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Abstract

Being able to deal with time-warped sequences is crucial for a large

number of tasks autonomous agents can be faced with in real-world en-

vironments, where robustness concerning natural temporal variability is

required, and similar sequences of events should automatically be treated

in a similar way. Such tasks can easily be dealt with by natural animals,

but equipping an animat with this capability is rather di�cult. The pre-

sented experiments show how this problem can be solved with a neural

network by ensuring slow state changes. An animat equipped with such a

network not only adapts to the environment by learning from a number of

examples, but also generalizes to yet unseen time-warped sequences.

1 Introduction

For numerous tasks, autonomous agents have to be able to deal with time-warped

sequences of events. Sequential patterns of variable length are common in real-

world environments, and the number of available training examples are usually

relatively small. Animats should not only be able to adapt to the given envi-

ronment, but also automatically treat similar sequences of events in a similar

way. They should be robust concerning natural temporal variability. Therefore,

models capable of generalizing to time-warped patterns are needed. The neural

network presented in this paper is shown to ful�l this requirement. Since it uses
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the input patterns for state formation, it is called the input state network. This

model of temporal processing solves the given task by employing slowly changing

states.

The task is described in Section 2. A brief overview of sequence processing

with neural networks is given in Section 3. The two network models used in the

experiments are presented in Section 4. In Section 5, the setup of the experiments

is described, and the results can be found in Section 6.

2 The Task of the Agent

The Agent in its Environment: The task of the autonomous agent is to

turn to the appropriate direction after having perceived a certain sequence of

events. This can, for instance, be an animat which is situated in a maze and

has to learn that the target (i.e. some reward like food) is to the left or right,

depending on the characteristics of the aisle which it has passed. For instance,

after having perceived a sequence like AAPD or AAPPD, the target is to the

right, while it is to the left after sequences like XXPD or XXPPD. A and X

represent arbitrary sources of sensory information, P denotes an aisle without

any speci�c information, and D a decision point at an intersection. The input P

models the pause between the input information, which is relevant to the decision,

and the point in time when the decision is actually required.

Since passing some source (like A or X) takes some time, it is perceived several

times in a row. The idea of repeating the sensory input is to simulate a real-world

environment where a single appearance of an input is treated as noise. An input

is not worth being noticed by the model unless it is present for some time and can

be sampled several times in a row. The exact number of samples may vary, which

may result in sequences like AAAPPPD or AAAAAPPD. These sequences are

similar in that the overall order of sequence elements A,P, and D is maintained.

Therefore, a new type of notation is introduced, where [X*] represents a sequence

of an arbitrary number of sequence elements X. The sequences AAAPPPD and

AAAAAPPD can thus be written as:

[A*] [P*] D.

The target of the autonomous agent is to the right after one of the sequences

[A*][P*]D, [B*][P*]D, and [C*][P*]D, while it is to the left after one of the se-

quences [X*][P*]D, [Y*][P*]D, and [Z*][P*]D. The agent at such an intersection

where a decision is required is depicted in Fig. 1.

The agent can perceive A, B, C, X, Y, Z, P, D, L, or R. It is trained to

predict the location of the goal at the correct point in time. The goal is hidden

so that it cannot be perceived before passing the intersection. The outputs (L or

R) denote turns to the left and right respectively. The pause P is used to tune

the time span between information input and required output. It is needed for

designing an environment where the distance between the relevant information
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Figure 1: The agent in its environment

and the required reaction is variable. The input pattern D denotes a decision

point where the agent has to turn left or right.

A typical input sequence consisting of three subsequences looks as follows:

AAAAPPPPPPPDLLLLLLLL

ZZZZZPPPPDRR

CCCCCCCCCPPDLLL .

In the concise format, this can be written as:

[A*][P*]D[L*][Z*][P*]D[R*][C*][P*]D[L*] .

This is the sequence of prototypical elements. The actual number of repeated

samples varies dependent on the path followed by the agent and on the distance

between the agent and the object. This variation is simulated by randomly

determining how long each input is perceived.

