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Abstract. Ensembles of decision trees often exhibit greater predictive accuracy than single

trees alone. Bagging and boosting are two standard ways of generating and combining multiple

trees. Boosting has been empirically determined to be the more e�ective of the two, and it has

recently been proposed that this may be because it produces more diverse trees than bagging.

This paper reports empirical �ndings that strongly support this hypothesis. We enforce greater

decision tree diversity in bagging by a simple modi�cation of the underlying decision tree learner

that utilizes randomly-generated decision stumps of prede�ned depth as the starting point for tree

induction. The modi�ed procedure yields very competitive results while still retaining one of the

attractive properties of bagging: all iterations are independent. Additionally, we also investigate

a possible integration of bagging and boosting. All these ensemble-generating procedures are

compared empirically on various domains.

Keywords: Bagging, Boosting, Sampling, Diversity, Decision Trees

1. Introduction

Methods of machine learning like bagging and boosting that operate by creating

ensembles of classi�ers and combining the result have attracted considerable inter-

est because of their empirical success. These methods are ideal for use in domains

where the utmost is sought in predictive performance, with little regard for the

intelligibility of the results of induction. Bagging, in particular, enjoys absolute
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2 PFAHRINGER AND WITTEN

simplicity and an inherently parallel nature which encourages e�cient implementa-

tion on multiprocessors|an advantage not shared by boosting. However, boosting

seems empirically to give better results, and explanations have been sought for this

di�erence in terms of a decomposition into bias and variance[4, 2]. Furthermore,

it has recently been noticed that boosting tends to produce a more diverse set of

classi�ers than bagging, and this has been cited as a factor in increased performance

[11].

The present paper explores the proposition that the higher performance of boost-

ing can be explained by the greater diversity of the classi�ers that it produces.

We report an empirical comparison of bagging and boosting, together with some

variants of bagging which are designed speci�cally to increase the diversity of the

classi�ers involved. All experiments use decision tree induction as the underlying

weak learning method. We have chosen a reasonable mix of small- and medium-size

databases available at the UCI repository [12] for this study.

The next section describes the various ensemble-generating procedures that we

explore. Section 3 explains the experimental design and reports on the results

obtained. In Section 4, we review the Kappa-Error diagram of [11] as a means of

comparison of ensembles, and de�ne a new syntactic similarity measure for decision

trees that overcomes some of the de�ciencies of the Kappa-Error diagram for this

purpose. Finally, Section 5 summarizes and elaborates upon our �ndings, pointing

out interesting directions for further research.

2. Algorithms

We begin by reviewing the standard de�nitions of both bagging and boosting, and

discuss some implementational details of boosting that address problems we en-

countered when using rather a strong \weak learner." Then we introduce several

variants of bagging that are aimed at increasing the diversity of the decision trees

produced. It turns out in Section 3 that despite the fact that members of the ensem-

bles are generated independently, these variants often perform very well compared

to boosting.
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IMPROVING BAGGING 3

2.1. Bagging

In an important discovery, Breiman [3] noticed that some kind of classi�ers, includ-

ing decision trees, are rather unstable: small changes in the training set can cause

classi�ers induced from them to be quite di�erent. The so-called bagging procedure

takes advantage of this e�ect to induce a set of di�erent classi�ers from a given

single set of training data. Examples are drawn at random, with replacement, to

yield sets of the same size as the original training set, but which contain on average

only about 63.2% of the training examples, the remainder being duplicates. This

method is reminiscent of the statistical procedure of \bootstrapping" [6].

Input: m examples, desired number of iterations T

1. initialize D(i) = 1=m;

2. for t = 1 to T do

3. L

t

= draw(m;D)

4. h

t

= induce tree(L

t

)

5. return h =

P

T

t=1

h

t

=T

Output: an ensemble of T equally-weighted decision trees

Figure 1. The bagging algorithm.

