
Stochastic Propositionalization of

Non-Determinate Background Knowledge

Stefan Kramer

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna, Austria

stefan@ai.univie.ac.at

April 10, 1997

Abstract

It is a well-known fact that propositional learning algorithms require

\good" features to perform well in practice. So a major step in data en-

gineering for inductive learning is the construction of good features by

domain experts. These features often represent properties of structured

objects, where a property typically is the occurrence of a certain substruc-

ture having certain properties. To partly automate the process of \feature

engineering", we devised an algorithm that searches for features which are

de�ned by such substructures. The algorithm stochastically conducts a

top-down search for �rst-order clauses, where each clause represents a bi-

nary feature. It di�ers from existing algorithms in that its search is not

class-blind, and that it is capable of considering clauses (\context") of al-

most arbitrary length (size). Preliminary experiments are favorable, and

support the view that this approach is promising.

1 Introduction

A very large number of algorithms require a propositional representation, where-

as many real-world learning problems are essentially relational. To bridge this

gap, various researchers (e.g., [10]) have proposed a transformation approach.

This type of transformation is called propositionalization.

In general, full equivalence between the original and the transformed prob-

lem can only be achieved for certain subsets of �rst-order logic and certain types

of background knowledge ([10], [2], [3]). But even if there could be equivalent

transformations theoretically, most interesting cases would still require feature

subset selection. So for pragmatic reasons we should not expect the transformed

1



problem to be equivalent to the original problem. Note that such a transfor-

mation may also be viewed as constructive induction, i.e., as a representation

change for learning.

It should be clear that the problems of propositionalization and of concept

learning are not the same, even if there might be some similarities in the solu-

tions to these problems.

First of all, constructing new features should best be viewed as a preparatory

step prior to learning. Propositional learning algorithms heavily rely on \good"

features. Secondly, most learning tasks involve solving the set-cover problem.

During feature construction we do not have to bother about coverage. Rather,

we have to strive for features that can be used to create good partitionings

of the instance space. Thirdly, concept learning is supervised, while feature

construction can be supervised or unsupervised (concept formation). Fourthly,

in practice we often know some expert-provided features (such as the so-called

\Hansch attributes" or \structural alerts" known from chemical domains), and

we are interested in �nding features that complement them. This is also speci�c

to propositionalization.

Since we have to select from a large number of features, we have to specify

preferences. We determined the following requirements that should be ful�lled

by features constructed from background knowledge. The features should be

� (R1) not too speci�c and not too general.

� (R2) not too complex. (So they have at least a potential for being com-

prehensible.)

� (R3) di�erent from one another.

� (R4) di�erent from existing, expert-provided features.

In the next section we describe a new algorithm for propositionalization, and

relatively straight-forward solutions to the above requirements. In section 3, we

will present a few results from preliminary experiments. In section 4, we will

review related work.

2 Description of the Method

In this section we describe a new algorithm for propositionalization. The algo-

rithm stochastically conducts a top-down search for �rst-order clauses, where

each clause represents a binary feature. It di�ers from existing algorithms in

that its search is not class-blind, and that it is capable of considering clauses

(\context") of almost arbitrary length (size).

First we give a brief overview of the algorithm as it is described in �gure 1.

In the following, the algorithm will be referred to as SP.

2



The algorithm maintains three sets of clauses. One set (CurrentClauses)

contains the clauses of the current generation. This set (of �xed size NrClauses)

is developed over a prede�ned number of generations (NrGenerations). An-

other set of what we will call \parent clauses" (ParentClauses) contains the

clauses which are the basis for specializations. The third set (BestClauses) is

simply the set of the best clauses found so far.

The algorithmproceeds in the followingway: in each step, the NrClausesTo-

Replace \stochastically" worst clauses are removed from the current clauses, and

the same number of new clauses is generated stochastically. The probability of

removing a clause is proportional to the inverse of its evaluation.

