions the exact location of several pieces is not always

relevant, which means that chess databases might be a nice test-bed for such

techniques. In particular, equivalents of feature subset selection for inductive

logic programming algorithms, a research area which has not yet received the

attention that it deserves [14], could be nicely studied in relational classi�cation

tasks in the domain of chess.

3.5 Noise

Another issue that is usually of considerable importance is noise in the data.

Noise is a commonly used term for all sorts of errors and inconsistencies in

the data. It may be the result of misclassi�cations, unavailable or erroneous

information, contradicting examples, etc. The e�ect of noise are usually overly

concept descriptions, because many learning algorithms have severe problems in

discriminating between contradictory evidence that results from noise and can
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thus be ignored and important exceptions to the current theory that have to be

incorporated into the �nal theory. This problem is known as over�tting.

Phenomena of this kind also appear quite frequently in chess databases. In

particular with respect to evaluation of a certain position or move, there is

usually contradicting evidence from di�erent commentators or from the various

outcomes of games that continued from the given position. Imagine for example,

the problem of learning the best move or sequence of moves in a certain middle-

game pawn formation. There might be two contradicting plans that occur pre-

dominantly, along with a variety of other variations that have been infrequently

tried. Can we conclude that the one of the two frequently played plans that

results in the higher proportion of wins is the better variation? If the evidence

is backed up with a signi�cant number of games, it certainly constitutes an

interesting �nding. What if a line has only been played twice, but has lead to a

win in both cases? Would it be worth a try? Or is there the danger that there is

a refutation that was not known to both players? A general problem with game

databases is that they usually only contain the moves that have been played by

two reasonably strong opponents, which means that certain variations that are

well-known from theory and important to know will never or only rarely occur

in such a database. This missing information also constitutes a severe problem

for knowledge discovery techniques. In general, we think it is very hard to

determine from the evidence in a game database whether a certain move that

deviates from the pre-dominant plan in a certain position is a bad mistake or a

signi�cant innovation, a problem that is very similar to the problem of noise.

3.6 Unsupervised Learning

The study of algorithms for the inductive concept learning problem has a long

tradition in Machine Learning and is probably the sub�eld that has received

the most attention. This tradition has carried over to KDD, but there are a

a variety of other approaches with di�erent aims. For example, the discovery

of association rules [1] or general dependencies [23, 39] might �nd interesting

applications in chess databases for discovering typical piece-patterns, such as

\In many cases when white castles queen-sides, he will sooner or later play

h4.". Other techniques are able to discover temporal patterns [37] or interesting

deviations from the norm [22]. For an excellent collection of papers on various

KDD techniques consult [10]. There are also chess-speci�c KDD tasks that

deserve a deeper investigation, such as the discovery of playing strategies from

endgame databases, which we brie
y discuss in section 4.2.

4 Why KDD for Chess?

A major point of motivation for KDD is that the discovered knowledge not only

has to be interpretable and understandable, but also that it is novel, of interest

for the user and maybe even has a commercial value. This section tries to

illustrate why KDD approaches might be of interest to the chess community. In
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particular, we will attempt to show that the potential of these techniques goes far

beyond the induction of simple endgame classi�er that have been predominant

in the research so far (section 2).

4.1 Developing a High-level Chess Language

The �rst step that is needed for knowledge discovery in chess databases is the

development of a suitable vocabulary of chess concepts in which the discovered

knowledge can be formulated. Quinlan's work on the KRKN database has nicely

illustrated the need for an appropriate vocabulary for learning (see section 2).

However, such a knowledge representation formalism for chess concepts could

also contribute signi�cantly to computer chess in general. This has already

been recognized in [52], where an advice-taking chess program is described. The

aim of this project was the development of an abstract programming language

that would allow a chess master to \advice" a playing program in terms of this

language. Many formalisms have subsequently been developed in the same spirit

[4, 16], most of them limited to certain endgames (see [27] for a bibliography).

