
Noise-Tolerant Windowing

Johannes F�urnkranz

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Wien, Austria

E-mail: juffi@ai.univie.ac.at

OEFAI-TR-97-07

Abstract

Windowing has been proposed as a procedure for e�cient memory use

in the ID3 decision tree learning algorithm. However, previous work has

shown that it may often lead to a decrease in performance, in particular in

noisy domains. Following up on previous work, where we have shown that

the ability of separate-and-conquer rule learning algorithms to learn rules

independently can be exploited for more e�cient windowing procedures,

we demonstrate in this paper how this property can be exploited to achieve

noise-tolerance in windowing.

1 Introduction

Windowing is a general technique that aims at improving the e�ciency of in-

ductive classi�cation learners. The gain in e�ciency is obtained by identifying

an appropriate subset of the given training examples, from which a theory of

su�cient quality can be induced. Such procedures are also known as subsam-

pling. Windowing has been proposed in (Quinlan, 1983) as a supplement to

the inductive decision tree learner ID3 to enable it to tackle tasks which would

otherwise have exceeded the memory capacity of the computers of those days.

Despite �rst successful experiments in the KRKN chess endgame domain

(Quinlan, 1983), windowing has not played a major role in machine learning re-

search. One reason for this certainly is the rapid development of computer hard-

ware, which made the motivation for windowing seem less compelling. How-

ever, recent developments in the areas of Knowledge Discovery in Databases

(Fayyad, Piatetsky-Shapiro, & Smyth, 1996) and Intelligent Information Re-

trieval (Hearst & Hirsh, 1996) have again shown the limits of conventional

machine learning algorithms. Dimensionality reduction using subsampling pro-

cedures has been recognized as a promising �eld of research (Lewis & Catlett,

1994; Yang, 1996).

A good deal of the lack of interest in windowing can be attributed to an

empirical study (Wirth & Catlett, 1988) that showed that windowing is unlikely

to gain any e�ciency. The authors studied windowing with ID3 in various

domains and concluded that windowing cannot be recommended as a procedure

for improving e�ciency. The best results were achieved in noise-free domains,

such as the Mushroom domain, where windowing was able to perform on the

same level as ID3, while its performance in noisy domains was considerably

worse.

In previous work (F�urnkranz, 1997), we have demonstrated that separate-

and-conquer algorithms are better suited for windowing than divide-and-conquer

algorithms, because they learn each rule independently. In this paper we will

show how this property can be exploited in order to achieve noise-tolerance.

2 The I-RIP algorithm

We have conducted our study in the framework of separate-and-conquer rule

learning algorithms that has recently gained in popularity (F�urnkranz, 1996).

The basic learning algorithm we use, I-RIP, is based on I-REP (F�urnkranz

& Widmer, 1994) and its successor RIPPER (Cohen, 1995). However, the

algorithms presented in this paper do not depend on this choice; any other

noise-tolerant rule learning algorithm could be used in I-RIP's place.

I-REP achieves noise-tolerance by �rst learning a single, complete and con-

sistent rule on two thirds of the training data and then pruning this rule on the

remaining third using a form of reduced error pruning (Quinlan, 1987). The

resulting rule is added to the theory, and all examples that it covers are removed

from the training set. The remaining training examples are used to learn an-

other rule until no more meaningful rules can be discovered. In (Cohen, 1995) it

was shown that some of the parameters of the I-REP algorithm, like the prun-

ing and stopping criteria, were not chosen optimally. We have implemented the

I-REP algorithm as described in (F�urnkranz & Widmer, 1994), but using RIP-

PER's rule-value-metric pruning criterion and its 0:5-rule-accuracy stopping

criterion. We have not implemented RIPPER's rule optimization heuristics.

Thus our I-RIP algorithm is half-way between I-REP and RIPPER. As such,

it is quite similar to I-REP*, which is also described in (Cohen, 1995), but it

di�ers from it as its implementation is closer to the original I-REP. For exam-

ple, I-RIP considers every condition in a rule for pruning, while I-REP* only

considers to delete a �nal sequence of conditions. On the other hand, I-REP* is

able to handle numerical variables, missing values, and multiple classes, which

I-RIP currently does not support. However, these are no principle limitations

to the algorithm, and standard enhancements for dealing with these problems

could easily be added to all algorithms described in this paper.