Figure 1 gives pseudo-code for our implementation of bagging. The procedure

draw(m;D) draws m examples randomly from the data set, with replacement, ac-

cording to a speci�ed probability distribution D. The procedure induce tree uses a

rational reconstruction of the well-known decision tree inducer C4.5 [13] to induce

and prune decision trees. Our reconstruction deviates from the original C4.5 im-

plementation in just two points. First, missing values are handled di�erently: they

are treated as a distinct value, instead of using the weighting procedure adopted

by C4.5. Second, during pruning the \lifting" operation|replacing a node by its

most heavily populated subtree|is not considered. In the experiments reported

below, we use C4.5's default settings for all essential parameters.
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4 PFAHRINGER AND WITTEN

Note that the probability distribution used to sample the training examples re-

mains the same|we call the sampling process \blind." This is one of the major

practical bene�ts of bagging: all iterations are independent, therefore they can be

executed in parallel. This is a valuable asset, particularly for large datasets.

2.2. Boosting

The method of boosting [15], unlike bagging, is a purely sequential procedure. The

key idea is to force the induction algorithm to concentrate its e�ort on examples

that it misclassi�ed in previous iterations. For this reason boosting can be called

\informed" in the sense that sampling takes previous performance into account.

The probability distribution used to sample the training examples is updated after

each iteration, increasing the weight of misclassi�ed examples and decreasing the

weight of correctly classi�ed ones.

Figure 2 gives pseudo-code for our implementation of boosting. The reweighting

of the distribution D(i) (in line 9) is governed by the factor �

t

, which is determined

by the performance of the current classi�er with respect to the current probability

distribution as calculated in line 5. The same weight �

t

also determines the con-

tribution of the associated hypothesis h

t

to the �nal ensemble h. Therefore it is

not necessarily true (as claimed in [11], for example) that boosting assigns smaller

weights to hypotheses with lower accuracy. A good hypothesis for the current prob-

ability distribution might have a considerable error rate on the original training set

represented by the initial probability distribution.

Unlike both [4] and [11], our implementation does not resample and restart in

cases where �

t

exceeds 0.5. In preliminary experiments we found that crossing this

threshold is a very good indicator that boosting is failing. Failure may be due to

excessive noise in the training data, or to inadequate attributes, or to a bias of the

underlying (weak) learner that is strongly maladapted to the learning task. In fact,

during the experiments reported below we have never encountered this problem.

Another interesting question is how to handle cases where �

t

= 0, which occurs

whenever a single tree �ts the data perfectly. When the original boosting framework

was set up, it was presumably not envisaged that this might actually occur in real
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IMPROVING BAGGING 5

Input: m examples, the number of iterations T

1. initialize D

0

(i) = 1=m;

2. for t = 1 to T do

3. /* L

t

= draw(m;D

t�1

) */ /*unnecessary for weight-handling learners*/

4. h

t

= induce tree(L

t

)

5. �

t

= P

i�D

t�1

[y

i

6= h

t

(x

i

)]

6. if �

t

> 0:5 then abort �

7. �

t

= ln((1� �

t

)=�

t

)=2

8. Z

t

= 2

p

�

t

(1 � �

t

)

9. D

t

(i) =

D

t�1

exp(�y

i

�

t

h

t

(x

i

))

Z

t

10. return h =

P

T

t=1

�

t

h

t

P

T

t=1

�

t

Output: an ensemble of T weighted decision trees

Figure 2. The ADAboost algorithm.

experiments. According to the standard ADAboost description, such a classi�er

would be assigned in�nite voting power, and boosting would e�ectively be stopped.

We have devised the following simple solution to handle this situation in a way

that makes reasonable use of this obviously good tree while retaining the ability

to continue boosting. If all training examples were weighted equally (as they are

when boosting begins), alpha

t

can be rewritten as

alpha

t

=

log(N

correctly classified

)� log(N

wrongly classified

)

2

(1)

By abusing the statistical idea of a Laplace correction, we can imagine that even a

\perfect" tree might still make one prediction error, giving

alpha

perfect tree

=

log(N

examples

+ 1)� log(1)

2

(2)

This yields a reasonable voting weight for a perfect tree which ignores the current

probability distribution.

A second problem is how to reweight the training examples for the next round

of boosting. Since all examples are correctly classi�ed, there is no principled way

D R A F T October 14, 1997, 7:30pm D R A F T



6 PFAHRINGER AND WITTEN

of increasing the weight of some of the examples and decreasing the weight of

the remainder. If the weak learner does not use the weights directly, but instead

receives a sample drawn according to the weight distribution, there may not be a

problem at all: usually (except for very skewed distributions) the next sample will

be su�ciently di�erent to lead to a di�erent classi�er. However, a deterministic

learner that uses the weights directly would induce exactly the same classi�er in

every iteration that followed. A reasonable solution is to pertubate the weight

distribution with Gaussian noise. This can be done on either the current or the

initial weight distribution, and for our experiments we chose the latter.

