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Abstract

The recent uprise of Knowledge Discovery in

Databases (KDD) has underlined the need for ma-

chine learning algorithms to be able to tackle large-

scale applications that are currently beyond their

scope. One way to address this problem is to use

techniques for reducing the dimensionality of the

learning problem by reducing the hypothesis space

and/or reducing the example space. While research

in machine learning has devoted considerable atten-

tion to such techniques, they have so far been ne-

glected in ILP research. The purpose of this paper

is to motivate research in this area and to present

some results on windowing techniques.

1 Introduction

One of the most often heard prejudices against ILP algorithms

is that they are only applicable to toy problems and will not

scale up to applications of significant size. While it is our firm

belief that the order of magnitude of this unspecified “signif-

icant size” is monotonicly increasing in order to keep the ar-

gument alive, it is nevertheless indisputable that hypothesis

spaces in ILP are usually considerably larger than in proposi-

tional learning problems. Therefore it is quite surprising that

in ILP, very little research has so far been dedicated to the

development of dynamical approaches for automatically re-

ducing the complexity of a learning problem, while in propo-

sitional learning such approaches are quite common in the

form of subsampling and feature subset selection algorithms.

The motivation for using such approaches is three-fold:

Memory Limitations: Almost all learning algorithms still

require to have all training examples and all background

knowledge in main memory. Although memory is cheap

and the capacity of the main memory of the available

hardware platforms in increasing rapidly, there certainly

are datasets which do not fit into main memory.

Efficiency Gain: Learning time usually increases (most of-

ten super-linearly) with the complexity of a learning

problem. Reducing this complexity may be necessary

to make a learning problem feasible.

Accuracy Gain: It has been observed that several ap-

proaches to dimensionality reduction (like feature sub-

set selection and windowing) may lead to an increase in

predictive accuracy. The reason is that larger hypothesis

spaces are more likely to allow overfitting of the data.

The purpose of this paper is to motivate research on ap-

proaches to dynamic dimensionality reduction of ILP learn-

ing problems.

2 The Dimensionality of a Learning Problem

In propositional inductive learning there are usually two

sources that influence the complexity of a learning problem:

Number of Attributes: In decision tree learning, each at-

tribute usually corresponds to one test, while in rule

learning each value of an attribute corresponds to a con-

dition that can be added to the body of a rule.1 The size

of the hypothesis space for propositional learning prob-

lems thus depends crucially on the number of attributes.

Number of Examples: Candidate rules, conditions, or

nodes in a decision tree have to be evaluated on the train-

ing examples. This evaluation is usually performed by

counting the number of training examples they cover and

computing some heuristic estimate from these counts.

Thus, the cost for learning a theory will typically in-

crease at least linearly with the number of training ex-

amples.

The complexity of a propositional learning problem can

thus be roughly measured by multiplying the number of at-

tributes with the number of training examples.2 Measuring

the complexity of an ILP problem is more complicated, but it

1This, of course, only holds for symbolic attributes. For numeric
attributes, the number of possible threshold tests on that attribute is
usually proportional to the number of training instances.

2Another factor that has significant influence on the learning
complexity is of course the size of the target theory. However, this
dimension is usually not known and beyond the control of the learn-
ing algorithm, so we disregard it.



is clear that it also has to depend in some way on the size of

the example and hypothesis space respectively.

Unfortunately, the hypothesis space for most ILP prob-

lems is theoretically infinite. However, most practical ILP

algorithms provide means for syntactically or semantically

restricting the hypothesis space by various mechanisms that

range from simple approaches, which allow to specify modes

and types for certain predicates or to limit the clause length or

variable depth, to complex description languages for explic-

itly modeling a hypothesis space. For an overview of such

approaches see [Nédellec et al., 1996]. Although in some of

these approaches a calculation of the size of the defined hy-

pothesis space is possible (as e.g. in the DLAB formalism
[Dehaspe and De Raedt, 1996]), its exact size is usually un-

known. Contrary to propositional learning, where the num-

ber of attributes (and maybe the average number of values

for each attribute) is very indicative of the size of the hy-

pothesis space, numerous factors influence the size of a first-

order hypothesis space, including the number of literals in the

background knowledge, their average arity, the average num-

ber of refinements of the refinement operator, the maximum

clause length, the maximum variable depth, the size of the

least Herbrand model, and many more. Identifying a small

subset of easily computable measures that could be used as

a standardized description of the complexity of an ILP hy-

pothesis space would in our opinion be a rewarding topic for

further research.