3 Windowing

In principle, windowing can be wrapped around any learning algorithm. It

starts by picking a random sample of a user-settable size InitSize from the total

set of Examples and uses it for learning a theory with a given learning algorithm,

in our case the I-RIP algorithm brie
y described in the last section. This theory

is then tested on the remaining examples and the examples that it misclassi�es

are moved from the test set to the window. Another parameter, MaxIncSize,

aims at keeping the window size small. If this number is exceeded, no further

2

procedureWin-RIP(Examples,InitSize,MaxIncSize)

Train = RandomSample(Examples,InitSize)

Test = Examples n Train

repeat

Theory = I-RIP(Train)

NewTrain = ;

OldTest = ;

for Example 2 Test

Test = Test n Example

if Classify(Theory,Example) 6= Class(Example)

NewTrain = NewTrain [Example

else

OldTest = OldTest [Example

if jNewTrainj= MaxIncSize

exit for

Test = Append(Test,OldTest)

Train = Train [NewTrain

until NewTrain = ;

Figure 1: Extending I-RIP with windowing.

examples are tested and the next iteration starts with the new window. To make

sure that all examples are tested in the �rst few iterations, our implementation

appends the examples that have already been tested to the remaining examples

in the test set, so that testing will start with new examples in the next iteration.

We have named our implementation of a windowed version of I-RIP Win-RIP

(see �gure 1).

4 The Problem of Noise in Windowing

An adaptation of the windowing technique described in the previous section to

noisy domains is a non-trivial endeavor. In particular, it cannot be expected

that the use of a noise-tolerant learning algorithm like I-RIP inside the window-

ing loop will yield performance gains in noisy domains. The contrary is true:

the main problem with windowing in noisy domains lies in the fact that win-

dowing will eventually incorporate all noisy examples into the learning window,

because they will be misclassi�ed by a good theory. On the other hand, the

window will typically only contain a subset of the original learning examples.

Thus the proportion of noisy examples in the learning window will be much

higher than the noise level in the entire data set, which will make learning

considerably harder.

Assume for example that Win-RIP has learned a correct theory from 1000

examples in a 11,000 examples domain, where 10% of the examples are mis-

classi�ed due to noise. In the next iteration, about 1000 misclassi�ed noisy

examples will be added to the window, thus doubling its size. Half of the ex-

amples in the new window are now erroneous, so that the classi�cation of the

examples in the new window is in fact entirely random. It can be assumed that

many more examples have to be added to the window in order to recover the

3

procedure I-Win(Examples,InitSize,MaxIncSize)

Train = RandomSample(Examples,InitSize)

Theory = ;

repeat

NewTheory = I-RIP(Train)

for Rule 2 NewTheory

EvaluateRule(Examples)

NewTr = Train

NewEx = Examples

Candidates = ;

if Significant(Rule,Examples)

Theory = Theory [Rule

NewTr = NewTr n Cover(Rule,Train)

NewEx = NewEx n Cover(Rule,Examples)

else

Candidates = Candidates [Cover(Rule,Examples)

for Example 2 Positive(Examples)

if Example 2j Cover (NewTheory,Examples)

Candidates = Candidates [Example

Examples = NewEx

Train = NewTr [RandomSample(Examples,MaxIncSize)

until Candidates = ;

Figure 2: A noise-tolerant version of windowing.

structure that is inherent in the data. This hypothesis is consistent with the

results of (Wirth & Catlett, 1988) and (Catlett, 1991), where the sensitivity of

windowing to noisy data sets has been shown empirically.

5 A Noise-Tolerant Version of Windowing

The windowing algorithm described in (F�urnkranz, 1997), which is only ap-

plicable to noise-free domains, is based on the observation that rule learning

algorithms will re-discover good rules again and again in subsequent iterations

of the windowing procedure. Although these rules are consistent and will not

add examples to the current window, they have to be re-discovered in subse-

quent iterations. If these rules could be detected early on, they could be saved

and the examples they cover could be removed from the window, thus gain-

ing computational e�ciency. The algorithm discussed in (F�urnkranz, 1997)

achieves this by separating rules that have been complete and consistent for

a larger number of examples so that subsequent iterations only have to learn

rules for the yet uncovered parts of the search space.