The original ADAboost formulation supplies the weak learner with a sample of

equal size drawn from the training set according to the probability distribution

generated at each iteration. This ensures that it applies to any kind of weak learner.

However, if the weak learner can handle weights directly, there is no need to sample:

instead all examples can be supplied, with their weights. Like [14, 2], we have

chosen this alternative.

1

Therefore we have commented out line 3 of the ADAboost

description given in Figure 2.

The superior performance of boosting over bagging has been attributed to a

reduction of both variance and (statistical) bias, whereas bagging seems to reduce

solely variance. This paper investigates the hypothesis that the better performance

of boosting is related to boosting being able to construct a greater variety of di�erent

trees.

2.3. S-bagging

Our new version of bagging, which we call \S-bagging" (S for \stump"), increases

the diversity of the decision trees involved by randomly generating decision stumps

of depth one, two or three as starting points for tree induction. Although attributes

are chosen at random in these stumps, the cutpoints for numerical attributes are

selected to optimize the information gain. The algorithm is depicted in Figure 3.

The procedure draw attrs(f) draws f attributes at random without replacement

from the set of all available attributes. These attributes de�ne the decision stump,

which will be further re�ned by standard tree induction and pruning.
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IMPROVING BAGGING 7

Input: m examples, the number of iterations T , number of �xed attributes f

1. initialize D(i) = 1=m;

2. for t = 1 to T do

3. L

t

= draw(m;D)

4. FA

t

= draw attrs(f)

5. h

t

= induce tree(L

t

; FA

t

)

6. return h =

P

T

t=1

h

t

=T

Output: an ensemble of T equally weighted decision trees

Figure 3. The S-bagging algorithm, which bags trees created by extending randomly-generated

stumps.

The idea of �xing some root structure at random is inspired by a discovery in

heuristic search reported in [8]: the likelihood of making a bad heuristic choice is

largest close to the root of a search tree. Because we do not search for the single best

tree, but instead construct a bagging ensemble, replacing the heuristic choice by

an even less informed random choice for the �rst few tree levels does not have such

disastrous consequences. Indeed, it allows a wider variety of trees to be constructed

that are still, on the whole, reasonably accurate. We will discuss the question of

choosing a good stump-depth later (Section 3.2).

2.4. Bagging Random Trees

An obvious variant of the S-bagging idea is to go to the extreme and simply bag

completely random trees. Preliminary experiments show that the increase in diver-

sity comes at too great a cost in terms of predictive accuracy. On average, random

tree ensembles perform worse than the single tree induced by C4.5.

However, a simple modi�cation, which we call \R-bagging" (R for \random"),

yields interesting results. The procedure is shown in Figure 4, and the crucial

twist, which is hidden in procedure induce random tree, is that it undertakes ex-

tensive pruning. Recall that the standard version of C4.5 considers two di�er-
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8 PFAHRINGER AND WITTEN

Input: m examples, the number of iterations T

1. initialize D

0

(i) = 1=m;

2. for t = 1 to T do

3. L

t

= draw(m;D)

4. h

t

= induce random tree(L

t

)

5. return h =

P

T

t=1

h

t

=T

Output: an ensemble of T equally weighted decision trees

Figure 4. The R-bagging algorithm, which bags extensively pruned random trees.

ent pruning operations: (a) turning subtrees into leaves and (b) lifting the most

populated subtree up to replace the current node; both operations are actually

performed only if the resulting tree yields a better error estimate. Instead of (b),

induce random tree considers lifting all subtrees, not just the most populated one,

because they are the result of random rather than heuristic choices. This more

extensive pruning improves results considerably, but at considerable computational

cost, for in comparison to standard C4.5 the complexity of pruning is increased

by a factor proportional to the average branching factor of the tree. Moreover,

compared to pruning with no lifting of any subtrees there is an additional factor

proportional to the average tree depth, because every example has to be reclassi�ed

that many times during pruning.