The characteristics such a representation formalisms has to incorporate are

that it has to be su�ciently expressive for formulating abstract strategic con-

cepts, that it has to be extensible and can be easily understood by a user, and

that it can be e�ciently implemented. The last point is particularly important

for KDD purposes, because there must be e�cient ways for evaluating potential

tests in discovered rules in order to allow e�cient knowledge discovery in large-

scale databases. Donninger [9] shows a promising step into the right direction

by providing a very e�cient interpreter of an extensible language for expressing

certain characteristics of a board position. However, the expressiveness of the

language is currently limited to propositional logic, a trade-o� that had to be

made because of e�ciency considerations and the ability to provide a graphical

interface that also allows untrained users to formulate rules.

4.2 Contributions to Chess Theory

Although chess theory is fairly well developed, there are many aspects of the

game that still need to be explored. As an example of the potential of KDD

approaches consider Ken Thompson's impressive work on �ve-men endgame

databases, which is now publicly available on three CD-ROMs. His work has

shown both, the enormous magnitude of the task and its importance for chess.

Many of the analyzed endgames have provided new insights into chess theory.

For example, it is now known that certain endgames cannot be be won within the

50 moves that are allowed by the rules of chess, or that other endgames which

were believed to be draws in general positions can in fact be won (although,

against best defence, usually not within 50 moves). As an example consider the

KBBKN endgame, which was considered to be a draw for a long time, and was

shown to be a win in at most 66 moves for all but some trivial cases [42].

On the other hand, many of these endgame databases are not thoroughly

understood by human experts. The most famous example are the attempts
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of grandmasters to defeat a perfect KQKR database within 50 moves or the

attempt of an endgame specialist to defeat a perfect database in the \almost

undocumented and very di�cult" KBBKN endgame [42]. GM John Nunn's

e�ort to manually extract some of the knowledge that is implicitly contained

in these databases resulted in a series of widely acknowledged endgame books

[32, 34, 35], but Nunn readily admitted that he does not yet understand all

aspects of the databases he analyzed [33]. It would be rewarding to develop

algorithms for automatically discovering playing strategies for such endgames

(see [29] and [15] for some preliminary work). Such strategies could be both,

easily implemented into a computer program as well as enrich the state-of-the-

art of endgame theory. While for the former case an optimal strategy

1

would be

desirable, for the latter case a suboptimal winning strategy is often preferable,

if it is simple and understandable. This is a particularly hard problem, because

it is non-trivial to decide which suboptimal moves contribute to some global

progress and which suboptimal moves do not improve the position. An attempt

to learn a simple playing strategy for the KRK endgame might easily end up

with the simple strategy \always move your rook away from the enemy king"

which will always result in a won position (at least for the next 49 moves), but

clearly make no progress towards the goal of mating the opponent's king. Other

tasks that could be automatized with KDD approaches include the discovery

of opening theory mistakes, the automatic detection of particularly promising

or unpromising line-ups or middle-game plans in certain types of openings, and

many more.

4.3 Educational Chess Programs

Another obvious point, where chess knowledge would be of considerable impor-

tance, and probably the point with the highest commercial potential is the use

of high-level chess knowledge in educational chess programs. For example, imag-

ine a program that analyzes a certain position or an entire game on an abstract

strategic level, tries to understand your opponent's and your own plans, and

provides suggestions on di�erent ways to proceed. Some commercial programs

already provide such capabilities, but at a very preliminary level that usually is

only able to detect tactical, but not strategic mistakes. The ICCA has recog-

nized the potential of such programs, and has created the The Best Annotation

Award which will be awarded annually for the best computer-generated anno-

tation of a chess game.

2

Some preliminary work on using case-based reasoning

for a strategic analysis of a given chess position can be found in [20, 21]. An

automatic or semi-automatic facility for enriching the basic vocabulary of pat-

terns and plans would be highly desirable for the development of such a system,

or may even form an important component of such a program.

1

In the following, an optimal playing strategy refers to one that will lead to mate in the

minimum number of moves.

2

See ICCA Journal 15(4):235{236, 1992.
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4.4 Increasing Playing Strength

It should be obvious that incorporating additional knowledge into computer

chess programs can lead to signi�cant increases in playing strength. However,

the motivation to investigate such approaches has signi�cantly declined with

the somewhat unexpected success of brute-force programs. Some authors have

investigated approaches to incorporate strategic long-term knowledge into con-

ventional chess programs [19, 36, 9], but the investigation of knowledge-based

chess programs has practically come to a stand-still. However, we think that

there are many situations where the myopia of brute-force chess programs sur-

faces.