The algorithm that generates new clauses can be found in �gure 2: it ran-

domly selects a parent from the set of potential parents with a probability pro-

portional to the expected evaluation of all possible re�nements. Subsequently, a

literal is selected for the specialization of the chosen parent clause with a prob-

ability proportional to the evaluation of the resulting clause. The re�nement

operator is a kind of specialization using schemata [15]. Note that the only op-

erator used in the algorithm is a re�nement operator. Currently, the evaluation

function employed is the inverse of the chi-square statistic. Due to lack of space,

we cannot describe the expected frequencies here in detail. However, the basic

approach is independent of the used evaluation function.

Every generated clauses is a candidate for being a parent clause, but only

a subset of parent clauses is actually kept, since the chance of selecting a good

parent clause decreases with an increase in the number of parent clauses. Only

those candidate parent clauses with the best expected evaluations of re�nements

are kept. In contrast to all other parent clauses, the most general clause can

never be discarded. This enables recovery from too many overly speci�c clauses

in the population. (Remember that the only operator used is a re�nement

operator.)

One key feature of the algorithm is the distinction between \parent clauses"

and \current clauses". The reason for this is that \being a good child is not being

a good parent." More technically, a clause with a good evaluation not necessarily

has good re�nements, and vice versa, a clause producing good re�nements not

necessarily has to have a good evaluation.

After each step, the current set of clauses is compared with the best set

of clauses so far. If the current set is better than the best set so far, it is

remembered as the new best set so far. After NrGenerations generations of

clauses, the best set of clauses up to then is returned.

Sets of clauses are evaluated in the following way: the features correspond-

ing to the given clauses are used to create the �nest possible partitioning of the

training instances that can be obtained by these features. For each partition,

we predict the majority class of the instances contained. Comparing the pre-

dicted values with the observed values, we calculate the inverse of the chi-square

statistic as for single clauses.

The type of search presented here is not a genetic algorithm, since cross-over

3



procedure stochastic propositionalization (Target;NrGenerations;NrClauses;

NrClausesToReplace;NrParentClauses)

Input:

Target: literal with target predicate

NrGenerations: number of steps to be performed

NrClauses: number of clauses in the set of current clauses

(the "population")

NrClausesToReplace: number of clauses to be replaced from the set of

current clauses in each step

NrParentClauses: number of parent clauses to keep

Output:

BestClauses: a set of clauses corresponding to binary features

constructed from non-determinate background

knowledge

CurrentClauses randomly refine parent clauses(NrClauses;

fTarget :� trueg)

ParentClauses select best parent clauses(NrParentClauses�1;

CurrentClauses)

[fTarget : � trueg

BestClauses CurrentClauses

for i 2 to NrGenerations do

CurrentClauses randomly remove clauses(NrClausesToReplace;

CurrentClauses)

/*

Randomly remove clauses from the set of current clauses, with a

probability proportional to the inverse of the evaluation of the

respective clause.

*/

NewClauses randomly refine parent clauses(NrClausesToReplace;

ParentClauses)

CurrentClauses CurrentClauses [NewClauses

ParentClauses select best parent clauses(NrParentClauses�1;

ParentClauses n fTarget :� trueg[NewClauses)

[fTarget : � trueg

if evaluation(CurrentClauses) > evaluation(BestClauses) then

BestClauses CurrentClauses

return BestClauses

end procedure

Figure 1: Pseudocode of the algorithm for stochastic propositionalization.

4



procedure randomly re�ne parent clauses(NrNewClauses; ParentClauses)

Input:

NrNewClauses: number of new clauses to be generated as refinements

of some of the given parent clauses

ParentClauses: clauses used as basis for refinements

Output:

NewClauses: the newly generated clauses

NewClauses fg

for i 1 to NrNewClauses do

ParentClause randomly select parent clause(ParentClauses)

/*

Selects a parent clause with a probability proportional to the

expected evaluation of all possible children.