The I-Win algorithm shown in �gure 2 is based on the same idea. At

the beginning the algorithm proceeds just like Win-RIP: it selects a random

subset of the examples, learns a theory from these examples, and tests it on

the remaining examples. However, contrary to Win-RIP, it does not merely

add examples that have been incorrectly classi�ed to the window for the next

iteration, but it also removes all examples from this window that are covered

4

by good rules. To determine good rules, Win-RIP tests the individual rules

that have been learned from the current window on the complete data set and

computes some quality measure from this information (procedure Significant

in �gure 2).

In principle, this quality measure is a parameter of the windowing algo-

rithm. For example, one could use a measure as simple as \consistency with

the negative examples" in order to get a windowing algorithm that is suitable

for learning from noise-free data sets. However, in noisy domains, noise-tolerant

learning algorithms will typically produce rules that are not consistent with the

training data. Thus, more elaborate criteria must be used. We have exper-

imented with a variety of criteria known from the literature (like e.g. CN2's

likelihood ratio signi�cance test (Clark & Niblett, 1989)), but found that they

are insu�cient for our purposes. Eventually, we have settled to use the follow-

ing criterion: For each rule r learned from the current window we compute two

accuracy estimates, AccWin(r) which is determined using only examples from

the current window and AccTot(r) which is estimated on the entire training

set. The criterion we use for detecting good rules consists of two parts:

� The AccWin(r) estimate has to be signi�cantly above the default ac-

curacy of the domain. This is ensured by requiring that AccWin(r) �

SE(AccWin(r))> DA, where DA is the default accuracy, and SE(p) =

q

p(1�p)

n

is the standard error of classi�cation.

� The second criterion requires that AccWin(r) � �SE(AccWin(r)) �

AccTot(r) � AccWin(r) + �SE(AccWin(r)), i.e. that the estimate de-

rived from the complete training set is in about the same range as the

estimate derived from the learning sample. � � 0 is a user-settable pa-

rameter that can be used to adjust the width of this range.

The purpose of the �rst heuristic is to avoid rules with a bad classi�cation

performance (in particular this weeds out many rules that have been derived

from too few training examples), while the second criterion aims at making sure

that the accuracy estimates that have been derived on the current window (and

thus have been used in the heuristics of the learning algorithm) have not been

too optimistic compared to the true accuracy of the rule, which is approximated

by the accuracy measured on the complete training set.

The parameter � determines the degree to which the estimates AccWin(r)

andAccTot(r) have to correspond. A setting of � = 0:0 requires thatAccWin(r) =

AccTot(r) which in general will only be true for consistent rules or for rules that

have been learned from the complete training set. This is the recommended set-

ting in noise-free domains. In noisy domains, values of � > 0 have to be used, as

the rules returned from the learning algorithm will typically be inconsistent on

the training set. A typical setting in a noisy domain would be around � = 1:0,

but the parameter seems to be quite sensible. � = 1 will move all rules that

have survived the �rst criterion into the �nal rule set.

With a setting of � = 0, I-Win is very similar to the Win-DOS-95 algo-

rithm described in (F�urnkranz, 1997) with the di�erence that Win-DOS-95

only tests examples until it has collected MaxIncSize new examples to add to

5

the current window and that it has to test the good rules learned in previous

iterations in all subsequent iterations. I-Win, on the other hand, tests a rule

on the complete training set. If it �nds the rule to be signi�cant it will add

it to the �nal rule set and will never test it again. Consequently, all exam-

ples covered by such a rule will be removed from the complete training set. If

it �nds the rule to be insigni�cant, all examples that it covers and that are

not already contained in the current window, will be considered as candidates

that can be added to the window before the next iteration. Positive examples

that have not been covered by any of the rules will also be considered as such

candidates. From these candidate examples, MaxIncSize will be randomly

selected and added to the window before the next iteration. By sampling from

all examples covered by insigni�cant rules (not only negative examples as in

regular windowing), we hope to avoid part of the problem outlined in the last

section. However, we stick to adding uncovered positive examples only, as after

more and more rule have been discovered, the proportion of positive examples

in the remaining training set will considerably decrease, so that the chances to

pick one of them by random sampling will also decrease. Adding only positive

uncovered examples may lead to over-general rules, but these will be discov-

ered by the second part of our criterion and appropriate counter-examples will

eventually be added to the window.