2.5. B-boosting: Bagged boosting

For comparison purposes we have also investigated one way of directly combining

bagging and boosting: simply bag a few boosting iterations as illustrated in Figure

5. In a sense, this procedure retains the advantages of both methods: it exhibits

independence at the level of the outer loop, and it produces quite diverse trees in

the inner loop where the boosting algorithm tries to �t the bagging samples. For the

experiments reported below we have �xed both the number of bagging operations

T

bag

and the number of boosting operations T

boost

to 10, resulting in ensembles
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IMPROVING BAGGING 9

of size 100. Given a �xed number of available iterations, this is a rather ad hoc

allocation, and other choices would no doubt prove superior. The �nal hypothesis

is simply the normalized sum of all boosting hypotheses.

Input: m examples, the number of bagging iterations T

bag

, the number of boosting

iterations T

boost

1. initialize D

0

(i) = 1=m;

2. for t = 1 to T

bag

do

3. L

t

= draw(m;D

0

)

4. h

t

= boost(L

t

; T

boost

)

5. return h =

P

T

bag

t=1

h

t

=T

bag

Output: an ensemble of T

bag

� T

boost

weighted decision trees.

Figure 5. The bagged-boosting algorithm, which bags a few boosting iterations.

We have not yet tried the inverse of this procedure, namely boosted bagging or

B-bagging, which is left for future research.

3. Experiments

This section reports experimental results for the algorithms described above. Our

question is: given a pre-speci�ed ensemble size, what algorithm constructs the

best ensemble? Based on experimental �ndings reported in the literature, we have

�xed the size at 100. This seems a reasonable choice for decision trees, where

further iterations generally yield only marginal gains (unlike other kinds of weak

learner, where even thousands of iterations may make a signi�cant di�erence [15]).

Presumably, decision tree inducers are not so \weak" after all.

To estimate predictive accuracy, strati�ed �ve-fold cross-validation was repeated

�ve times. The rationale is this. Single cross-validation can be rather unstable [1],

therefore one should average at least a few. Results of �ve-fold cross-validation do

not seem to di�er greatly from those of the more commonly chosen ten-fold cross-

validation. But of course �ve-fold cross-validation is more e�cient, having fewer
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10 PFAHRINGER AND WITTEN

iterations and also fewer examples in each|which makes a di�erence for algorithms

whose complexity is non-linear. This is important because our experiments involved

inducing a quarter of a million trees. For the two largest domains, however, we did

not perform cross-validation but instead used the prespeci�ed split into training

and test sets that was supplied with these datasets.

3.1. Algorithms and datasets

The algorithms we used are those discussed above. In summary,

C4.5 Like the standard C4.5 except that missing values are handled di�erently

and subtree lifting is disabled.

BAG Standard bagging (Figure 1) as described in Section 2.1.

BOOST Standard boosting (Figure 2) as described in Section 2.2.

SB1 S-bagging (Figure 3) as described in Section 2.3, with random initial stumps

of depth 1.

SB2 S-bagging with random initial stumps of depth 2.

SB3 S-bagging with random initial stumps of depth 3.

RB R-bagging (Figure 4) as described in Section 2.4.

BB B-boosting (Figure 5) as described in Section 2.5.

All datasets used for experiments are from the UC Irvine repository [12]. We

chose some small and medium-sized datasets that exhibit a good mix with respect

to the following characteristics: number of classes, number of examples, number of

attributes, and proportion of categorical and numerical attributes. Table 1 sum-

marizes these characteristics, along with the testing procedure|either �ve �ve-fold

cross-validations, or the use of a prespeci�ed test set.
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IMPROVING BAGGING 11

Table 1. Characteristics of the used datasets.

Dataset #Ex #C #Cat #Num Test

Audiology 226 24 69 0 5� 5 cv

Breast 699 2 0 9 5� 5 cv

Colic 368 2 14 8 5� 5 cv

Credit 690 2 9 6 5� 5 cv

Diabetes 768 2 0 8 5� 5 cv

DNA 3175 3 60 0 5� 5 cv

German 1000 2 13 7 5� 5 cv

Glass 214 6 0 9 5� 5 cv

Iris 150 3 0 4 5� 5 cv

Labor 57 2 8 8 5� 5 cv

Lymph 148 4 18 0 5� 5 cv

Sonar 208 2 0 60 5� 5 cv

Soybean 683 19 35 0 5� 5 cv

Vote 435 2 16 0 5� 5 cv

Letter 20000 26 0 16 4000

Satimage 6435 6 0 36 2000

3.2. Results

Tables 3 and 4 give the average predictive error rates, with errorbars showing the

measured standard deviation, for all domains and methods. Not surprisingly, no

clear single winner emerges. But we can observe some interesting global trends.