The requirements of the task: The given environment requires a model

which can memorize information for several time steps. The relevant criterion is

the length of the time period between the information input and the point in

time when this information is needed to produce the correct output. This time

period can also be regarded as the time lag between an event and the desired

response of the system. Long time lags, as they can be present in the given task,

lead to long input-output dependencies.

The given task provides another challenge. It requires not only dealing with

long dependencies, but also with dependencies of variable length. Since

the sequence elements are samples taken at discrete intervals of time from a
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continuous environment, the sampling rate has no correspondence to any feature

of the real-world environment. In such types of environment, subsequences which

are slightly temporally displaced should be recognized as being similar and treated

similarly unless this di�erence is actually relevant to the task, which it usually is

not. In other words, time-warped input patterns should still be recognized.

Designing models which are robust in respect to natural temporal variability is

also the aim of the work presented in [Port and Anderson, 1989].

To summarize, the characteristics of realistic event sequences require a model

capable of

� coping with dependencies of several time steps, and

� generalizing to time-warped patterns.

3 Neural Network Solutions

A sequence consists of sequence elements which are ordered in time. Usually,

there is a single sequence element x per time step t:

: : : , x(t�1), x(t), x(t+1), : : :

Selecting an appropriate neural network is already di�cult for static tasks,

but when temporal tasks are to be handled, model selection becomes much more

di�cult. A task which involves only short dependencies can be handled more

easily than one which involves long ones. Moreover, sequences should be treated

similarly when they are stretched or squeezed with respect to the temporal di-

mension. Handling such time-warped sequences is not trivial, because they are

not automatically recognized as being similar.

Even though most neural network research has focused on processing single

patterns, a large number of approaches to handling sequences have been devel-

oped and tested. Sequence processing requires a method for saving information

for subsequent time steps. Detailed overviews of neural networks for handling

temporal aspects are given, for instance, in [Ulbricht et al., 1992], [Mozer, 1993],

[Rohwer, 1994], and [Chappelier and Grumbach, 1994].

Here the following four methods are distinguished and briey addressed:

1. Layer delay without feedback

2. Layer delay with feedback

3. Unit delay without feedback

4. Unit delay with feedback

These methods can be employed in di�erent layers of the neural network.

They can also be associated with di�erent weights and delays of di�erent length.
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Since they can be combined in various ways, the number of resulting combinations

and thus actual network models, which can be used for handling sequences, are

quite large.

The presented categorization scheme for sequence-handling methods is, in

some parts, comparable to other taxonomies found in literature. The two cate-

gorization schemes provided by [Catfolis, 1994] and [Chappelier and Grumbach,

1994] refer mainly to the methods for sequence handling, whereas the scheme

presented in [Mozer, 1993] covers also the trainability of network components.

1. Layer Delay without Feedback

The most straightforward approach is to use an input window which

holds a restricted small number of past sequence elements. Then this part

of the time series is analyzed before the window is shifted further in time

by one or more elements. The same result can be achieved by delaying the

contents of the input layer several times in a row. A network that contains

no connections with time delays which feed information back so that loops

emerge is called a non-recurrent network.

The complete mapping of a feedforward network from the input i(t) to the

output o

1

(t) can be written as:

o

1

(t) = F

1

(i(t)); (1)

where F

1

is the mapping of a neural network with a hidden layer, which is

also called a \multi-layer perceptron."

The output o

2

(t) of a network with an input window is

o

2

(t) = F

2

(x(t�1); x(t�2); : : : ; x(t�p)) ; (2)

where p is the window size, and x(t�1); x(t�2); : : : ; x(t�p) are the elements

of the input sequence. This is comparable to auto-regressive models (AR-

models) of order p, as they are treated in [Box and Jenkins, 1970]. Apart

from the non-linear mapping, the two models are identical.

2. Layer Delay with Feedback

Layers can be delayed and fed back to previous layers in the updating order.

The resulting cycles in such recurrent networks allow the output of a

unit to return to the same unit at a later point in time. Hidden and output

layer feedback are the most common forms of layer delay with feedback.

