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Abstract

This paper presents, from a methodological point of view, �rst results of an in-

terdisciplinary project in scienti�c data mining. We analyze data about the carcino-

genicity of chemicals derived from the carcinogenesis bioassay program, a long-term

research study performed by the US National Institute of Environmental Health Sci-

ences. The database contains detailed descriptions of 6823 tests performed with more

than 330 compounds and animals of di�erent species, strains and sexes. The chem-

ical structures are described at the atom and bond level, and in terms of various

relevant structural properties. The goal of this paper is to investigate the e�ects that

various levels of detail and amounts of information have on the resulting hypotheses,

both quantitatively and qualitatively. We apply relational and propositional machine

learning algorithms to learning problems formulated as regression or as classi�cation

tasks. In addition, these experiments have been conducted with two learning prob-

lems which are at di�erent levels of detail.

Quantitatively, our experiments indicate that additional information not neces-

sarily improves accuracy. Qualitatively, a number of potential discoveries have been

made by the algorithm for Relational Regression, because it is not forced to abstract

from the details contained in the relations of the database.

1 Introduction

In science data analysis [3], we bene�t from the luxury of precision of the data and the

availability of domain knowledge, but the basic problems are the same as in other areas.

Although there are not necessarily petabytes of data, the scienti�c problems tackled often

are very hard, and the data are complex and highly structured. In case of structured data,

\a at-�le form of the data is unlikely to be useful"[3]. Such data are more naturally

represented in relations. This type of representation of learning problems has been studied

in the �eld of Inductive Logic Programming (ILP)[9].

In this paper we present �rst results of an interdisciplinary project in scienti�c data

mining. The goal of this project is to apply and develop ILP methods for learning structure-

activity relationships (SARs) for carcinogenicity. SARs are models that predict the activity

of chemicals in organisms from the molecular structure. Formally, the problem is to predict

numbers from \relational structures" (such as labeled graphs), a problem also known as

Relational Regression [2].
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In the following, we present results from our analysis of carcinogenicity data derived

from the carcinogenesis bioassay program, a long-term research study performed by the

US National Institute of Environmental Health Sciences (NIEHS).

In the next section, we present previous work. Then, we describe the data used in this

study. In the fourth section, we describe how we de�ned the learning problems and how we

approached them. Subsequently, we present the results quantitatively and qualitatively.

In the sixth section, we briey sketch directions of further research.

2 Related work

Several SAR studies [5][6] using ILP methods have been published. Generally, the compar-

isons of ILP algorithms with other approaches (linear regression, neural networks) showed

no statistically signi�cant di�erences between the accuracies of the investigated methods.

So the experiments demonstrated that the advantage a�orded by comprehensible theories

is not gained at the expense of predictive accuracy.

This work is also much in the spirit of studies comparing various methods (FOIL vs.

PROGOL [14], propositional learning vs. relational learning [15]) in the domain of muta-

genicity. However, the closest work in the literature is [7], which reports the application of

the ILP algorithm PROGOL to one of the databases also used in this study.

3 Description of the Data

In this section we describe the datasets used in our experiments \as is", without the data

engineering steps to de�ne the learning problems. The next step dealing with the precise

de�nition of the learning problems will be documented in the subsequent section.

Our starting point are two databases: The �rst one, provided by King and Srini-

vasan [7](abbreviated by K&S), contains information about the carcinogenicity of 330

compounds, as classi�ed by the NIEHS. The second database, the Carcinogenic Potency

Database (CPD)[4], is provided by Gold and co-workers, and contains information about

bioassays including the species, the strain and the sex of the animals, and the route of

administration of the compound. Figure 1 gives an overview of the relations in both

databases.
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Given these two databases, we were able to join them in order to obtain even

more detailed data about carcinogenicity.

The chemicals in the K&S database are identi�ed by the CAS registry number, which is

a unique number for chemical compounds. They are described at the atom and bond level

(see Figure 1). More precisely, the chemical structure of a compound is described by the

atoms it contains (relation atom) and by a speci�cation of the bonds between the atoms

(relation bond). Atoms are characterized by the element, the atom type according to the

molecular modelling package QUANTA, and the partial charges. The bonds are de�ned as

1

This overview is slightly simpli�ed.
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relations between atoms, and also have types (according to QUANTA). Additionally, func-

tional groups (such as benzene rings and methyl groups) and so-called \structural alerts"

are represented. Structural alerts are structural properties which have been identi�ed by

domain experts as indicators of carcinogenicity. Finally, the outcome of tests for muta-

genicity have been included. A chemical is said to be mutagenic if it damages DNA. This

is known to be highly correlated with carcinogenicity.

The NIEHS has classi�ed these chemicals as non-carcinogenic, equivocal and carcino-

genic. The classi�cation is based on statistically signi�cant bioassays, additional biological

data and domain knowledge of experts.