First, as has been observed by others [2], standard bagging is uniformly better

than C4.5|its performance is never worse. On the other hand, the improvement

is rather modest most of the time. Bagging's impotence is evident from the Ta-

ble 2, which summarizes the rankings of each method. Standard bagging never

wins in any domain. Also, on average it ranks worse than any other combination

method. Boosting's advantage over bagging is also evident with boosting being

ranked better on average and winning 10 times (out of 16) in a pairwise comparison
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12 PFAHRINGER AND WITTEN

to bagging. Furthermore, it is interesting to identify the domains where boosting

fails. For instance, over�tting might reasonably explain boosting's performance in

the Audiology domain, as there is ample opportunity for over�tting given such a

small dataset together with a large number of both attributes and classes. Bad

boosting performance in the Colic domain has been observed before [14] too, but

apparently no explanation for this failure is known.

Table 2. Ranking summary: how many times is a method the Nth-best method for some domain.

Method 1st 2nd 3rd 4th 5th 6th 7th 8th Mean

C4 1 2 2 11 7.4

BAG 1 1 1 3 5 5 5.6

BOOST 2 2 3 2 2 2 3 4.9

SB1 1 2 3 2 5 2 1 4.1

SB2 4 3 5 3 1 2.7

SB3 2 6 3 3 1 1 2.9

BB 1 2 3 2 3 3 2 4.3

RB 6 1 1 2 4 2 4.2

Second, even though R-bagging (RB) wins six (out of sixteen) times, we would

not propose it as a useful ensemble constructor because its performance is very

unstable. It performs exceptionally badly in several of the remaining domains|

sometimes even worse than the baseline represented by a single decision tree.

Third, S-bagging using initial stumps of depth two (SB2) performs quite well.

Never worse than the baseline, it wins four times and is close to the best in most

other domains. This is reected in the best average ranking of all methods. Bagged

boosting comes quite close, particularly for the larger datasets, outperforming SB2

in three of the four domains with more than 1000 examples. It is not clear whether

this is due to dataset size per se, or to a combination of size and a predominance of

numerical attributes. C4.5 is a rather poor choice for truly numerical input, and

may provide inadequate bias as a weak learner|in which case one might expect the

limited boosting that is represented in bagged boosting to address this de�ciency

more e�ectively than the other methods. It is also interesting to compare bagged
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IMPROVING BAGGING 13

boosting to standard boosting. Bagged boosting seems to have a kind of moderat-

ing inuence on standard boosting: where plain boosting performs badly, bagging

improves it, but it damages performance in domains where boosting excels. Bagged

boosting may present a reasonable alternative for noisy domains, where ADAboost

sometimes performs badly [2, 14].

Initial stumps of depth one and three perform less well in S-bagging than stumps

of depth two, on average. These choices may produce too little and too great di-

versity, respectively. However, we do not think that this indicates that depth two

is necessarily superior in general. On the contrary, it is likely that the optimal

choice of depth is determined by the number of examples, together with the num-

ber of (numerical) attributes. For instance, in the Letter domain, depth three

comfortably outperforms depth two, and in further experiments (not detailed here)

we found depths �ve and six to be even better for this domain.

4. Measuring diversity

One possible explanation for the perceived di�erences in predictive behavior of the

various ensemble-generating procedures such as bagging and boosting is that the

trees which are induced di�er in the amount of diversity they exhibit. To visualize

these di�erences we have used two techniques: the Kappa-Error diagram of [11]

and a similar DTSim-Error diagram.