If recurrent networks are updated like feedforward networks with a single

update cycle per time step, they keep the general characteristics of feed-

forward networks. Models of this kind are also called \simple recurrent

networks," \recurrent feedforward networks," or \partially recurrent net-

works" [Hertz et al., 1991].
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The context provided by the feedback loop can also be regarded as the state

the network is in. Therefore, the layer keeping the delayed information is

also referred to as the \state layer." This idea of state is comparable to that

in state automata. There, the new state is solely dependent on the previous

state and the last input. The state subsumes the input history. This is

related to the Markov property, which ensures that all the information

which is relevant to the future is contained in the present state.

In a simple recurrent network with hidden or output layer feedback, the

network output is a function of the input i(t) and the state s

1

(t) of the

network:

o

3

(t) = F

3

(i(t); s

1

(t)) : (3)

Typically, the input consists of a single sequence element:

o

3

(t) = F

3

(x(t� 1); s

1

(t)) : (4)

The next state s

1

(t) is dependent on the input i(t�1) and on the most

recent state s

1

(t�1):

s

1

(t) = g

1

(i(t�1); s

1

(t�1)) : (5)

Here g

1

stands for some unknown function. When replacing s

1

(t) in Equa-

tion 3 several times, it can be seen that the output o

3

(t) is dependent on

several (n+1) inputs i(t), i(t�1), : : : , i(t�n):

o

3

(t) = g

2

(i(t); i(t�1); : : : ; i(t�n); s

1

(t�n)) ; (6)

where g

2

is another function which is not further speci�ed. Equations 3

and 5 represent the two mappings which are part of this type of network:

(a) the feedforward mapping of all the available information (i(t) and

s

1

(t)) to the output o

3

(t), and

(b) the next-state function modeling the mapping from the past state s

1

(t�

1) and additional information to the current state s

1

(t).

In addition to the input, two di�erent entities inuencing the output can

be distinguished:

(a) the weights of the feedforward connections, and

(b) the activations of the state units.

These play di�erent roles. Typically, the unit activations of the state layer

change with each time step, while the weights are adjusted at a much lower

pace. The weights represent the long-term memory holding all the acquired

knowledge. The state is needed for processing the preceding sequence ele-

ments. It provides the context for the new input.
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3. Unit Delay without Feedback

The units themselves can also have temporal properties. A unit without

feedback can be created by delaying information within the unit for a limited

number of time steps. However, this approach is not very common.

4. Unit Delay with Feedback

If the activation of a unit is inuenced by its own preceding activation,

this can be modeled by a feedback loop, which can be referred to as \self-

recurrent feedback loop." In contrast to layer feedback, one can speak of

\self-recurrent unit feedback." The self-recurrent feedback loops carry

weights like the other connections in the network. A unit with a feedback

loop is depicted in Fig. 2. It receives its own preceding output in addition

to the input coming from other units.

∆

Figure 2: Unit delay with feedback

The activation of a unit z

k

(t) with feedback (the k-th unit in layer z) may

be determined by adding its own preceding activation to the value coming

in from another layer (for instance, from the input layer):

z

k

(t) = �

0

@

J

X

j=1

i

j

(t) w

jk

1

A

+ z

k

(t�1): (7)

where the w

jk

are the weights linking units j and k.

Model Selection: All discussed networks can be used for processing sequences.

They take into account the order of the sequence elements, and|if designed

appropriately|can deal with long input-output dependencies. However, not all

are well suited to coping with dependencies of variable length. They do not auto-

matically treat patterns which are similar but warped in time similarly. Sequence

elements arriving earlier or later than usual distract these systems. Such distrac-

tions might be due to missing or superuous sequence elements, or simply due to

changes in speed. This problem is called the temporal invariance problem.
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Since non-recurrent networks parallelize temporal information, they do not

automatically generalize to time-warped patterns. Recurrent networks are more

exible concerning the temporal dimension. However, most networks|including

simple recurrent networks with layer feedback|are rigid in the sense that the

lags between the sequence elements have to be of exactly the same length to be

treated similarly. One of the reasons is that the state changes completely with

each time step. Since the values returned by the feedback loops di�er from the

original values, consecutive states are not similar. In other words, states close in

time have little in common and thus they cannot be treated similarly.

One solution to the temporal invariance problem is to represent time explicitly.