Relations in Carcinogenicity Database provided by King and Srinivasan (K&S)

niehs_assessment(CAS, NIEHS_Assessment). /* assessment of NIEHS as */

/* non-carcinogenic, equivocal or */

/* carcinogenic */

atom(CAS, AtomID, Element, AtomType, /* description of chemicals */

PartialCharge). /* at the atom ... */

bond(CAS, Atom1ID, Atom2ID, BondType). /* ... and bond level. */

contains_benzene(CAS). /* Definitions of functional groups */

... /* (9 relations) */

contains_halide10(CAS). /* Definitions of structural alerts */

... /* (28 relations) */

ames(CAS). /* Positive test for mutagenicity */

Relation in Carcinogenic Potency Database (CPD) provided by Gold et al.:

test(CAS, Species, Strain, Sex, Route, TumorigenicSite, PVal, TD50).

Figure 1: Relations in the databases to be analyzed.

Gold's CPD contains detailed descriptions of bioassays performed by the NIEHS and

other organizations. Each example in the CPD consists of the compound used, the species,

the strain and the sex of the animals, and the route of administration of the compound.

The carcinogenicity of a substance may di�er depending on the species, the strain, the

sex and the route. For each bioassay, we know the statistical signi�cance of the outcome

(PV al) and the tumorigenic dose for 50% of the animals (TD50). The unit of the TD50

is mg/kg/day. Qualitatively, the e�ect of a compound is described by PV al: if the value

indicates statistical signi�cance, then the compound is carcinogenic. Quantitatively, the

activity of a substance is described by TD50. E.g., if the TD50 is very low for the animals

in a group, then the substance is highly carcinogenic.

For simplicity, we ignored another piece of information provided by the CPD: the

\tumorigenic site" or target organ. This is the organ where tumors are found at the end

3



of a bioassay. We did not take into account this information in our �rst approach to the

problem, since there are 76 di�erent types of tumorigenic sites.

As is, the CPD contains no chemical descriptors. So, the e�ects of compounds cannot be

analyzed without further information. Fortunately, the chemicals in the CPD are identi�ed

by the CAS registry number, a unique number for chemical compounds. Thus, we were

able to combine the CPD with the K&S database, which is a rich source of information

about chemicals. Through this combination, we have very detailed information about the

bioassays as well as about the chemicals used. In Table 1, a quantitative overview of the

three databases is given.

The joined DB is the basis for further investigations concerning species-speci�c, strain-

speci�c, sex-speci�c and route-speci�c models for carcinogenicity. From a biological point

of view, this is one of the novelties of our project.

K&S DB CPD Joined DB

# examples 330 6823 6823

# tuples 21031 6823 27524

# relations 41 1 42

# features in propositional 38 6 42

version of the data

Table 1: Quantitative overview of the databases.

4 Description of the Approach

In this section we describe our approach to analyzing the data. Our goal is to investigate

the e�ects of increasing levels of detail in the data, both in the independent and the

dependent variables. We investigated the following dimensions:

� Classi�cation/regression

� Propositional learning/relational learning

� Chemicals as examples/tests as examples

Prerequisites for a quantitative comparison are that

1. the problems are identical (same examples).

2. the same measures are applied to the di�erent formulations of the problem.

So a problem with a quantitative comparison stems from the di�erent learn-

ing problems for the chemicals and for the tests. However, all combinations 2

fclassification; regressiong � fpropositional; relationalg are quantitatively comparable
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for both chemicals and tests, since classi�cation accuracy can also be calculated for re-

gression models. Besides, qualitative statements are possible in any case, e.g. about the

features that play a role in the induced models. In the following, we will discuss the di-

mensions investigated in this study. A summary of the de�nitions of the learning problems

can be found in Table 2.

Classi�cation/Regression

Classi�cation problems can be derived from regression problems by discretization of the

dependent variable. If a regression problem is too hard, it may be easier to leave out

the details and perform classi�cation. This is what we did for tests as examples. The

dependent variable here (TD50) is continuous, and we chose a simple discretization: if the

value is bigger than the median, then the example belongs to class 1, otherwise it belongs

to class 0.

The chemicals are classi�ed as non-carcinogenic, equivocal or carcinogenic. This can be

used directly for classi�cation. However, the dependent variable is ordinal and we are not

aware of learning algorithms for dependent variables that are ordinal. As a \work-around",

we formulated a regression problem by mapping the NIEHS assessment to f�1; 0; 1g. Since

we evaluate the results by the relative error, the scale does not play a role. We calculated

the classi�cation accuracy in the following way: if a regression rule predicts a negative

value, then we predict \non-carcinogenic", else we predict \carcinogenic".