As an extreme example, consider the problem shown in �gure 1. It is quite

safe to assume that this problem will not be solved by a computer program

based on brute force search in the near future. We would even suppose that it

is quite uncertain to assume that no program would correctly play this position.

A brief experiment that we have conducted with Fritz4 has demonstrated that

Fritz will play Bb1 to prevent black from playing Pd3, bring its king to a1,

Ba2, king to e1, Bb1, and �nally move the king to f2 in order to capture the

pawn on f3. It does not realize that Pf6-f5 will draw after this capture and the

exchange that follows it because of black's queening threats, which prevent all

further activities of white.

However, despite the long solution sequence, the problem can be solved quite

nicely by human beings. A typical path to a solution might proceed as follows:

Because of the above drawing chance for black, white's only hope lies in queening

one of its pawns on the b-�le. To achieve this, white has to conquer square a6.

However, he has no moves that put black into zugzwang, because black can

answer all white king moves with king moves b7-a8-b7 or b7-c8-b7. However, a

typical maneuver in such position is the so-called triangle maneuver, where one

king is able to use a 3-cycle to return to its original square, while the other king

is only able to make a 2-cycle. White can therefore try to move its king to e1,

playing e1-f2-f1-e1, which would gain one move. When the white king returns

to a5, we will have exactly the same position, but with black to move. As he

cannot its king because of white's threat Ka6, he has to move pawn. Then the

entire sequence is repeated 11 times until black has no more pawn moves and

has to answer 254. Ka5 with Kc8 thus allowing Ka6, followed by a mate in 15.

While this position certainly is quite unlikely to occur in an actual game,

it nicely illustrates the di�erence between a knowledge-based approach and a

search-based approach to chess. It is quite obvious that the use of knowledge

can be used to narrow down the search considerably. In fact, more than half of

the moves need not be calculated at all, if one has found the 23-move maneuver

for forcing black to move a pawn, which has to be repeated 11 times. This

general pattern of repeating a certain move sequence to force the opponent to a

weakening move will occur quite frequently in endgames. Likewise, the type of

position discussed above, where Fritz4 apparently tries its luck with capturing

the black pawn on f3 only to reach a drawn endgame, is not uncommon in

pawn endgames and is a nice example how explicit knowledge may considerably
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Nenad Petrović, 1969

0Z0Z0Z0Z

AkZ0ZpZp

0O0Z0o0Z

JPZ0m0Zp

0O0o0Z0Z

ZPo0ZpZ0

BZPZ0Z0Z

Z0Z0Z0ZB

Mate in 270 moves

Figure 1: A hard problem for search-based chess programs

increase playing strength.

4.5 Tournament Preparation

Another possible application for KDD approaches would be to provide a so-

phisticated aid for unearthing characteristics of the style of individual players

and for studying their weaknesses and strengths. Some commercial programs

already support tools of this sort by, e.g., allowing to derive statistics on the

success of a player with di�erent openings or plotting statistics on the frequency

of with which he moves a certain piece to a certain square. KDD techniques like

the discovery of association rules or the detection of interesting deviations from

the norm could provide much more powerful tools to that end. This type of ap-

plication would lay its emphasis on the integration of suitable KDD techniques

into a chess database interface instead of merely utilizing previously discovered

knowledge.

5 Conclusion

In this work, we have studied the potential of chess as a test-bed for ideas in

the wide �eld of Knowledge Discovery in Databases, and, conversely, to inves-

tigate the potential of KDD techniques for (computer) chess. To that end, we

have started with an overview of previous work in that area, and have then

outlined some ideas how important problems in KDD research can be studied

in interesting learning problems in the domain of chess. Thereafter we have
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sketched some ideas how the computer chess community and the chess commu-

nity in general might pro�t from sophisticated applications of KDD techniques

to chess databases. However, by no means we would like to give the impres-

sion that the application of KDD techniques to chess is a trivial task. It is our

�rm belief that such investigations will provide valuable results, but will require

signi�cant further research. The main goal of this paper was to motivate and

encourage research projects in this area.
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