For instance, in [Mannes, 1992], a model based on the ART network processes

sequences by treating the order of sequence elements and timing information

separately. However, if time should be handled implicitly, another solution has

to be found.

Slowly Changing States: The solution to the temporal invariance problem

proposed here is to use network states which move slowly through state space.

The problem with models which do not produce such sluggish states is that

the network's walk through state space is not automatically smooth. Subsequent

states may lie far apart. This is due to the mapping from one state to the

next which does not assure that subsequent states are similar. Thus, subsequent

states are related, but not similar to each other. This causes the problem that

input, which occurs a single time step earlier or later than usual, leads to a

completely di�erent output. This is usually not wanted when the input is sampled

at time lags which are independent of the actual sequence. This problem can be

solved by forcing the next-state function, which models the relationship between

consecutive states, to perform a nearly identical mapping. This aspect is also

mentioned in [Jordan, 1986]:

State vectors at nearby points in time must be similar.

The resulting \continuity property" is necessary in order to obtain slowly

varying states. This requirement is usually not taken into account. The re-

quirement of state continuity ensures a slowly changing state. On the other

hand, the state must not remain stable, because two consecutive states have to

di�er with respect to the most recent sequence element. Therefore, consecu-

tive states in a network are forced to be similar, but distinguishable. This way,

warped inputs can be handled similarly or di�erently, according to what is re-

quired for the given task. Such sluggish states can be obtained by using a nearly

auto-associative next-state function. This can be achieved, for instance, by

inserting self-recurrent feedback links from state units to themselves.

Memories modeled with self-recurrent feedback loops represent just one po-

tential approach to obtaining similar subsequent states. Other nearly auto-
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associative next-state functions may also be applicable. The important point

is that the next-state function has to be auto-associative.

The strength of employing sluggish states is that such a model automatically

generalizes to time-warped patterns. It is also well suited to handling noisy

input, because its state is quite robust. In other words, the state is not quickly

distracted by single outliers. A problem, though, which cannot be solved by such

sluggish units, is that recent events have more inuence on the state than events

in the distant past. The memory decays at a slower rate than when there are

no self-recurrent feedback loops, but it still decays. Arbitrary time lags could

be bridged if there were a way to obtain temporary variable bindings. This area

might be another chance for neural network research to learn from biological

models.

Self-recurrent Feedback: Due to additional self-recurrent feedback loops, the

state vector activations change more slowly. Thus, time-warped and noisy input

is handled automatically. Such a network, with a state wandering slowly through

the state space, has the intrinsic capability of handling temporal dependencies in

spite of time-shifted and otherwise disrupted input. In the taxonomy presented

in [Mozer, 1993], such memory layers with self-recurrent feedback loops are re-

ferred to as \exponential trace memories" because they decay exponentially with

time. The resulting memory contents represent an exponentially weighted aver-

age of the input sequence. The speed of decay is dependent on the weights of the

self-recurrent feedback loops.

In contrast to pure copies of layers, such memories with self-recurrent feed-

back loops are of low resolution. Global aspects can be detected more easily and

dependencies spanning long time periods can be recognized. The resulting repre-

sentation is a reduced description [Mozer, 1992] of the sequence. This type of

smoothing is also comparable to low-pass �ltering and sampling at a lower rate.

The requirement of state continuity is met, for instance, in the network de-

scribed in [Jordan, 1986]. There, an exponentially weighted average of past net-

work outputs is produced. This way, all arbitrarily distant past outputs have

some inuence on the state. However, the strength of this inuence decreases

quickly with time. The continuity of the state is achieved by feeding back the

activation of each state unit to itself. The previous output unit activations are

simply added to these state activations with weights of 1:

s

2

(t) = �

1

s

2

(t�1) + o

4

(t�1); (8)

where o

4

(t�1) is the result of mapping the input to the output, the output of the

network at time t�1, and �

1

is a real-valued constant (0 < �

1

< 1) modeling the

weight, which modi�es the feedback of the state units to themselves. This value

can be tuned to make the state more or less exible. As a result, adjacent states

are more or less similar. When setting the �rst state equal to the initial network
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output (s

2

(1) = o

4

(0)), the state can also be described by the following formula:

s

2

(t) =

t

X

r=1

�

r�1

1

o

4

(t�r): (9)

This shows that the current state is a function of all past network outputs. The

similarity of adjacent states is the result of averaging past states. It is di�cult

to determine the appropriate value for �

1

, though. Therefore, [Jordan, 1986]

proposes to let the system learn the appropriate \next-state function."

