
On the Induction of Intelligible Ensembles

Bernhard Pfahringer

Austrian Research Institute for AI, Vienna, Austria

Abstract. Ensembles of classi�ers, e.g. decision trees, often exhibit greater

predictive accuracy than single classi�ers alone. Bagging and boosting are

two standard ways of generating and combining multiple classi�ers. Un-

fortunately, the increase in predictive performance is usually linked to

a dramatic decrease in intelligibility: ensembles are more or less black

boxes comparable to neural networks. So far attempts at pruning of en-

sembles have not been very successful, approximately reducing ensembles

into half. This paper describes a di�erent approach which both tries to

keep ensemble-sizes small during induction already and also limits the

complexity of single classi�ers rigorously. Single classi�ers are decision-

stumps of a prespeci�ed maximal depth. They are combined by majority

voting. Ensembles are induced and pruned by a simple hill-climbing pro-

cedure. These ensembles can reasonably be transformed into equivalent

decision trees. We conduct some empirical evaluation to investigate both

predictive accuracies and classi�er complexities.

1 Introduction

Ensembles of classi�ers, e.g. decision trees, often exhibit greater predictive accu-

racy than single classi�ers alone. Boosting [Freund & Schapire 96] and bagging

[Breiman 96a] are two standard ways of generating and combining multiple clas-

si�ers. Unfortunately, the increase in predictive performance is usually linked

to a dramatic decrease in intelligibility: ensembles are more or less black boxes

comparable to neural networks when it comes to explaining the rationale of some

classi�catory decision. Breiman [Breiman 96a] wrote that \What one loses, with

the [bagging of] trees, is a simple and interpretable structure. What one gains

is increased accuracy."

So far few have attempted to remedy this situation. Various heuristics for

pruning of ensembles are introduced in [Margineantu D.D & Dietterich T.G.].

Their net result is a two-fold reduction in ensemble size at an almost identi-

cal predictive error rate. Obviously, this does not improve intelligibility signif-

icantly, as it is only marginally easier to understand the combined behaviour

of just 50 decision trees instead of 100 trees. Alternatively, Kohavi & Kunz

[Kohavi & Kunz 97] have investigated option decision trees which they show to

be comparable in terms of predictive accuracy to bagging, but which they claim

to be easier to understand and to interpret because \option decision trees pro-

vide the human with a single structure that is easier to interpret, albeit possibly

very large". We somewhat doubt that option trees are really that much easier to

understand, because �rstly, they tend to grow quite large in practice, but more



importantly, the global e�ect of voting of the nested option nodes can be rather

intricate and hard to grasp. This e�ect is similar to that of nested m-of-n tests.

This paper describes a di�erent approach which tries to both keep ensemble-

sizes small already during induction and also rigorously limits the complexity

of single classi�ers: only decision-stumps of a prespeci�ed maximal depth are

employed. These stumps are combined by a simple majority vote. The major

advantage of small ensembles of majority-voted decision-stumps is their simple

visualization. One can mechanically construct an equivalent (complex) decision

tree using the precomputed majority-votes as classi�cations for the leaves of the

tree. Furthermore, as these are a very regular decision-trees due to the way it

is constructed, there are possibilities for further simpli�cations including logical

pruning and transformation into a decision graph (In [Kohavi & Li 95] a proce-

dure is de�ned for transforming so-called oblivious decision trees into decision

graphs, and the trees constructed from ensembles of decision stumps happen to

be almost oblivious).

The next section de�nes the algorithms used for selecting stumps during en-

semble induction and for optional post-pruning of ensembles. Section 3 explains

the experimental design and reports on the results obtained. Finally, Section 4

summarizes and elaborates upon our �ndings, pointing out interesting directions

for further research.