4.1. Kappa

Margineantu and Dietterich [11] introduce a diagram based on the well-known

Kappa statistic that quanti�es the similarity of two classi�ers by comparing their

predictions. The Kappa statistic is an extensional measure of comparison and can

be applied to any categorical classi�er. It is de�ned as

� =

�

1

� �

2

1��

2

(3)

�

1

measures the agreement between the two classi�ers:

�

1

=

P

L

i=1

C

ii

m

(4)
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14 PFAHRINGER AND WITTEN

where m is the total number of examples, L the number of possible classes, and

C

ii

the number of examples that are assigned to class i by both classi�ers. �

2

is a

correction that takes into account the likelihood of arbitrary agreements:

�

2

=

L

X

i=1

(

L

X

j=1

C

ij

m

�

L

X

j=1

C

ji

m

) (5)

If two classi�ers produce exactly the same predictions, � = 1. On the other hand,

if their predictions coincide purely at a chance level, then � = 0. Negative values

are possible, just as negative correlation coe�cients may occur in linear regression.

The Kappa-Error diagram plots the average predictive error of a pair of classi�ers

(vertically) against their � value (horizontally). Ideally, when combining classi�ers

in an ensemble, one would like the individual classi�ers to be simultaneously max-

imally distinct and maximally correct [9]: a pair of such classi�ers would appear

at the lower lefthand corner of the diagram. Obviously this is too much to expect:

a trade-o� is involved because maximally correct classi�ers would simply �t the

training data exactly and therefore be identical to each other as far as the Kappa

statistic was concerned. This trade-o� is reected by a sloping line in the Kappa-

Error diagram below which it is not possible to go: pairs of classi�ers on the line

cannot be made to perform better (moved downwards) without also becoming less

similar to each other (moving to the right), and vice versa. Pairs of good classi�ers

cluster just above this line.

Figure 5 gives Kappa-Error diagrams for the Breast domain for the seven ensemble-

generating procedures used in the experiments. It is important to note the di�er-

ent scales employed for the y-axis: bagging and all s-bagging variants have a much

smaller range of predictive error than r-bagging, boosting, or bagged-boosting. This

is necessary for detecting any distinction between the former four methods at all.

Clearly there is a considerable di�erence between bagging (top left) and boosting

(top right). However, some of the other diagrams|particularly those for bagging

and S-bagging using initial stumps of depth one (center left)|are almost identical.

We conclude that the Kappa-Error diagram only partially explains di�erences in

the predictive performance of ensembles.
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IMPROVING BAGGING 15

4.2. DTSim

On comparing the trees in a bagging ensemble with those in an S-bagging ensemble,

it is immediately clear that there is a huge di�erence in the actual tree structures.

Of course, this is obvious from the way in which these trees are constructed. But

no extensional measure like Kappa can be expected to capture di�erences that are

purely structural and are not reected in classi�cation performance. In order to

portray this �ner distinction, we introduce a structural similaritymeasure, DTSim,

that is speci�c to decision trees.

DTSim is de�ned as

DTSim(t

1

; t

2

) =

ja(t

1

) \ a(t

2

)j

min(ja(t

1

)j; ja(t

1

)j)

(6)

Here, a(t) denotes the set of all \abstract paths" in a decision tree t. An abstract

path is the multiset of attributes tested along a speci�c path from the tree's root

to a leaf, along with the class assigned at that leaf. We ignore the actual values

of attributes and numerical cut-points. Thus DTSim measures the percentage of

abstract paths that are shared by two trees. Note that the measure reaches its

maximum value of 1 not only when the two trees are identical, but also for di�erent

trees that might test quite di�erent numerical cutpoints for the same attributes|so

long as they both reach the same conclusions.

As an example, consider the two simple decision trees t

1

and t

2

depicted in

Figure 6. They have the following abstract paths and consequent DTSim value.

a(t

1

) = f fA2,A9,+g, fA2,A9,{g, fA9,A9,+g, fA9,A9,{g g

a(t

2

) = f fA2,A9,+g, fA2,A9,{g, fA2,A5,+g, fA2,A5,{g, fA2,{g g

DTSim(t

1

; t

2

) =

2

min(4;5)

= 0.5

The de�nition of DTSim may seem ad hoc, and more sophisticated similarity

measures could easily be de�ned for decision trees|based, for example, on edit

distance. However, even such a simple measure allows one to visualize di�erences

that are not apparent in Kappa-Error diagrams. Moreover, simple measures pay

o� in e�cient implementation, which can be an issue given the quadratic growth

of pairwise comparison.
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The DTSim-Error diagram is constructed in an analogous manner to the Kappa-