*/

NewClause randomly refine clause(ParentClause)

/*

Selects a refinement of the chosen parent clause with a probability

proportional to the evaluation of the resulting clause.

*/

NewClauses NewClauses[fNewClauseg

return NewClauses

end procedure

Figure 2: Pseudocode of the procedure for random re�nements of given parent

clauses.

and mutation operators are missing. A full-
edged genetic algorithm would also

need a generalization operator in addition to the specialization operator.

The overall approach would not work, if the clauses in the population were

the same extensionally. In other words, there would be no \division of labour"

among the clauses (R3). (This is also the motivation for the universal su�rage

selection algorithm presented in [6].) We took a simple extension-driven ap-

proach to solve this problem: the algorithm only considers those re�nements

that yield clauses with an extension di�erent from the extensions of clauses

in the current population. This (extensional) restriction can also be used to

enforce the construction of features that are di�erent from expert-provided fea-

tures (R4). As expert-provided features are a form of established knowledge,

the extension-driven approach enables discoveries: the new features have to

5



complement the existing ones.

Finally, the rest of the above requirements are addressed: R1 is realized

by parameters for required minimum and maximum coverage of clauses. R2

requires restrictions concerning the complexity of clauses. First, we restrict the

maximum number of variables of certain user-de�ned types, as the number of

variables is crucial for the comprehensibility and for the feasibility of search in

general. Second, the number of literals can be restricted.

1

Third, no negation

is used in the clauses, since it often is detrimental to comprehensibility.

3 Experimental Results

3.1 Family Domain

We conducted experiments in the family domain [12] with the relations son(A,B)

and niece(A,B). Although the family domain is determinate, it helped us see

which things work and which do not.

SP consistently found correct solutions for both relations. (However, due to

the probabilistic nature of the algorithm, there is no guarantee for that.) Here

are a few features found for the relation son(A,B):

new_f1(A, B) :- father(B, A),

brother(A, _).

new_f2(A, B) :- mother(B, A),

husband(A, _).

new_f3(A, B) :- nephew(A, C),

brother(B, C).

Note that the predicate male is not available, so that the algorithm tries to

approximate it by brother(A, ), husband(A, ) and nephew(A, C). Also note

that new f3 is not the easiest way to express this relation!

Since the family domain is very simple, all the work is already done in the

propositionalization step. In most real-world domains, however, the chance

of �nding the correct concept during propositionalization is very small. So

usually the work is divided by the propositionalization algorithm and by the

subsequently applied learning algorithm.

3.2 Carcinogenicity Domain

Next, we performed experiments in the carcinogenicity domain [7]. The database

contains information about the carcinogenicity of 330 compounds, as classi-

1

So in fact we do not allow for clauses of arbitrary length, but still the bounds used are far

too large for considering all clauses up to this length.

6



�ed by the US National Institute of Environmental Health Sciences (NIEHS).

Chemicals are classi�ed as carcinogenic or not (compounds classi�ed as equivo-

cal are considered non-carcinogenic). The chemical structures are described at

the atom and bond level, and in terms of various relevant structural properties:

functional groups (such as benzene rings and methyl groups) and \structural

alerts". Structural alerts are structural properties which have been identi�ed by

domain experts as indicators of carcinogenicity. Structural alerts mostly consist

of functional groups.

Our goal was to �nd structural alerts other than those already known to

domain experts. So in this application SP searched the space of combinations

of functional groups with the restriction that the corresponding features should

be (extensionally) di�erent from the known structural alerts. (The parameters

used were NrGenerations = 50; NrClauses = 5; NrClausesToReplace =

1; NrParentClauses = 10.) SP found several interesting combinations of

functional groups. This is an example of a combination that was found to

be deactivating:

new_f4(A) :- functional_group(A, B, methyl),

connected(B, C),

functional_group(A, C, ring_size_5).

After propositionalization, we applied C4.5 [14].