2 Algorithms

As we are considering all decision stumps up to a prespeci�ed depth for possible

inclusion into the �nal ensemble, we need a measure for judging the quality of

an ensemble. This is contrary to bagging or boosting where simply all classi�ers

are combined, but at least in boosting the current sub-ensemble inuences the

induction of the next classi�er. We restrict ourselves to two-class problems. In

such a context it is easy to abuse the idea of [Schapire et al 97] for explaining

boosting's success as a general quality measure for ensembles. We use their mar-

gin de�nition for single examples. Let the two classes be labeled 0 and 1, then

we have:

margin(ex

k

) = jclass(ex

k

) �

P

N

i

vote

i

(ex

k

)

N

j

Note our slightly di�erent version using absolute values which results in the mar-

gins being bounded between 0 and 1. Straightforwardly we can de�ne ensemble

quality eq(E) as the sum of the squared margins over all examples:

eq(E) =

X

k

margin(ex

k

)

2

Optimal ensembles would yield a sum of 0. There is one problem with this

formulation: a single over�tting classi�er with zero error rate on the training

set would constitute a perfect ensemble. As we limit ourselves to small decision

stumps, we have not encountered this situation in practice.



2.1 Growing an ensemble

As our objective function strongly resembles the objective of linear regression, it

is natural to use a related search procedure. But there is one major di�erence: we

do not even try to determine good coe�cients for the single classi�ers (variables

in linear regression), but instead we only try to select a reasonable subset of

the possibly huge number of classi�ers that are at our disposal. For this end we

use the hill-climbing procedure depicted in �gure 1. This procedures interleaves

decision stump construction and selection and thereby eases the memory re-

quirements of the search process. Each newly generated decision stump is either

added to the current ensemble, or it may replace one of the currently employed

stumps, or it may simply be discarded, depending on whatever action yields the

best quality estimate.

Input: m examples, maximal depth d

1. initialize E := fg;

2. for ds 2 all stumps(examples; attrs; d) do

3. if size(E) <min size then E := E + fdsg

4. else

5. add q := eq(E + fdsg)

6. repl q := eq(best replacement(E; ds))

7. if repl q < min(add q; eq(E))

8. then E := best replacement(E; ds)

9. elseif add q < min(repl q; eq(E))

10. then E := E + fdsg

11. return E

Output: an ensemble of decision stumps

Fig. 1. Growing an ensemble.

In all experiments reported in the next section we used 3 as the minimal

ensemble-size and 2 as the maximal depth for decision stumps. Stumps are gen-

erated by simply constructing a complete decision-tree for the attributes selected.

Splitpoints for numerical attributes are chosen by maximizing the information

gain of the respective split. Given a attributes we therefore have to consider

O(a

2

) di�erent decision stumps.

2.2 Pruning an ensemble

As the size of ensembles generated by the growing procedure is not bounded by

some upper limit, it can theoretically get quite large. Analogously to the pruning

mechanism for decision trees we can de�ne a greedy hill-climbing procedure for



pruning decision-stump ensembles as well. This simple algorithm is depicted in

�gure 2.

Input: ensemble E

1. while eq(best deletion(E) < eq(E)

2. do E := best deletion(E)

3. return E

Output: a pruned ensemble of decision stumps

Fig. 2. Pruning an ensemble.

In most experiments the e�ects of pruning were moderate, i.e. only a small

number of stumps was usually pruned from the respective ensemble.

3 Experiments

This section reports experimental results for the algorithm described above.

We compare average predictive error rates and average tree-depths for C4.5

[Quinlan 93], for ensembles of decision-stumps of max-depth 2 and for pruned

ensembles on a sample of small and medium sized databases available from the

UC Irvine repository [Merz & Murphy 96]. These databases are Breast (BR),

Colic (CO), Credit (CR), Diabetes (DI), German (GE), Labor (LA), Sonar

(SO), Vote (VO), Lymph (L1,L2), Glass (G0,..,G5), and Iris (I0,I1,I2).

Multi-class domains were transformed into N respective two-class problems in

the obvious way, always trying to learn how to separate a speci�c class from all

other classes.

To estimate predictive accuracy, strati�ed �ve-fold cross-validation was re-

peated �ve times. The rationale is this. Single cross-validation can be rather

unstable [Bailey & Elkan 93], therefore one should average at least a few. Re-

sults of �ve-fold cross-validation do not seem to di�er greatly from those of the

more commonly chosen ten-fold cross-validation. But of course �ve-fold cross-

validation is more e�cient, having fewer iterations and also fewer examples in

each|which makes a di�erence for algorithms whose complexity is non-linear.