Propositional Learning/Relational Learning

To obtain a propositional version of the learning problems, we utilize the high-level chemical

information from the K&S database. We de�ne features for the existence of functional

groups, structural alerts and the result of the ames test. In such a way, we obtain 38

features describing the compounds. These features can be used to propositionalize both

learning problems (the chemicals and the tests as examples).

In the ILP setting, the examples are additionally de�ned at the atom and bond level.

So obviously the description of the chemicals is more detailed than in the propositional

setting. Vice versa, specifying features instead of the complete structural information can

be viewed as abstraction.

Chemicals as Examples/Tests as Examples

For the chemicals, we are learning the NIEHS assessments (non-carcinogenic, equivocal or

carcinogenic). The examples are exactly the same as in the database provided by King

and Srinivasan. The data do not have to be transformed, as the learning problem is clear

and well-de�ned.

For tests, the dependent variable is the tumorigenic dose (TD50). However, the value

of TD50 is valid only if the substance is carcinogenic, i.e., if PV al < 0:05. This is only

the case for 2897 out of the original 6823 examples. Unfortunately, there are conicting

TD50-values for some instances that are identical otherwise. This is due to the projection

to the attributes that we selected (species, strain, sex, route), and could be resolved by in-

cluding the tumorigenic site. Since we decided to ignore it here, we chose another solution
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that makes sense from a biological point of view: from all conicting instances, we de�ned

the minimum TD50 as the value for TD50. So the dependent variable is the dose that is

tumorigenic to at least one site for 50% of the animals. This transformation reduces the

number of instances to 629.

Chemicals Examples As in original database of

King and Srinivasan (330 examples)

Dependent variable for fnon-carcinogenic, equivocal,

classi�cation carcinogenicg

Dependent variable for f�1; 0; 1g

regression

Tests Examples Those with valid TD50 only

(i.e., only those with signi�cant

outcome, PV al < 0:05)

in case of conicting TD50 values:

one example with min(TD50)

(629 examples)

Dependent variable for class = 1 if TD50 > median(TD50)

classi�cation class = 0 otherwise

Dependent variable for TD50

regression

Table 2: De�nitions of the learning problems in our study.

Algorithms Used

In Table 3, we present the algorithms used for our comparative study. For propositional

classi�cation, we use C4.5 [13], the well-known decision-tree package, and T2 [1], which

induces 2-level decision trees. FOIL [11] and PROGOL[10]

2

are state-of-the-art ILP algo-

rithms. M5 [12] learns regression trees with linear regression models in the leaves. SRT [8]

learns relational regression trees.

5 Experimental Results

First we discuss the quantitative results of the experiments (see Table 4 and Table 5).

For the chemicals, we did not observe big di�erences in accuracy except for Relational

Regression, i.e., when all the available information is provided. SRT achieves (with sta-

tistical signi�cance) the best accuracy for the chemicals. Comparing classi�cation and

regression, we observed a small improvement of the regression results over the classi�ca-

tion results. However, the biggest di�erence was between using all the information, and

using only part of the information.

2

The experiment with PROGOL has been described in [7].
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Examples Formalism Learning task Algorithm(s)

Chemicals Propositional Classi�cation C4.5, T2

Chemicals Propositional Regression (f�1; 0; 1g) M5

Chemicals Relational Classi�cation FOIL, PROGOL

Chemicals Relational Regression (f�1; 0; 1g) SRT

Tests Propositional Classi�cation C4.5, T2

Tests Propositional Regression M5

Tests Relational Classi�cation FOIL

Tests Relational Regression SRT

Table 3: Algorithms applied to the two learning problems and di�erent formulations of

them.

Quantitatively, the results for the tests are in total contrast to the results for the

chemicals. Here, the details provided do not seem to pay o�: propositional classi�cation

algorithms are quantitatively superior to the rest. This may be due to the huge di�erences

in the TD50, which may cause problems for regression algorithms. These di�erences are

no longer visible if we perform classi�cation instead. The bad performance of FOIL may

be due to the multiple classi�cations which are counted as misclassi�cations.

Next we present the major discoveries and �ndings from our experiments. One of the

authors is an expert in toxicology, and interprets the theories induced by the learning

algorithms.

The rules found by C4.5 and FOIL are relatively lengthy, and do not provide many new

insights. The rules reect mostly what we speci�ed as indicators of carcinogenicity, namely

the ames tests and structural alerts. (Note that they also could have used the functional

groups.) Some of the theories are quite accurate, but they are no real discoveries. An

extreme example is the theory found by the T2 algorithm, which is quite accurate, but

trivial, since it contains the ames test, and tests for structural alerts in the second level.

The theories found by C4.5 and FOIL are relatively easy to interpret for an expert,

because the conditions in the theories relate to the structure of a compound. So an expert

can easily draw some structures which are subsumed by a given rule. Besides, none of the

rules found are in contradiction to \toxicological common-sense".

