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Abstract

The given task is to forecast the intervals between the heartbeats re-

corded from a fetus. The six tested neural network models combine input

windows, hidden layer feedback, and self-recurrent unit feedback in dif-

ferent ways. The two networks combining an input window and hidden

layer feedback performed best. One of them has additional self-recurrent

feedback loops around the units in the state layer, which enable the sys-

tem to deal with time-warped patterns. It turns out to be reasonable to

combine several techniques for processing the temporal aspects inherent to

the input sequence.

1 The Task

Using the cardiotocogram (the CTG) is common for routine fetal monitoring.

The CTG consists of fetal heartbeat and uterine contraction signals. At the

site under investigation, such signals have been recorded and stored for further

analysis. Usually, the heart rate is pre-processed before it is analyzed. In this

study, though, each single heartbeat interval is recorded for obtaining greater

precision. The overall aim is the development of an intelligent alarm system which

can be employed as a tool for decision support. The �rst step when processing the
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given data sets is to detect the artefacts, so that they can be removed. In order

to improve the detection of artefacts, the next value in the time series can be

forecast and compared with the actual value. Values which deviate considerably

from the forecast are more likely to be disturbed by measuring errors than those

which are close to the forecast ones. As proposed in [Miksch et al., 1995], such a

forecasting system could also be used for \repairing" the input signals. Instead

of replacing missing values by average or preceding ones, they could be replaced

by the forecast values which are more likely to resemble the true values.

2 Tested Neural Network Models

Most neural network research has focused on processing single patterns, but se-

quence processing requires a method for saving information for subsequent time

steps. Overviews of such neural networks, which can be used for handling tem-

poral aspects, are given, for instance, in [Ulbricht et al., 1992], [Mozer, 1993],

[Rohwer, 1994], and [Chappelier and Grumbach, 1994]. All the networks tested

on the task of forecasting heartbeat intervals had at least a single input unit for

the sequence element, three hidden units, and one output unit for the forecast.

The six tested variants of network models are depicted in Figs. 1 through 3. The

focus lies on the layers and the links between them. The numbers of the layers

refer to the order in which they are updated. A dashed arrow denotes a link for

copying unit activations, whereas a full arrow denotes a set of links connecting

each unit of one layer with all the units of the other layer. The following models

were tested:

1. A network with an input window (Fig. 1): In this non-recurrent network,

the window is obtained by delaying the single sequence element at the input

several times in a row. The resulting window is of size 5, i.e. it contains the

�ve most recent sequence elements x(t�1); x(t�2); : : : ; x(t�5).

2. A network with hidden layer feedback (Fig. 1): In this simple recurrent net-

work, the hidden layer is delayed and fed back like in the network described

in [Elman, 1990].

3. A network with an input window of size 5 and hidden layer feedback (Fig. 2):

It combines delays with and without feedback.

4. A network with a self-recurrent feedback loop around the input (Fig. 2):

In this network, the temporal aspects are handled by delaying and feeding

back the activation of a unit to itself. The feedback loop has a weight �,

and the input is weighted by 1��.

5. A network with an input window of size 5 and self-recurrent feedback loops

around all the units in the input window (Fig. 3): It uses both a window

and unit feedback.
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6. A network with an input window of size 5, hidden layer feedback, and self-

recurrent feedback loops around the units in the memory layer (Fig. 3): In

the taxonomy presented in [Mozer, 1993], such a memorywith self-recurrent

feedback loops is referred to as \exponential trace memory," because it con-

tains an exponentially weighted average. This memory can also be regarded

as the state of the network. Due to the feedback loops, the state changes

more slowly. The speed of change depends on the weights. Such sluggish

states can also be obtained by using any other nearly auto-associative next-

state function. The important point is that \state vectors at nearby points

in time must be similar," as it is stated in [Jordan, 1986]. The resulting

models are better suited to dealing with patterns in sequences which are

warped in time, because they have the intrinsic capability of generalizing

over the temporal dimension.
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Figure 1: Networks 1 and 2
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Figure 2: Networks 3 and 4

In all the networks, the weights � of the self-recurrent feedback loops were

equal to 0:9. The forecast of the window network can be written as:

x̂(t) = F

1

(x(t�1); x(t�2); x(t�3); x(t�4); x(t�5)) : (1)

Thereby F

1

denotes the mapping of the whole neural network. The forecast of

the network with hidden layer feedback is

x̂(t) = F

2

(x(t�1);h

1

(t�1)) ; (2)
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Figure 3: Networks 5 and 6

where h

1

(t� 1) is a vector of length 3 (bold letters are used for vectors and

mappings to vectors). Since the hidden layer is part of the feedback loop, it

contains information of past inputs:

h

1

(t�1) = f

1

(x(t�2);h

1

(t�2)) ; (3)

where f

1

represents the mapping from the input to the hidden layer. The forecast

of the third network is:

x̂(t) = F

3

(x(t�1); x(t�2); x(t�3); x(t�4); x(t�5);h

2

(t�1)) ; (4)

where h

2

(t�1) is:

h

2

(t�1) = f

2

(x(t�2); x(t�3); x(t�4); x(t�5); x(t�6);h

2

(t�2)) : (5)

The fourth network has unit feedback in the input layer:

x̂(t) = F

4

((1��) x(t�1) + � i

1

1

(t�1)) ; (6)

where i

1

1

(t) stands for the single element of the contents of the input layer i

1

(t):

i

1

1

(t) = (1��) x(t�1) + � i

1

1

(t�1): (7)