Input State: The novel neural network presented in Section 4 employs self-

recurrent feedback for creating the state of the network. This way, the state

is directly inuenced by the original inputs. The network described in [Jordan,

1986] uses the network outputs to produce the state, but here the inputs are

forwarded to the state layer. Another di�erence is that the incoming values (in

this case i(t�1)) are weighted by 1� �

2

, as shown in the following equation:

s

3

(t) = �

2

s

3

(t�1) + (1��

2

) i(t�1): (10)

This ensures that the sum never exceeds 1 and permits the weights to be inter-

preted as the degree of inuence. They can thus be turned into statements in

percent.

4 Tested Neural Network Models

As a result of the discussion in the preceding section, two di�erent network models

were selected for being tested in this study:

1. a simple recurrent network with hidden layer feedback, and

2. the input state network.

1. The Simple Recurrent Network with Hidden Layer Feedback

A simple recurrent network with hidden layer feedback, like the one pre-

sented in [Elman, 1990], is depicted in Fig. 3. While the dashed arrows

denote 1:1-copies of layers, the full arrows represent m:n-connections, where

all m units are linked with all n units in the other layer.

The output of such a network is dependent on the input and the preceding

hidden layer activations:

o

5

(t) = F

4

(i(t);h

1

(t�1)) : (11)

This equation does not show an important property of h

1

(t�1), namely

that it typically represents past inputs in a format which is relevant with
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Input Layer
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State Layer
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L4

Figure 3: Recurrent network with hidden layer feedback

respect to the task of the model. Therefore, hidden layer feedback often

leads to good results.

The activation of a unit s

4

j

is

s

4

j

= (1� �

3

)h

1

j

(t) + �

3

s

4

j

(t� 1); (12)

where h

1

j

is a unit j in the hidden layer h

1

(t). Written in the recurrent

form, the activation of a unit k in this layer is:

h

1

k

(t) = �(

J

X

j=1

i

j

(t) v

jk

+

L

X

l=1

h

1

l

(t�1) u

lk

); (13)

where the weight v

jk

leads from the unit j in the input layer to the unit k

in the hidden layer, and the weight u

lk

is the weight of the self-recurrent

feedback loop linking unit l and unit k in the hidden layer.

2. The Input State Network

The input state network resembles a typical multi-layer perceptron trained

by backpropagation. It also has two layers of weights connecting three layers

of units. However, the original input is only used to form the state. Due

to the self-recurrent feedback loops, subsequent states tend to be similar.

The contents of the state layer deal as input to the conventional multi-layer

perceptron. Since the preceding state and the new input are combined to

form the state of the network, the �rst layer of the multi-layer perceptron is

called the \state layer," and the network is called the \input state network."

The network is depicted in Fig. 4. It is close to the network models described

in [Mozer and Soukup, 1991] and [Mozer, 1994], but it di�ers in several

respects. One important di�erence is that, in these networks, the weights

of the connections leading to the state layer are trainable. It is also di�erent
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from the network presented in [Mozer, 1992], where the units in the hidden

layer are equipped with temporal properties.

Hidden Layer

Output Layer

L3

L4

State Layer
L2

Input Layer
L1

Figure 4: The input state network

Like in a network with hidden layer feedback, the new state s

5

(t) is a

function of the network input i(t) and the previous state s

5

(t�1):

s

5

(t) = g

3

(i(t); s

5

(t�1)) ; (14)

where g

3

is some function which is not further speci�ed at this point. The

output o

6

(t) is simply a function of the state:

o

6

(t) = F

5

(s

5

(t)) ; (15)

where F

5

is the mapping produced by a multi-layer perceptron. Recent

inputs are implicitly included, because they contribute to s

5

(t):

o

6

(t) = F

5

(g

3

(i(t); s

5

(t�1))) : (16)