In table 1 we have summarized the average error rates for all domains and

methods. For better comparison these rates are relative with respect to the mean

error rate produced by C4.5. We also plot errorbars indicating one standard

deviation. It is obvious that the ensembles are able to improve on the error only

in a few of the domains, but considerably so if at all. There is just a single

domain were ensembles fare drastically worse than C4.5: class 5 of the Glass

database. This is a very small class consisting of only 5% of all examples, C4.5's

absolute error rate is 1.4%, whereas the error rates are 3.7% for ensembles. Thus

there might be a tendency to over�t very small classes.



Real average tree depths of C4.5's trees and worst-case average tree depths

for the decision-stump ensembles are summarized in table 2. This is a worst-case

estimate because we simply multiply the number of stumps by their maximal

depth of two. This computation does not take into account the possibilities for

simpli�cation that are exempli�ed further down.

There are some interesting observations to be made: ensembles can sometimes

have much larger depths than C4.5's trees. Pruning of ensembles consistently

reduces their depth, but not much so usually. On the other hand, even a small

reduction in depth causes a huge reduction in size, as size is exponentially pro-

portional to depth. Taking error rates and depth into account simultaneously

reveals another interesting fact: when ensembles show a signi�cantly better clas-

si�cation performance, their size is also signi�cantly larger than that of C4.5's

decision tree. But the inverse relationship is not necessarily true: much larger

sizes may also just yield approximately equal error rates. Ensembles of decision

stumps might e�ectively constitute a controlled way of over�tting the training

set, leading to superior classi�cation performance in those cases where C4.5

seemingly is under�tting the data. This will be one focus for further research.

To illustrate the claim that small ensembles of simple decision-stumps can

be as easy to interpret as single decision trees, we have prepared the following

series of �gures. Firstly �gure 3a depicts the tree induced by C4.5 for separating

class 3 (labeled as 0) from all other classes (labeled as 1) in the Glass domain.

Next, �gure 3b depicts the ensemble induced for the same problem. It happens to

consist of merely three stumps, two of which are e�ectively computing three-way

discretizations of a single attribute.

Figure 4 shows the decision tree resulting from mechanically combining the

three stumps of �gure 3 and precomputing the voting results (class labels are 0,

1

3

,

2

3

, and 1 respectively). Obviously, this tree is quite a bit larger than the one

of �gure 3, but its structure is very regular. Three di�erent kinds of behaviour-

preserving simpli�cations are possible:

{ Rounding of the predicted values. This will not change the categorical pre-

dictions, but we will loose information about the certainty of the respective

classi�cations. In our example tree of �gure 4 we will transform

1

3

into 0,

and

2

3

into 1.

{ Pruning of logically impossible branches, i.e. tests where previous tests fur-

ther up in the tree have already constrained the possible values for the re-

spective attribute at the node in question.

{ Pruning a sub-tree where all leaves predict the same class (after rounding of

class values and pruning of impossible branches).

After simplifying all these obvious redundancies the resultant tree depicted

in �gure 5a is comparatively simple. Nevertheless, its classi�catory behaviour is

necessarily identical to the behaviour exhibited by the decision-stump ensemble.

And if so desired, this simple tree is transformable even further into a slightly

simpler decision graph by transposing two tests (A2 < 37 and A0 < 27) and

merging common sub-structures, as is shown in �gure 5b. Admittedly, this is a



best-case example, that was wisely chosen, but in general especially post-pruned

ensembles seem to stay within reasonably bounded complexity.

We have not yet automated this visualization process, but it should be

straightforward to implement the mechanisms described in [Kohavi & Li 95] for

this purpose.

4 Conclusions and Discussion

We have devised a simple ensemble-generating procedure which enjoys a rea-

sonable degree of intelligibility at the expense of less dramatic improvement

of predictive accuracy (when compared to e.g. boosting). There are numerous

directions for further research:

{ Right now the proposed mechanism is restricted to two-class problems. It

should be possible to extend it to handle multi-class problems as well in way

similar to how boosting can be extended for multi-class problems.