At first thought, one would guess that at least the prob-

lem of measuring the number of examples, i.e., the size of

the example space, should not be harder for an ILP prob-

lem than it is for propositional learning problems. How-

ever, there are different views in ILP on what constitutes

an example. Classical approaches, like FOIL [Quinlan and

Cameron-Jones, 1995], learn a target concept from posi-

tive and negative examples, which should be entailed or

not entailed by the theory for the target concept. How-

ever, recently the model-based view of the ILP learning

problem, which has originally been advocated for what has

been called descriptional ILP [De Raedt and Džeroski, 1994;

Wrobel and Džeroski, 1995], has also been adapted for classi-

fication learning [De Raedt and Van Laer, 1995; Blockeel and

De Raedt, 1997]. In this framework, examples are interpreta-

tions, for which the learned theory has to be true [De Raedt,

1996]. Many ILP learning problems can be formulated in

both settings, which would yield different estimates, when

the size of the example space is measured by merely count-

ing the number of positive and negative examples. To fur-

ther complicate things, many ILP algorithms allow to omit

the specification of negative examples (relying on some sort

of closed-world assumption) and/or allow intensional defini-

tions of positive or negative examples. Thus, estimating the

size of the example space is also non-trivial for ILP problems.

We can conclude that finding appropriate measures for esti-

mating the complexity of general ILP learning problems is an

interesting topic for further research. Whatever such a mea-

sure will look like, it should be clear that it must in some way

depend on the size of the hypothesis space and the size of

the example space. Reducing one (or both) of these factors

should reduce the complexity of the learning problem. The

following two sections will be concerned with techniques for

achieving such a reduction.

3 Reducing the Hypothesis Space

One possibility for reducing the dimensionality of a learning

problem is to reduce the size of the hypothesis space. The

smaller the number of possible hypotheses the smaller will

the amount of nodes be that typically have to be searched

before a solution is found.

The most common technique for reducing the size of this

hypothesis space is to attempt to identify relevant subsets of

these attributes, a process that is commonly referred to as

feature subset selection (FSS) [Caruana and Freitag, 1994;

John et al., 1994; Kohavi and Sommerfield, 1995; Pfahringer,

1995]. The special case of identifying relevant values of

attributes that could be used as candidate conditions in a

rule learning algorithm has also been called literal selection
[Gamberger, 1995]. FSS algorithms attempt to dynamically

identify candidate conditions that are potentially relevant for

the learning problem at hand, and attempt to rule out condi-

tions that appear to be irrelevant. Using only the potentially

relevant candidates for learning will reduce the complexity of

the learning problem and (what is usually the motivation for

doing FSS) potentially increase the accuracy.

There are other ways of reducing the size of the hypothesis

space in propositional learning algorithms, such as limiting

the length of the learned rules or bounding the depth of a de-

cision tree [Holte, 1993; Auer et al., 1995]. However, these

static approaches have enjoyed less popularity than the dy-

namic approaches for identifying relevant feature subsets.