The actual implementation of our algorithm makes use of several optimiza-

tions that minimize the amount of testing that has to be performed in the algo-

rithm. An important addition considers the case when the underlying learning

algorithms is unable to learn any rules from the current window. In that case,

the algorithm in �gure 2 will add MaxIncSize uncovered positive examples to

the current window. In our implementation of the algorithm we deal with these

cases by doubling the window size and re-initializing it with a new random sam-

ple of the new size. We think that this may lead to faster convergence in some

cases, but have not yet systematically tested this hypothesis. Furthermore, all

algorithms discussed in this paper attempt to remove semantically redundant

rules in a post-processing phase. Such rules do not cover any training examples

that are not covered by other rules. This post-processing phase is described in

more detail in (F�urnkranz, 1997).

6 Experimental Evaluation

In each of the experiments described in this section, we report the average

results of 10 di�erent subsets of the speci�ed training set size selected from

the entire set of preclassi�ed examples. All algorithms were run on identical

data sets, but some random variation resulted from di�erent internal random

splits of the training data by the I-RIP algorithm. For each experiment we

measured the accuracy of the learned theory on the entire example set and the

total run-time of the algorithm.

1

All experiments shown below were conducted

with a setting of InitSize= 100 and MaxIncSize= 50. These settings have been

1

Measured in CPU seconds of a microSPARC 110MHz running compiled Allegro Common

Lisp code under SUN Unix 4.1.3.

6

Mushroom: Test Accuracy

I-RIP

WIN-RIP

I-WIN (0.0)

I-WIN (0.5)

I-WIN (1.0)

% Correct

3Train Exs x 10
92.50

93.00

93.50

94.00

94.50

95.00

95.50

96.00

96.50

97.00

97.50

98.00

98.50

99.00

99.50

100.00

0.00 2.00 4.00 6.00 8.00

Mushroom: Train Time

I-RIP

WIN-RIP

I-WIN (0.0)

I-WIN (0.5)

I-WIN (1.0)

Seconds

3Train Exs x 10

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 2.00 4.00 6.00 8.00

Figure 3: Results in the Mushroom domain.

found to perform well on noise-free domains (F�urnkranz, 1997). We have not

yet made an attempt to evaluate their appropriateness for noisy domains.

First we have evaluated our algorithms on the 8124 example Mushroom

database. Although this database is known to be noise-free, it forms an in-

teresting test-bed for our algorithms, because it allows a rough comparison to

previous results. For example, in (Wirth & Catlett, 1988) windowing with the

decision tree learner ID3 could not achieve signi�cant run-time gains over pure

ID3, while the slightly modi�ed version of windowing used in C4.5 is able to

achieve a run-time improvement of only about 15% (p. 59 of (Quinlan, 1993)).

Figure 3 shows the accuracy and run-time results for I-RIP, Win-RIP, and

three versions of I-Win, each one using a di�erent setting of its � parameter.

In terms of run-time, both regular windowing, and our improved version are

quite e�ective in this domain, at least for higher (> 1000) training set sizes,

although it is quite obvious that the three versions of I-Win are the fastest.

In terms of accuracy, no signi�cant di�erences can be observed between I-RIP,

Win-RIP, and I-Win (0.0), although the latter is able to compensate some of

the weakness of I-RIP at low example set sizes that is due to its internal split

of the data (F�urnkranz & Widmer, 1994). I-Win with � = 0:5 and � = 1:0

has a signi�cantly worse performance, because these versions are often content

with slightly over-general rules, which is detrimental in this noise-free domain.

However, we have shown that our windowing algorithm is in fact able to

achieve signi�cant gains in run-time without losing accuracy. The curves shown

in �gure 3 are quite similar to those of (F�urnkranz, 1997), where we have

compared the results of a similar windowing algorithm to previous results on

windowing with decision tree learning algorithms, which were less impressive,

even when compared to regular windowing.