{ The current mechanism faces a serious weakness in the handling of numerical

attributes: as always all examples are used to construct a decision stump, the

numerical cut-points are not as variable as when examples are reweighted

like in boosting. Boosting is able to produce more diverse decision stumps

in principle. This ability might be essential in some domains.

{ It should be interesting to investigate a direct combination of boosting with

the mechanism introduced in this paper.

{ The current mechanism automatically adjusts the size of ensembles, thereby

possibly inducing too complex ensembles. One might try to over-prune en-

sembles to further simplify them at the expense of some lost amount of

ensemble quality. But the only principled way of choosing a good upper

bound for ensemble sizes seems to be a (costly) wrapper-like approach based

on cross-validation.

{ A comparison to bayesian approaches as described in [Oliver 95, Buntine 91]

is clearly necessary for judging the merits of the presented ideas.

So in summary the ideas described above can be seen as �rst successful steps

of a much larger endeavour aimed at getting back interpretable structure of

ensemble-generating procedures while at least retaining some of these proce-

dures' inherent predictive advantages.

Acknowledgements Most of the ideas reported in this paper were conceived

while the author was visiting the Computer Science Department of the University

of Waikato courtesy to the following grant: \Schr�odingerstipendium Nr.J01269-

MAT" of the Austrian \Fonds zur F�orderung der Wissenschaftlichen Forschung

(FWF)". Kai Ming Ting was very inuential and helpful in numerous discussions

on ensemble-generating learning procedures as was Geo� Holmes' constant urge

for interpretable results. The Austrian Research Institute for Arti�cial Intelli-

gence is sponsored by the Austrian Federal Ministry of Science and Transport.



References

[Bailey & Elkan 93] Bailey T.L., Elkan C.: Estimating the Accuracy of Learned Con-

cepts, in Bajcsy R.(ed.), Proceedings of the Thirteenth International Joint Con-

ference on Arti�cial Intelligence, Morgan Kaufmann, San Mateo, CA, pp.895-901,

1993.

[Breiman 96a] Breiman L.: Bagging Predictors, Machine Learning, 24(2), 1996.

[Buntine 91] Buntine W.L.: Learning Classi�cation Trees, Statistics and Computing,

Vol.2:63-73, 1991.

[Freund & Schapire 96] Freund Y., Schapire R.E.: Experiments with a New Boosting

Algorithm, in Saitta L.(ed.), Proceedings of the Thirteenth International Confer-

ence on Machine Learning, Morgan Kaufmann, San Francisco, CA, pp.148-156,

1996.

[Kohavi & Kunz 97] Kohavi R., Kunz C.: Option Decision Trees with Majority Votes,

in Proceedings of the Fourteenth International Conference on Machine Learning,

Morgan Kaufmann, 1997.

[Kohavi & Li 95] Kohavi R., Li C.-H.: Oblivious Decision Trees, Graphs, and Top-

Down Pruning, in Mellish C.S.(ed.), Proceedings of the 14th International Joint

Conference on Arti�cial Intelligence, Morgan Kaufmann, San Mateo, CA, pp.1071-

1077, 1995.

[Margineantu D.D & Dietterich T.G.] Margineantu D.D., Dietterich T.G.: Pruning

Adaptive Boosting, in Proceedings of the Fourteenth International Conference on

Machine Learning, Morgan Kaufmann, 1997.

[Merz & Murphy 96] Merz, C.J., Murphy, P.M.: UCI Repository of machine learning

databases, University of California, Department of Information and Computer Sci-

ence, Irvine, CA, 1996.

[Oliver 95] Oliver J.J.: On Pruning and Averaging Decision Trees, in Prieditis A. &

Russell S.(eds.), Proceedings of the 12th International Conference on Machine

Learning (ML95), Morgan Kaufmann, San Francisco, CA, 1995.

[Quinlan 93] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, CA, 1993.