In ILP research, the opposite is the case: Research on what

has been termed declarative bias has flourished [Nédellec

et al., 1996; Cohen, 1994; Dehaspe and De Raedt, 1996;

Adé et al., 1995], while there are almost no approaches for

dynamically reducing the size of the hypothesis space. A no-

table exception is [Lavrač et al., 1995], where an approach for

propositional literal selection [Gamberger, 1995] is used in a

first-order framework by transforming the first-order problem

into a propositional representation [Lavrač et al., 1991]. An-

other simple technique for first-order literal selection is used

in [Cohen, 1995b], where all relations are discarded which

refer to objects that occur with a low frequency in the train-

ing set. However, both approaches seem to be limited to a

subclass of ILP learning problems. A major advancement in

this area might for example consist in the development of a

procedure that automatically prunes unpromising branches of

a refinement graph in a pre-processing step. However, we do

not know of any attempt to tackle this or a similar task.
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Figure 1: Results of a noise-tolerant windowing algorithm in the simplified Thyroid domain.

4 Reducing the Example Space

Another source of inefficiency in rule learning originates

from the need to evaluate candidate rules on training exam-

ples. Another way of improving the efficiency of rule learning

algorithms is therefore to use only a subsample of the avail-

able examples for learning.

Windowing is one technique for identifying an appropriate

subsample to learn from. It has been proposed in [Quinlan,

1983] as a supplement to the inductive decision tree learner

ID3 to enable it to tackle tasks which would otherwise have

exceeded the memory capacity of the computers of those

days. Despite first successful experiments in the KRKN do-

main [Quinlan, 1983] windowing has not played a major role

in machine learning research. One reason for this is certainly

the rapid development of computer hardware, which made

the motivation for windowing seem less compelling. How-

ever, recent work in the areas of Knowledge Discovery in

Databases [Kivinen and Mannila, 1994; Toivonen, 1996] and

Intelligent Information Retrieval [Lewis and Catlett, 1994;

Yang, 1996] has recognized the importance of dimensional-

ity reduction through subsampling for reducing both, learn-

ing time and memory requirements. Other subsampling ap-

proaches include peepholing [Catlett, 1991], which uses dy-

namical subsampling at each node in a decision tree, thus

extending an earlier proposal described in [Breiman et al.,

1984], partitioning [Domingos, 1996], which partitions the

data into segments of equal size and combines the results ob-

tained on each partition (similar to [Toivonen, 1996]), and

uncertainty sampling [Lewis and Catlett, 1994], which is

closely related to windowing, but does not extend the current

window based on misclassifications, but on the confidence the

learner has into its learned theory.

A good deal of the lack of interest in windowing can be

attributed to an empirical study [Wirth and Catlett, 1988].

The authors studied windowing with ID3 in various domains

and concluded that windowing cannot be recommended as

a procedure for improving efficiency. The best results were

achieved in noise-free domains, such as the Mushroom do-

main, where windowing was able to perform on the same

level as ID3, while its performance in noisy domains was con-

siderably worse.

Recently, we have demonstrated that rule learning algo-

rithms are better suited for windowing than decision tree

learning algorithms and have proposed improved versions

of windowing for rule learning that are able to achieve sig-

nificant gains in noise-free [Fürnkranz, 1997a] and noisy
[Fürnkranz, 1997b] domains. The basic idea behind these

approaches is to exploit the advantage of rule learning algo-

rithms that rules are learned independently: rules that have

been learned from the current window and prove to be “reli-

able” on the entire training set can immediately be added to

the final theory. All examples covered by such a rule can be

removed from the training set and the current window, thus

reducing its size. This enables the windowing procedure to

gain efficiency even in domains where only parts of the ex-

ample space have some redundancy.

Many ILP algorithms, such as FOIL and its derivates
[Quinlan and Cameron-Jones, 1995] and PROGOL [Mug-



procedure WINDOWING(Algorithm,LP)

RedLP = INITIALIZEREDUCTION(LP)

loop

Theory = CALL(Algorithm,RedLP)

Q = EVALUATE(Theory,LP)

if STOPPINGCRITERION(Q,LP,RedLP)

return(Theory)

else

RedLP = EXPANDREDUCTION(Q,LP,RedLP)

Figure 2: A general view of windowing.