For testing the algorithms' noise-handling capabilities we have performed a

series of experiments in a propositional version of the well-known KRK classi-

7

KRK (5%): Test Accuracy

I-RIP

Win-RIP

I-WIN (0.0)

I-WIN (0.5)

I-WIN (1.0)

% Correct

3Train Exs x 1090.50

91.00

91.50

92.00

92.50

93.00

93.50

94.00

94.50

95.00

95.50

96.00

96.50

97.00

97.50

98.00

98.50

99.00

99.50

100.00

0.00 2.00 4.00 6.00 8.00 10.00

KRK (5%): Train Time

I-RIP

Win-RIP

I-WIN (0.0)

I-WIN (0.5)

I-WIN (1.0)

Seconds

3Train Exs x 10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 2.00 4.00 6.00 8.00 10.00

Figure 4: Results for 5% noise level in the KRK domain.

�cation task, which is commonly used as a benchmark for relational learning

algorithms. The propositional version of this domain consists of 18 binary at-

tributes that encode the validity or invalidity of relations like adjacent, <, and

= between the coordinates of three pieces on a chess board. The target concept

is to learn rules for recognizing illegal white-to-move chess positions with only

the white king, the white rook, and the black king on the board. We have

generated 10,000 noise-free examples in this domain, which were always used

for testing the accuracies of the learned theories. In the training sets, which

were generated by subsampling from the 10,000 example set, arti�cial noise was

generated by replacing the classi�cation of n% of the training examples with

a randomly selected classi�cation (chosen with a fair coin). On noise-free data

sets the results were quite similar to those in the Mushroom domain, and are

not shown here.

What happens when a noise-free windowing procedure is used in a noisy

domains is shown in �gure 4. It shows the results in the KRK domain with a

very moderate noise level (5%). Regular windowing is almost twice as expensive

as I-RIP, while our windowing procedure used in the noise-free setting, is even

more expensive (it needs more than 300 secs. for a 10,000 example training

set, which is six times as much as I-RIP). The noise-tolerant versions of our

algorithms outperform the other algorithms in terms of run-time. In terms

of accuracy, a setting of � = 1:0 seems to heavily over-generalize. � = 0:5

performs reasonably well, although it is still a little behind in accuracy. The

size of good values for � seems to have some correlation with the noise level

in the data. For higher levels of noise, higher values of � will produce good

results, as can be seen from �gure 5, which shows the results for I-RIP and

I-Win (� = 1:0) with 20% noise in the data.

Figure 6 shows the results for noise-levels varying from 0% to 100% (totally

random data). We show the curves for I-RIP and I-Win (� = 1:0) for three

8

KRK (20%): Test Accuracy

I-RIP

I-WIN (1.0)

% Correct

3Train Exs x 10

86.00

87.00

88.00

89.00

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

0.00 2.00 4.00 6.00 8.00 10.00

KRK (20%): Train Time

I-RIP

I-WIN (1.0)

Seconds

3Train Exs x 10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

0.00 2.00 4.00 6.00 8.00 10.00

Figure 5: Results for 20% noise in the KRK domain.

di�erent training set sizes (1000, 5000, 10000 examples). In terms of run-time,

we see that the more random the data are, the less likely it is that the rules

learned by I-RIP from the current window will bear any signi�cance. Thus

I-Win has to successively increase its window size without being able to re-

move any examples that are covered by rules learned in previous iterations.

Consequently, it has much larger run-times than I-RIP, which learns only once

from the complete data set.

2

However, for reasonable noise levels, which can

be expected to occur in most real-world applications (say � 30%), I-Win sig-

ni�cantly outperforms I-RIP at larger training set sizes (for 1000 examples no

signi�cant di�erences can be observed at the lower noise levels). The results in

terms of run-time are very inconclusive with both algorithms having their ups

and downs.

Currently, the implementation of our algorithms is limited to purely sym-

bolic domains. The algorithms are not able to handle continuous attributes,

missing values, or multiple classes, although nothing in the algorithms prevents

the use of standard techniques for dealing with these problems, like the use of

thresholds, turning multi-class tasks into a sequence of binary tasks, etc. Unfor-

tunately, we were not able to detect a natural domain of a reasonable size in the

UCI data repository which meets the constraints of our implementation. So we

decided to try our algorithms on a simpli�ed version of Quinlan's 9172 example

thyroid diseases database. For this purpose we discretized the domain's 7 con-

tinuous variables in a fairly arbitrary fashion. For example, we have mapped

the age of the patient into 10 years intervals, as e.g. [1: : :10], [11: : :20], etc.