For the network with an input window and self-recurrent feedback loops, the

output is:

x̂(t) = F

5

( (1��) x(t�1) + � i

2

1

(t�1);

(1��) x(t�2) + � i

2

2

(t�1);

(1��) x(t�3) + � i

2

3

(t�1);

(1��) x(t�4) + � i

2

4

(t�1);

(1��) x(t�5) + � i

2

5

(t�1) ): (8)

In this equation, i

2

1

(t�1); : : : ; i

2

5

(t�1) are the components of the vector i

2

(t�1)

representing the input layer. Finally, the forecast obtained with the sixth network
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can be described as:

x̂(t) = F

6

( x(t�1); x(t�2); x(t�3); x(t�4); x(t�5);

(1��) h

3

1

(t�1) + � s

1

(t�1);

(1��) h

3

2

(t�1) + � s

2

(t�1);

(1��) h

3

3

(t�1) + � s

3

(t�1) ); (9)

where h

3

1

(t�1); : : : ; h

3

3

(t�1) are the components of the hidden layer h

3

(t�1),

and where s

1

(t�1); : : : ; s

3

(t�1) are the components of the state layer s(t�1).

3 Comparative Analysis

A sequence consisting of 1200 elements was used as the training set. The vali-

dation set, which contained 600 elements, was used to determine when to stop

training. Another 600 sequence elements were used for testing. A segment of the

sequence of heartbeats is depicted in Fig. 4. The heartbeats were measured in

milliseconds. The interval ranging from 0 to 1200 milliseconds was transformed

for the network to the interval ranging from zero to one. The mean square error

(MSE) is taken as a measure for evaluating the performance:

MSE =

1

N

N

X

n=1

(x

d

(n)� x

t

(n))

2

; (10)

where x

d

(n) is the n-th network output, and x

t

(n) the n-th target output out of

N instances. An auto-regressive model, an AR[1] model as described in [Box and

Jenkins, 1970],

x(t) = �x(t�1) + "(t); (11)

is set up for comparison with the networks. With � equal to one, a random walk

process is modeled. When using this model for forecasting, the estimate for x(t)

is equal to x(t�1). If it turns out that this is the best estimate, it can only be said

that subsequent intervals are likely to be similar. However, if better forecasting

models can be found, more can be said about the sequence of beats. For such an

AR[1] model with an � equal to one, the MSE on the test set is 0.0047. Each type

of network was tested three times. The results are visualized in Fig. 4. For each

network, the MSE averaged over three tests with random weight initialization is

shown.

Each type of network was tested three times. The MSE on the test set is

given in Table 1 for all the experiments. Additionally, the mean of the three

experiments is provided. The results are visualized in Fig. 4.

It turns out that it is possible to obtain better forecasts with appropriately

designed neural networks than with a simple AR[1] model. The networks com-

bining an input window and hidden layer feedback (Networks 3 and 6) perform

best. According to the t-Test, the results of these two networks are signi�cantly
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Figure 5: Overview of the results from forecasting heartbeat intervals
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Con�guration MSE

Net Window Hidden Self-recurrent Test Test Test Mean

Nr. Size Feedback Feedback 1 2 3 Error

1 5 | | 0.0066 0.0053 0.0064 0.0061

2 1 1 | 0.0078 0.0060 0.0039 0.0059

3 5 1 | 0.0039 0.0038 0.0041 0.0039

4 1 | Input 0.0083 0.0071 0.0066 0.0073

5 5 | Window 0.0077 0.0077 0.0073 0.0076

6 5 1 Memory 0.0038 0.0038 0.0038 0.0038

Table 1: Results from forecasting heartbeat intervals

better at the 95%-level. Moreover, the following points result from an analysis of

the mean errors:

� Network 3, having both an input window and hidden layer feedback, per-

forms very well in all the experiments. This demonstrates how an appro-

priate combination of non-recurrent and recurrent mechanisms (an input

window and hidden layer feedback) can lead to much better results than

using only one of the two mechanisms, as it is the case in Networks 1 and

2.

� Self-recurrent feedback loops in the input layer, as they are used in Net-

works 4 and 5, are not well suited to this application. They do not su�ce

to provide enough information about the sequence. This is a typical re-

sult, as self-recurrent input feedback alone is not su�cient for capturing

the temporal aspects which are relevant to most types of applications.

� The network which combines several sequence-handling methods (Network 6)

performs even slightly better than the same type of network without self-

recurrent feedback loops (Network 3). This shows that unit feedback in

the state layer, which leads to a slowly changing state, can improve the

performance of the network.
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4 Conclusion

The given task was to forecast the intervals between fetal heartbeats. The per-

formances of six di�erent neural network models and a simple auto-regressive

model were tested empirically. The outcome can be regarded as an example

demonstrating that good results can be obtained when various methods are com-

bined in a single neural network. The best performance was obtained with a

network which used layer delay, layer feedback, and unit feedback. It can be seen

that the outcome is heavily dependent on how the state is formed. Additional

self-recurrent feedback loops around the state layer can even slightly improve the

network performance. They make the state change more slowly, which is better

for dealing with time-warped sequences. Even though the results are di�erent

for each application, it can be concluded that combining several techniques for

processing the temporal aspects inherent to the input sequence seems to be rea-

sonable. Especially the combination of an input window and layer feedback turns

out to lead to good results. They can function better than an input window or

layer feedback alone.
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