The activation of a unit in the state layer s

5

j

(t) is determined as follows:

s

5

j

(t) = (1��

4

j

) i

j

(t) + �

4

j

s

5

j

(t�1); (17)

where the i

j

(t) are the unit activations in the input layer, and the �

4

j

are

the weights of the self-recurrent feedback loops of the state units s

5

j

(t).
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State Formation: In the input state network, each single unit in the

state layer is given a di�erent exibility. The weights of the self-recurrent

feedback loops �

4

j

range from zero to close to one, with fewer low and more

high weights. Such a distribution is obtained by using the following formula

for determining the weight �

4

j

of the feedback loop of the j-th unit:

�

4

j

=

(

0 if j = 1

1�

q

j�1

J

otherwise,

(18)

where J is the total number of units in the state layer, and j is the number

of the unit in the state layer starting with 1. The connections from the

input to the state layer are weighted by (1��

4

j

), so that the resulting

activations range again from 0 to 1. This is displayed in Fig. 5 with J =

20. The result is a collection of state units of di�erent exibility, which

form a set of short-term memories of di�erent length. This collection of

di�erent memories is comparable to that in multi-recurrent networks, which

are described in [Ulbricht, 1994]. Due to the exible unit without any

self-recurrent feedback loop (i.e. the �rst one with a feedback loop of zero

weight), current input is quickly recognized. This is important, for instance,

for input D, which demands a quick reaction.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
Unit Number

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Weight Distribution
of the self-recurrent feedback loops

Figure 5: Weight distribution in the state layer

Preprocessing: Since each unit s

j

(t) in the state layer has di�erent tem-

poral characteristics due to the di�erent weights �

4

j

of the self-recurrent

feedback loops, it is not reasonable to encode the input using single ac-

tive units as, for instance, the vector (1000000000) for input A. This way,
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di�erent sequence elements would be weighted by separate weights. In or-

der to subject di�erent inputs to various types of state units with di�erent

weights �

4

j

, a distributed input representation is used. It is obtained by

mapping the vectors with N single active units a

n

(t) via a set of weights b

nm

and a sigmoid function to the M units c

m

(t):

c

m

(t) = �

N

X

n=1

a

n

(t) b

nm

; (19)

where the weights b

nm

are taken from a randomly selected set of weights.

The layers are not fully connected, but only 80% of the connections are

actually used. The sigmoid function

�(x) =

1

1 + e

(�d�x)

; (20)

with a d of 20 is used to obtain the input distribution. Due to the sigmoid

function, the activations c

m

(t) lie again in the range [0,1].

The employed technique of preprocessing the input provides a method for

obtaining a distributed representation. There is evidence that in natural

systems, information is also represented in a distributed format. As can,

for instance, be shown in experiments with rats, the hippocampus seems to

use an \ensemble code" for location information [Wilson and McNaughton,

1994].

Properties: In the input state network, the self-recurrent feedback loops

are used to ful�l the continuity requirement described in Section 3. The

strength of this network model is that the actual input is delayed and

combined with the new input at the next time step. Thus the original

input information can be memorized. For the task described here, this

solution is appropriate, because there is more information in the original

input than in the hidden or output layer activations. This is due to the fact

that preceding outputs are not relevant. For numerous other applications,

though, self-recurrent feedback alone is too weak. In some cases, additional

hidden and output layer feedback may be appropriate, or other techniques

like layer delay or layer feedback may be required. Which type of delay is

appropriate is dependent on the given task, but keeping some of the original

input information is very likely to be useful.

5 Experiment Setup

The two networks presented in the preceding section are used for the experiments.

The input state network has 20 input units, 5 hidden units, and 2 output units,
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plus bias units in the input layer and the hidden layer. The simple recurrent

network has the same number of units, plus 5 state units for the past hidden unit

activations.

Training: The networks are trained to perform the autonomous agent task

described in Section 2. While the mapping functions (Equations 11 and 15) are

trained by error-backpropagation, the next-state functions (Equations 12 and

14) are �xed. In order to evaluate the results, the mean square error (MSE) is

determined:

MSE =

1

N

N

X

n=1

(y

a

(n)� y

d

(n))

2

; (21)

where y

a

(n) is the n-th network output, and y

d

(n) the n-th target output.