The six other continuous attributes contain numerous missing values. For each

of these attributes an additional binary attribute indicates whether the feature

is present or not. We collapsed these pairs of attributes into single attributes,

2

The results for I-Win with noise-levels 75% and 100%, which have been omitted from the

graph, have been 407 and 317 secs. respectively.

9

KRK: Test Accuracy vs. Varying Noise

I-RIP (1,000 exs)

I-WIN (1,000 exs)

I-RIP (5,000 exs)

I-WIN (5,000 exs)

I-RIP (10,000 exs)

I-WIN (10,000 exs)

% Correct

Noise Level40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00

KRK: Training Time vs. Varying Noise

I-RIP (1,000 exs)

I-WIN (1,000 exs)

I-RIP (5,000 exs)

I-WIN (5,000 exs)

I-RIP (10,000 exs)

I-WIN (10,000 exs)

Seconds

Noise Level

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 6: Results for varying noise levels and training set sizes in the KRK

domain.

using a designated value as an indication that this attribute has not been mea-

sured, and 5 to 10 additional values that code the discretized measurements.

We have also turned the problem into a binary problem, where the task is

to discriminate the 2401 instances with a diagnosed condition from the 6771

instances with no such condition. The default accuracy for this problem is

73.82%.

Figure 7 shows the results in this domain. I-Win with � = 1:0 signi�cantly

outperforms I-RIP at both measures, run-time and accuracy. Only when the

complete data set is used for both training and testing, I-RIP maintains an

accuracy advantage. This, however, only raises the suspicion that I-RIP over�ts

the data in this domain, while the signi�cance test used in I-Win is able to

correct this to some extent by evaluating the predictive performance of rules

learned at low window sizes on the complete training set.

7 Further Research

In its current form the implemented algorithms constitute only a �rst test-bed

for an evaluation of the ideas presented in this paper. Several questions remain

unanswered by this work and are subject to further research. Among them are

� I-Win contains several parameters. In all experiments in this paper we

have set the initial window size to 100, and the maximum window incre-

ment to 50. We have found these parameters to perform well on noise-free

domains (F�urnkranz, 1997), but during the experiments reported in this

paper, we have encountered some evidence that larger values of these

parameters would be more suitable for noisy domains.

10

Thyroid: Test Accuracy

I-RIP

I-WIN (1.0)

% Correct

3Train Exs x 10

79.00

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

90.00

0.00 2.00 4.00 6.00 8.00

Thyroid: Train Time

I-RIP

I-WIN (1.0)

Seconds

3Train Exs x 10

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

0.00 2.00 4.00 6.00 8.00

Figure 7: Results in the simpli�ed Thyroid domain.

� Another problem is the � parameter used in the signi�cance test we have

employed. We have seen that in noise-free domains, it can be crucial that

� = 0:0, while in noisy domains higher values � > 0:0 must be used. We

have also seen that the setting of this parameter is very sensible: Too

low a setting may lead to exploding costs, while too high a setting may

lead to over-generalization. E�cient methods for automating this choice

would be highly desirable.

� How will the inclusion of an algorithm for handling numeric data with

thresholding a�ect the performance of the algorithm? We expect that the

fact that fewer thresholds have to be considered at lower example set sizes

will have a positive e�ect on the run-time performance of windowing, but

may have a negative e�ect on the accuracy of the learned rules.

� The algorithms in this paper assume that the domains contain a rea-

sonable level of redundancy, i.e. that at least some of the rules of good

theory can be learned from a subset of the given training examples. In

(F�urnkranz, 1997) we present an example for a noise-free dataset, where

this assumption does not hold, and consequently windowing is not e�ec-

tive. Techniques for estimating the redundancy of a domain would be

another valuable point for further research.