In table 1, we summarize the results for various methods in this domain. T2

[1] induces 2-level decision trees. FOIL [12] and Progol[11]

2

are state-of-the-art

ILP algorithms. M5 [13] learns regression trees with linear regression models

in the leaves. SRT [9] learns relational regression trees. The propositional

learning algorithms listed here utilize global features available in addition to

the non-determinate background knowledge. Quantitatively, SP/C4.5 performs

quite well, and the improvement over other propositional algorithms is due to

the newly constructed features. The only algorithms that signi�cantly perform

better (M5, SRT) are those which utilize the additional information given in

the formulation as a regression problem.

4 Related Work

In this section we brie
y review related work on propositionalization and stochas-

tic search in machine learning and Inductive Logic Programming.

LINUS [10] was the �rst system to transform a relational representation into

a propositional representation. The hypothesis language of LINUS is restricted

to function-free constrained DHDB (deductive hierarchical database) clauses.

This implies that no recursion is allowed, and that no new variables may be

introduced.

2

The experiment with Progol has been described in [7].

7



Method Accuracy

Default 55.00%

Ames Test 63.00%

C4.5 prune 58.79%

C4.5 rules 60.76%

T2 65.00%

M5 69.93%

FOIL 25.15%

Progol 63.00%

SRT 72.46%

SP/C4.5 prune 66.78%

Table 1: Quantitative results for the carcinogenicity domain obtained by 5-fold

cross-validation.

DINUS [10] weakens the language bias of LINUS so that the system can learn

clauses with a restricted form of new variables, namely determinate variables.

This allows for the same transformation approach as the one taken in LINUS.

Cohen [2] introduces a new restriction on non-determinate free variables

called \locality constraint". This can be thought of in terms of schemata or

clich�es [15] of literals. Newly introduced non-determinate variables may only be

reused in literals within the same instantiated schema or clich�e.

Turney [17] described a special purpose program for translating the \trains"

problem of the East-West challenge into a propositional representation. Zucker

and Ganascia [18] proposed to decompose structured examples into several learn-

ing examples, which are descriptions of parts of what they call the \natural

example". Cohen [3] introduced the notion of \set-valued features", which can

be used to transform certain types of background knowledge.

Srinivasan and King [16] presented a method for feature construction based

on hypotheses returned by Progol [11]. For each clause, each input-output con-

nected subset of literals is used to de�ne a feature. In contrast to all previously

discussed methods, this method works for all types of background knowledge.

However, it is not yet clear why particularly these features should be useful for

transforming relational learning problems.

Geibel and Wysotzki [5] propose a method for feature construction in a

graph-based representation. The features are obtained through �xed-length

paths in the neighborhood of a node in the graph. The constructed features are

either \context-dependent node attributes of depth n" or \context dependent

edge attributes of depth n". This method also works in general (for graphs),

but using �xed-length paths obviously becomes prohibitive for large n.

In contrast to SP, REGAL [6] is a concept learning algorithm. It is a full-


edged genetic algorithm. REGAL's universal su�rage selection algorithm is

the �rst extension-driven approach to stochastic search in machine learning.

8



MILP [8] is an ILP algorithm that performs stochastic search for single

clauses to overcome the myopic behavior of greedy search. The outer loop of

the algorithm employs the more conventional separate-and-conquer strategy.

SUBDUE [4] is an MDL-based algorithm for substructure discovery in graphs.

It di�ers from SP in that its search is class-blind, and that it basically performs a

beam search (the current clauses are the parent clauses of the next generation).

5 Conclusion and Further Work

In this paper we presented a stochastic approach to propositionalization of re-

lational background knowledge. Our next steps will be to perform additional

experiments in several other domains. Secondly, we will experiment with a

Bayesian evaluation of clauses (by their posterior), so that there will be a penalty

for overly complex clauses. Thirdly, we are planning to complement the type of

search presented here by class-blind search.