The subsequences used for training the agent to select the correct action at

the intersection are selected in random order. For testing, a �xed set of 44 sub-

sequences is used. During training, the agent slowly adapts to its environment.

The weights of the randomly initialized neural network are adjusted based on the

presented sequences of sensory input. This adjustment belongs to the type which

is denoted \adaptation by learning" by [McFarland, 1991].

Testing the Generalization Capability: Since the generalization over the

temporal dimension is to be investigated, the length of the pause between the

relevant input and the required decision is set to a �xed value during training

by putting a �xed number of inputs P in a row. For the experiments, the pause

length was set to three time steps. In the end, the network generalizes over

the temporal dimension even though the time span has not been varied during

training.

In order to solve this task, the networks have to use information which was

obtained several time steps back in time. Such a task can easily be handled

with an input window or with time delays of appropriate length, if the length of

the time lags does not vary. However, they cannot generalize over the temporal

dimension, as required for solving the given task. If the input arrives a little

earlier or later|for instance, after 2 or 4 time steps|these networks would not

automatically treat the input similarly.

6 Results

Network with Hidden Layer Feedback: The tested networks with hidden

layer feedback did not learn to solve the task. The results obtained with one of

them are displayed in Figures 6 and 7. The network produced a similar output

at all decision points. The activation of one output unit was close to one, and

that of the other close to zero. For all tests with varying pause length, the MSE

is similar, because 50% of the decisions were correct, and 50% were wrong.
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Several variants of networks with hidden layer feedback|including networks

with self-recurrent feedback loops in the state layer which holds the preceding

hidden layer activations|were trained on the given task, but the result was

the same. However, this does not imply that the underlying network model is

inappropriate, the failure may be due to the weakness of the training procedure.

Input State Network: The experiment with the input state network was re-

peated several times. The variance was rather small. A typical result is visualized

in Fig. 8. The mean square error is low in the neighborhood of the pause length

used during training. In this case, the results for a pause length of 4 and 5 even

happen to be slightly lower than for a pause length of 3.

A higher mean square error is not automatically equal to an incorrect output.

Therefore, the percentage of correct decisions in several test sets with varied

pause length is shown in Fig. 9. For pauses shorter than 2 and longer than 6, the

network makes some mistakes, but for a pause length from 2 to 6, the network

still comes up with a correct response in all the test problems. These results

indicate that the network successfully learned to handle the given task. It is

indeed capable of generalizing to time-warped sequential patterns.

7 Conclusion

Neither window networks nor simple recurrent networks with layer feedback are

applicable to the given problem which is based on handling time-warped se-

quences. This is not only due to the network models, but also to the employed

training algorithms. Such tasks are common in real-world environments and cop-

ing with them is easy for natural animals, but many neural networks cannot

deal with them. The experiments have shown how the input state network can

be trained to solve such a task. In this model, the original inputs are used to

form the state. A single mechanism is employed: self-recurrent unit feedback.

The resulting slowly changing states have been shown to enable the animat to

deal with time-warped forms of event sequences. This method is well suited to

modeling short-term memories of di�erent length within a single system. More-

over, it supports generalization over the temporal dimension, which is crucial for

autonomous agents faced with environments containing time-warped sequences

of events. The robustness concerning natural temporal variability is an intrinsic

property of this model of temporal processing. Even if the network is always

trained with a sequence of �xed length, it treats time-warped forms of this se-

quence similarly. If time-warped versions are part of the training set, this task is

even acquired much more easily. To conclude, models employing slowly changing

states are useful for handling realistic sequences of sensory events. Thus, they

are important for autonomous agents when their tasks involve the treatment of

time-warped sequences.
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Figure 6: Error of a network with hidden layer feedback for test sets with di�erent

pause length
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Figure 7: Performance of a network with hidden layer feedback for test sets with

di�erent pause length
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Figure 8: Error of the input state network for test sets with di�erent pause length
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Figure 9: Performance of the input state network for test sets with di�erent pause

length
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