� In (F�urnkranz, 1997) we have used an implementation-dependent mea-

sure for evaluating the complexity of the learning algorithms, namely the

number of examples processed by the basic learning algorithm. This mea-

sure was highly correlated to run-time. However, this measure proved to

be inadequate for the algorithms discussed in this paper. One of the rea-

sons for this is our handling of iterations, where I-RIP returns the empty

theory (end of section 5). Many runs end with a sequence of window-size

11

doubling events, which all return empty theories. These sequences highly

a�ect the number-of-processed-examples measure, but only have a minor

impact on run-time.

8 Summary

We have presented a noise-tolerant version of windowing that is based on a

separate-and-conquer strategy. Good rules that have been found at smaller

sizes of the training window will be kept in the �nal theory, and all examples

they cover will be removed from the training set, thus reducing the size of the

window in the next iteration. Examples are added to the window by sam-

pling from examples that are covered by insigni�cant rules or positive examples

that are not covered by any rule of the previous iteration. Although we have

used a �xed noise-tolerant rule learning algorithm throughout the paper, the

presented windowing technique could use any noise-tolerant rule learner as its

basic algorithm.

Acknowledgements:

This research is sponsored by the Austrian Fonds zur F�orderung der Wis-

senschaftlichen Forschung (FWF) under grant number P10489-MAT. Financial

support for the Austrian Research Institute for Arti�cial Intelligence is provided

by the Austrian Federal Ministry of Science, Transport, and the Arts. I would

like to thank Ray Mooney for making his Common Lisp ML library publicly

available, which has been used for the implementation of the programs, Ger-

hard Widmer, Johann Petrak, and Arthur Flexer for interesting discussions on

several aspects of the paper, and the maintainers and contributers of the UCI

machine learning repository.

References

Catlett, J. (1991). Megainduction: A test
ight. In Birnbaum, L., & Collins,

G. (Eds.), Proceedings of the 8th International Workshop on Machine

Learning (ML-91), pp. 596{599 Evanston, IL. Morgan Kaufmann.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learn-

ing, 3 (4), 261{283.

Cohen, W. W. (1995). Fast e�ective rule induction. In Prieditis, A., & Russell,

S. (Eds.), Proceedings of the 12th International Conference on Machine

Learning (ML-95), pp. 115{123 Lake Tahoe, CA. Morgan Kaufmann.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to

knowledge discovery in databases. AI Magazine, 17 (3), 37{54.

F�urnkranz, J. (1996). Separate-and-conquer rule learning. Tech. rep. OEFAI-

TR-96-25, Austrian Research Institute for Arti�cial Intelligence.

12

F�urnkranz, J. (1997). More e�cient windowing. Tech. rep. OEFAI-TR-97-01,

Austrian Research Institute for Arti�cial Intelligence.

F�urnkranz, J., & Widmer, G. (1994). Incremental Reduced Error Pruning.

In Cohen, W., & Hirsh, H. (Eds.), Proceedings of the 11th International

Conference on Machine Learning, pp. 70{77 New Brunswick, NJ. Morgan

Kaufmann.

Hearst, M. A., & Hirsh, H. (Eds.). (1996). Proceedings of the AAAI Spring

Symposium on Machine Learning in Information Access. AAAI Press.

Technical Report SS-96-05.

Lewis, D. D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for

supervised learning. In Proceedings of the 11th International Conference

on Machine Learning (ML-94). Morgan Kaufmann.

Quinlan, J. R. (1983). Learning e�cient classi�cation procedures and their

application to chess end games. In Michalski, R. S., Carbonell, J. G.,

& Mitchell, T. M. (Eds.), Machine Learning. An Arti�cial Intelligence

Approach, pp. 463{482. Tioga, Palo Alto, CA.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of

Man-Machine Studies, 27, 221{234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo, CA.

Wirth, J., & Catlett, J. (1988). Experiments on the costs and bene�ts of

windowing in ID3. In Laird, J. (Ed.), Proceedings of the 5th International

Conference on Machine Learning (ML-88), pp. 87{99 Ann Arbor, MI.

Morgan Kaufmann.

Yang, Y. (1996). Sampling strategies and learning e�ciency in text categoriza-

tion. In Hearst, M., & Hirsh, H. (Eds.), Proceedings of the AAAI Spring

Symposium on Machine Learning in Information Access, pp. 88{95. AAAI

Press. Technical Report SS-96-05.

13