Acknowledgements

This research is sponsored by the Austrian Fonds zur F�orderung der Wis-

senschaftlichen Forschung (FWF) under grant number P10489-MAT. Financial

support for the Austrian Research Institute for Arti�cial Intelligence is provided

by the Austrian Federal Ministry of Science and Transport. We would like to

thank Ross King and Ashwin Srinivasan for providing the carcinogenicity data,

and Gerhard Widmer for valuable discussions.

References

[1] P. Auer, W. Maass, and R. Holte. Theory and applications of agnostic

pac-learning with small decision trees. In A. Prieditis and S. Russell, edi-

tors, Proceedings of the 12th International Conference on Machine Learning

(ML95). Morgan Kaufmann, 1995.

[2] W.W. Cohen. Pac-learning nondeterminate clauses. In Proc. Twelfth Na-

tional Conference on Arti�cial Intelligence (AAAI-94), 1994.

[3] W.W. Cohen. Learning trees and rules with set-valued features. In Pro-

ceedings of the Thirteenth National Conference on Arti�cial Intelligence

(AAAI-96), pages 709{716, 1996.

[4] D.J. Cook and L.B. Holder. Substructure discovery using minimumdescrip-

tion length and background knowledge. Journal of Arti�cial Intelligence

Research, 1:231{255, 1994.

9



[5] P. Geibel and F. Wysotzki. Relational learning with decision trees. In Proc.

Twelfth European Conference on Arti�cial Intelligence (ECAI-96), pages

428{432, 1996.

[6] A. Giordana, L. Saitta, and F. Zini. Learning disjunctive concepts by

means of genetic algorithms. In Proceedings of the Eleventh International

Conference on Machine Learning, pages 96{104, 1994.

[7] R.D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays

from molecular structure using inductive logic programming. Environmen-

tal Health Perspectives, 1997.

[8] M. Kova�ci�c. MILP: a stochastic approach to Inductive Logic Programming.

In Proceedings of the Fourth International Workshop on Inductive Logic

Programming (ILP-94), GMD-Studien Nr. 237, pages 123{138, 1994.

[9] S. Kramer. Structural regression trees. In Proceedings of the Thirteenth

National Conference on Arti�cial Intelligence (AAAI-96), 1996.

[10] N. Lavrac and S. D�zeroski. Inductive Logic Programming. Ellis Horwood,

Chichester, UK, 1994.

[11] S. Muggleton. Inverse Entailment and Progol. New Generation Computing,

13:245{286, 1995.

[12] J.R. Quinlan. Learning logical de�nitions from relations.Machine Learning,

5:239{266, 1990.

[13] J.R. Quinlan. Learning with continuous classes. In Sterling Adams, editor,

Proceedings AI'92, pages 343{348, Singapore, 1992. World Scienti�c.

[14] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

San Mateo, CA, 1993.

[15] G. Silverstein and M.J. Pazzani. Relational clich�es: Constraining con-

structive induction during relational learning. In L.A. Birnbaum and G.C.

Collins, editors, Machine Learning: Proceedings of the Eighth International

Workshop (ML91), pages 203{207, San Mateo, CA, 1991. Morgan Kauf-

mann.

[16] A. Srinivasan and R.D. King. Feature construction with Inductive Logic

Programming: a study of quantitative predictions of chemical activity aided

by structural attributes. In Proceedings of the 6th International Workshop

on Inductive Logic Programming (ILP-96), 1996.

[17] P. Turney. Low size-complexity Inductive Logic Programming: the East-

West challenge considered as a problem in cost-sensitive classi�cation. In

Proceedings of the 5th International Workshop on Inductive Logic Program-

ming (ILP-95), pages 247{263. Katholieke Universiteit Leuven, 1995.

10



[18] J.D. Zucker and J.G. Ganascia. Representation changes for e�cient learn-

ing in structural domains. In Proceedings of the Thirteenth International

Conference on Machine Learning, pages 543{551, 1996.

11