Error diagram by plotting average error rates of pairs of trees against their DTSim

values. The comments about trading error performance against similarity no longer

apply: it is perfectly possible for two trees that are quite di�erent structurally to

yield the same performance. Figure 7 shows DTSim-Error diagrams for the Breast

domain. It is once again important to note the di�erent scales employed for the y-

axis. Aside from the absence of a tradeo� line, the most prominent di�erence from

the Kappa-Error diagrams in Figure 5 is the clearly-visible distinction between

bagging and S-bagging using initial stumps of depth two (top left and center right,

respectively). The latter diagram exhibits a larger agglomeration of tree pairs in

the lower left corner. These are rather dissimilar trees (their DTSim values lie

between 0 and 0.2) but they nevertheless all enjoy a low average error rate.

The reason for the improved discrimination of the DTSim measure over Kappa is

the fact that many trees make (almost) identical predictions on the training set, but

are nevertheless rather dissimilar in their structure. In this case the Kappa values

would be close to 1, whereas the DTSim values would approach 0. Structurally

di�erent but high-performance trees might exploit redundancies in the attributes

supplied, causing their ensemble behaviour to generate more robust predictions.

5. Conclusions and Discussion

We have devised various modi�cations of bagging that are aimed at increasing the

variety of the induced classi�ers, and presented an empirical comparison of their

performance. Attention has been con�ned to a single type of weak learner, namely

a decision tree inducer. We have also de�ned a syntactic similarity measure deci-

sion trees, DTSim, which proves useful for visualizing how tree diversity interacts

with predictive accuracy for the various ensemble-generating procedures. We have

shown that there is indeed a link between the degree of syntactic diversity of bagged

classi�ers and the prediction quality of the resulting ensemble. Some of the bag-

ging variants we have devised improve considerably over standard bagging: they

approach and sometimes even exceed the performance of boosting.
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But many open questions remain. Lower-level issues include the optimal choice

of parameters of each bagging variant. For instance, the best size of the initial

stump in S-bagging is probably a function of both the number of attributes and the

number of examples. Finding a good way to allocate iterations in bagged boosting

between the outer and inner loops is another interesting practical problem.

The evident success of R-bagging in some domains, together with poor perfor-

mance in others, suggests that a closer look might be rewarding. R-bagging's

successes could be explained by a Bayesian interpretation, summing performance

over all possible trees|this would suggest that the incorporation of sophisticated

priors might improve upon our simple-minded policy of equal weighting. Generally,

all the procedures compared in this paper use either an equal-weight policy or some

local form of weight computation. More advanced schemes that take into account

all classi�ers when deriving weights include \stacked generalization" [17, 16] and

\vector support networks" [5]. Such schemes might be able to enhance bagging's

performance even more, further narrowing the gap between bagging and boosting.

Other higher-level issues involve the recently-proposed idea of pruning ensembles

[11]. It can be quite demanding|particularly of memory|to retain a great num-

ber of large classi�ers, and it might be possible to decrease this burden by pruning

ensembles without prejudicing performance, or perhaps to actually improve perfor-

mance as one does when pruning decision trees. It would be interesting to compare

the use of Kappa and the Kappa-Error diagram for pruning with an analogous use

of DTSim and the DTSim-Error diagram.

Pruning ensembles can be viewed as an a posteriori way of re-simplifying the

structures that are learned. But a more direct approach might be feasible for

some combinations of domains and learners. As discussed in [4], ensembles seem

to address the problems of bias and variance simultaneously|albeit to a di�erent

degree depending on the speci�c ensemble generator. Now if a learner is adjustable

to a rich bias space, one could envision ensemble-guided bias adjustment leading to

single classi�ers that perform well. Indeed, for good classi�ers small ensemble sizes

might su�ce to reduce the potential residual variance. Is it too much to hope that

this will give back what has been sacri�ced in the quest for improved predictions,

namely intelligibility of the induced structure?
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Notes

1. We have also experimented with sampling, but our experimental results failed to show a clear

di�erence between bagging and boosting. This accords with results reported in [7], who also

employed sampling. However, even using sampling we observed the same qualitative improve-

ment with more diverse trees that is reported in later sections.
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Table 3. Predictive error rates | I
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Table 4. Predictive error rates | II
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Table 5. Kappa vs Predictive error rate, Breast domain
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Table 6. Two decision trees t
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Table 7. DTSim vs Predictive error rate, Breast domain
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