gleton, 1995], use a separate-and-conquer learning strategy
[Fürnkranz, 1997c] for accumulating the final rule set. The

same learning strategy was used for the experiments de-

scribed in [Fürnkranz, 1997a] and [Fürnkranz, 1997b], al-

beit only in a propositional setup. Figure 1 shows the re-

sults of a comparison of I-RIP, a noise-tolerant rule learn-

ing algorithm half-way between I-REP [Fürnkranz and Wid-

mer, 1994] and RIPPER [Cohen, 1995a], and a windowed

version of the algorithm in a slightly simplified, discretized

version of Quinlan’s thyroid domain.3 The windowed ver-

sion of the algorithm is able to outperform I-RIP in terms

of both run-time and accuracy.4 For more experimental re-

sults, including results in the pseudo-relational KRK do-

main, we have to refer the reader to [Fürnkranz, 1997a;

1997b].

5 A Generalized Model of Windowing

As we have outlined in the last section, we are convinced

that windowing may be a powerful technique for reducing

the complexity of a learning problem in domains that contain

some redundancy. In the following, we will put windowing

into a more general framework.

Figure 2 shows an abstraction of the principle steps of

the windowing algorithm. It starts by initializing the learn-

ing problem with a reduced learning problem (e.g. with a

subsample of the examples), then applies the learning algo-

rithm to this reduced problem and analyzes the resulting the-

ory with respect to the original problem. Unless some stop-

ping criterion specifies that the quality of learned theory is

already sufficient (e.g. if no exceptions could be found on the

complete data set), the reduced learning problem will be ex-

panded to incorporate more information (e.g. by adding all

misclassified examples) and a new theory is induced. Note

3For a more detailed description of how we modified the domain
see [Fürnkranz, 1997b]. The only motivation for these changes was
that our implementation of the algorithms is not (yet) able to handle
numerical attributes.

4Note that the resulting rule sets were always tested on the com-
plete data sets, so that the accuracy estimates for the right end of the
curves are resubstitution estimates.

that this abstract framework could also be used for describ-

ing other approaches for dimensionality reduction including

approaches for hypothesis space reduction. As an example

think of an algorithm that attempts to learn a theory in a sim-

ple hypothesis space first and only switches to more com-

plex hypothesis spaces if the result in the simple space in un-

satisfactory. Such an approach has been realized in CLINT
[De Raedt and Bruynooghe, 1990], but could also be imag-

ined for other ILP algorithms. For example, in FOIL one

could systematically vary certain parameters that influence

the complexity of the hypothesis space, like the number of

new variables that can be introduced in the body of a clause

or the maximum length of a clause, in order to define in-

creasingly complex hypothesis spaces. Similarly, many ap-

proaches to constructive induction or predicate invention may

be viewed in this framework, if the motivation for inventing

a new predicate (i.e. shifting the language bias to a more

expressive hypothesis language) is the insufficiency of the

current hypothesis language [Stahl, 1996]. In particular, so-

called wrapper-approaches to constructive induction, where

the theory learned in one iteration is analyzed for the con-

struction of new features for subsequent iterations, might eas-

ily be cast into this framework [Wnek and Michalski, 1994;

Pfahringer, 1994; Kramer, 1994].

With some elaboration, a general algorithm akin to the one

described above could also incorporate other procedures for

dimensionality reduction, like wrapper approaches to feature

subset selection or the improved windowing algorithms we

have described in the previous section. In particular, think-

ing in this framework might result in approaches that develop

more general approaches to dimensionality reduction that aim

at reducing both hypothesis and example space at the same

time. As an example consider the peepholing technique in-

troduced in [Catlett, 1991], where subsampling is used to re-

liably eliminate unpromising candidate conditions from the

hypothesis space.

6 Conclusion

In this paper, we have tried to argue that techniques for au-

tomatically reducing the complexity of a learning problem,

as they are quite common in propositional machine learning

approaches, also deserve attention in ILP research. In particu-

lar, first-order equivalents to feature subset selection and win-

dowing should be worth a deeper investigation. We have out-

lined several directions for future research, presented some

results on windowing, and sketched of a general framework

in which further research might proceed.
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