[Schapire et al 97] Schapire R.E., Freund Y., Bartlett P., Lee W.S.: Boosting the Mar-

gin: A new Explanation for the E�ectiveness of Voting Methods, in Proceedings of

the Fourteenth International Conference on Machine Learning, Morgan Kaufmann,

1997.

This article was processed using the L

a

T

E

X macro package with LLNCS style



Table 1. Error rates for C4.5, Ensembles, and Pruned Ensembles.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BR CO CR DI GE LA L1 L2 SO VO

R
el

at
iv

e 
P

re
di

ct
iv

e 
E

rr
or

Domains

C4.5
E2

E2p

0

0.5

1

1.5

2

2.5

3

3.5

4

G0 G1 G2 G3 G4 G5 I0 I1 I2

R
el

at
iv

e 
P

re
di

ct
iv

e 
E

rr
or

Domains

C4.5
E2

E2p



Table 2. Average tree depth for C4.5, Ensembles, and Pruned Ensembles.

0

5

10

15

20

25

30

35

40

BR CO CR DI GE LA L1 L2 SO VO

A
ve

ra
ge

 tr
ee

 d
ep

th

Domains

C4.5
E2

E2p

0

2

4

6

8

10

12

14

16

G0 G1 G2 G3 G4 G5 I0 I1 I2

A
ve

ra
ge

 T
re

e 
D

ep
th

Domains

C4.5
E2

E2p



Table 3. C4's decision tree (a) and a 3 stump ensemble (b).

A2 < 37

1

yes

A6 < 40

no

1

yes

A0 < 59

no

A8 < 15

yes

A1 < 66

no

A2 < 61

yes

1

no

1

yes

A0 < 109

no

A3 < 38

yes

1

no

1

yes

0

no

A6 < 50

yes

A8 < 14

no

1

yes

0

no

1

yes

0

no

A0 < 26

1

yes

A0 < 27

no

0

yes

1

no

A2 < 37

1

yes

A2 < 44

no

0

yes

1

no

A2 < 37

1

yes

A2 < 44

no

0

yes

1

no



Table 4. The equivalent decision tree.

A0 < 26

A2 < 37

yes

1: A0 < 27

no

A8 < 30

yes

A2 < 44

no

A0 < 150

yes

A0 < 142

no

A8 < 30

yes

A8 < 30

no

1

yes

1

no

1

yes

2/3

no

A0 < 150

yes

A0 < 142

no

A0 < 150

yes

A0 < 142

no

2/3

yes

2/3

no

2/3

yes

1/3

no

1

yes

1

no

1

yes

2/3

no

1: A0 < 27

A2 < 37

yes

A2 < 37

no

A8 < 30

yes

A2 < 44

no

A8 < 30

yes

A2 < 44

no

A0 < 150

yes

A0 < 142

no

A8 < 30

yes

A8 < 30

no

2/3

yes

2/3

no

2/3

yes

1/3

no

A0 < 150

yes

A0 < 142

no

A0 < 150

yes

A0 < 142

no

1/3

yes

1/3

no

1/3

yes

0

no

2/3

yes

2/3

no

2/3

yes

1/3

no

A0 < 150

yes

A0 < 142

no

A8 < 30

yes

A8 < 30

no

1

yes

1

no

1

yes

2/3

no

A0 < 150

yes

A0 < 142

no

A0 < 150

yes

A0 < 142

no

2/3

yes

2/3

no

2/3

yes

1/3

no

1

yes

1

no

1

yes

2/3

no



Table 5. The logically simpli�ed decision tree (a) and graph (b).

A0 < 26

1

yes

A0 < 27

no

A2 < 37

yes

A2 < 37

no

1

yes

A2 < 44

no

1

yes

A2 < 44

no

0

yes

A8 < 30

no

1

yes

A0 < 142

no

1

yes

0

no

A8 < 30

yes

1

no

1

yes

A0 < 142

no

1

yes

0

no

A0 < 26

1

yes

A2 < 37

no

1

yes

A0 < 27

no

A2 < 44

yes

A2 < 44

no

0

yes

A8 < 30

no

1

yes

A0 < 142

no

1

yes

0

no

yes

1

no