In contrast to C4.5 and FOIL, SRT often uses partial charges of atoms in its theories

to discriminate the examples. In fact, the partial charges are the only information given

about the chemical reactivity. It is a well-known fact that the lower the partial charge of

an atom in a compound, the higher the probability of carcinogenicity. The drawback with

tests for partial charges is that it is not possible to visualize the cases subsumed by the

rule. However, it appears possible that the e�ect of a chemical mainly depends on partial

charges, and not on the chemical structure.

The �ndings by C4.5 and FOIL on the one hand and by SRT on the other hand are in

conict. This raises the question whether the e�ect of chemical structure is stronger than

the e�ect of partial charges, or the other way round. This interesting issue will be a point
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of departure for further investigations.

The rules found by FOIL, C4.5 and SRT reveal that certain functional groups (methyl

groups, benzene rings, rings of size 6) are, depending on the context, in some cases activat-

ing and in others deactivating. This pattern was found to make sense from a toxicological

point of view.

Most of the qualitative insights were gained from the application of SRT. Several types

of atoms have been found to be deactivating: atoms of type 8 according to QUANTA (e.g.

\atoms with 2 double bonds on a 4 membered ring", and atoms of type 14 (e.g. \atoms

with double bonds on a 4 membered ring with 3 double bonds"). Finally, if a sulfur atom is

part of a compound, the compound is more likely to be not carcinogenic. This is amazing,

as the existence of a sulfur atom in a compound is a very simple property. To the best of

our knowledge, however, there is no toxicological evidence that contradicts this �nding.

These observations can be made both in the application to chemicals and in the ap-

plication to tests. Although these results might be real discoveries, additional analyses by

independent domain experts are required to con�rm them.

Approach Algorithm Classi�cation Accuracy Relative Error

Default 55.00% �

Ames Test 63.00% �

Propositional C4.5 prune 58.79% �

Classi�cation C4.5 rules 60.76% �

T2 65.00% �

Propositional M5 69.93% 98.28%

Regression

Relational FOIL 25.15% �

Classi�cation PROGOL 63.00% �

Relational SRT 72.46% 13.66%

Regression

Table 4: Quantitative results for chemicals obtained by 5-fold cross-validation.

Generally, SRT uses the same properties of compounds in both applications. Applied to

tests, SRT additionally uses species, sex or route near the leaves of the trees, which results

in huge di�erences in the predicted values for the resulting splits. This way we recognized

that mice might have a much higher TD50 than rats. Closer examination revealed that

out of all tests with PV al < 0:05 there are 1677 with rats, and only 1220 with mice. (In

the overall database they are equally distributed.) From 189 cases which di�er only in the

species, there are 135 cases where the TD50 is higher for mice. On the average, the ratio

TD50

mouse

=TD50

rat

is 1.599. This con�rms previous �ndings by Gold and co-workers that

rats react more sensitively to carcinogens than mice.

Summing up the qualitative results, we observe that propositional learning algorithms

made use of the knowledge about chemicals in the form of key attributes, but this only
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Approach Algorithm Classi�cation Accuracy Relative Error

Default 50.00% �

Propositional C4.5 prune 67.56% �

Classi�cation C4.5 rules 65.43% �

T2 59.86% �

Propositional M5 56.67% 100.23%

Regression

Relational FOIL 31.39% �

Classi�cation

Relational SRT 56.19% 76.61%

Regression

Table 5: Quantitative results for tests obtained by 5-fold cross-validation.

yielded a high accuracy: mostly they were not capable of �nding anything new. Most of

the potential discoveries were obtained by an algorithm for Relational Regression, which

utilizes all the available information.

6 Further Work and Conclusion

These are the next steps we are going to take:

� We will include the tumorigenic site in the description of the bioassays. Since there

will be fewer conicting TD50 values, more examples can be used for learning.

� We will design a machine learning algorithm for ordinal dependent variables. Like

M5 or SRT, the algorithm will take into account the distance between actual and

predicted values.

� Gold's CPD not only contains information from the NIEHS, but also from the lit-

erature. One of the next steps will be to determine the chemical structures of the

compounds used in bioassays conducted by organizations other than the NIEHS.

In summary, we investigated the e�ects that various levels of detail and amounts of

information have on the resulting hypotheses, both quantitatively and qualitatively. We

applied relational and propositional machine learning algorithms to learning problems for-

mulated as regression or as classi�cation tasks. In addition, these experiments have been

conducted with two learning problems which are at di�erent levels of detail: �rst with

chemicals as examples, second with tests as examples. Quantitatively, our experiments

indicate that additional information not necessarily improves accuracy. Qualitatively, a

number of potential discoveries have been made by the algorithm for Relational Regres-

sion, because it is not forced to abstract from the details contained in the relations of the

database.
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