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Abstract

Windowing has been proposed as a procedure for e�cient memory use in the ID3

decision tree learning algorithm. However, previous work has shown that windowing

may often lead to a decrease in performance. In this work, we try to argue that

separate-and-conquer rule learning algorithms are more appropriate for windowing

than divide-and-conquer algorithms, because they learn rules independently and are

less susceptible to changes in class distributions. In particular, we will present a new

windowing algorithm that achieves additional gains in e�ciency by exploiting this

property of separate-and-conquer algorithms. While the presented algorithm is only

suitable for redundant, noise-free data sets, we will also briey discuss the problem of

noisy data in windowing and present some preliminary ideas how it might be solved

with an extension of the algorithm introduced in this paper.

1 Introduction

Windowing is a general scheme that aims at improving the e�ciency of inductive classi�-

cation learners. The gain in e�ciency is obtained by identifying an appropriate subset of

the given training examples, from which a theory of su�cient quality can be induced. Such

procedures are also known as subsampling. Windowing has been proposed as a supplement

to the inductive decision tree learner ID3 (Quinlan 1983) in order to allow it to tackle tasks

which would otherwise have exceeded the memory capacity of the computers of those days.

Despite �rst successful experiments in the KRKN domain (Quinlan 1983) windowing

has not played a major role in machine learning research. One reason for this certainly is

the rapid development of computer hardware, which made the motivation for windowing

seem less compelling. However, recent developments in the areas of Knowledge Discovery

in Databases (Fayyad, Piatetsky-Shapiro, and Smyth 1996) and Intelligent Information

Retrieval (Hearst and Hirsh 1996) have again shown the limits of conventional machine
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learning algorithms. Dimensionality reduction through subsampling procedures has been

recognized as a promising �eld of research (Lewis and Catlett 1994; Yang 1996).

A good deal of the lack of interest in windowing can also be attributed to an empir-

ical study (Wirth and Catlett 1988) that showed that windowing is unlikely to gain any

e�ciency. The authors studied windowing with ID3 in various domains and concluded

that windowing cannot be recommended as a procedure for improving e�ciency. The

best results were achieved in noise-free domains, such as the Mushroom domain, where

windowing was able to perform on the same level as ID3. In noisy domains it can be consid-

erably slower. There has been some evidence that slight variations of the basic windowing

procedure like the one employed in C4.5 (Quinlan 1993) can improve the performance of

windowing, in particular in noise-free domains (Catlett 1991), but no further empirical

study has been devoted to this subject. Furthermore, windowing has been connected to

decision tree learning and has not been studied with other learning algorithms.

Thus, one goal of this paper is to study the suitability of windowing for a di�erent

family of learning algorithms, namely separate-and-conquer rule learning algorithms. We

will show that windowing can in fact deliver what can be reasonably expected, namely to

yield signi�cant gains in e�ciency without losing accuracy in noise-free data sets with a

fair level of redundancy. Furthermore, we will demonstrate how to e�ciently exploit the

ability of separate-and-conquer algorithms to ignore parts of the search space that have

already been covered and to concentrate on yet uncovered parts. Finally, we will give some

thought to the problem of noise for windowing algorithms and present some very vague

ideas how the modularity in the separate-and-conquer rule learning algorithm could be

exploited for a noise-tolerant version of our algorithm.

2 Separate-and-Conquer Rule Learning

We have conducted our study in the framework of separate-and-conquer rule learning

algorithms that has recently gained in popularity (F�urnkranz 1996). Our basic learning

algorithm, DOS,

1

is a simple propositional version of Foil (Quinlan 1990). It employs a

top-down hill-climbing search on the information gain heuristic. The only stopping criteria

are completeness and consistency, i.e., rules are specialized until they do not cover any

negative examples, and more rules are added to the theory until all positive examples are

covered. Thus DOS has no noise-handling capabilities whatsoever. However, for reasons

discussed later in this paper we think that noise is a fundamental problem in windowing,

which cannot be solved by merely using a noise-tolerant learning algorithm.

3 Windowing

Windowing has been �rst introduced in the ID3 decision tree learning algorithm (Quinlan

1983) as a procedure for making e�cient use of memory limitations, which were much more

1

Dull Old Separate-and-conquer
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procedure Win-DOS-3.1(Examples,InitSize,MaxIncSize)

Train = RandomSample(Examples,InitSize)

Test = Examples n Train

repeat

Theory = DOS(Train)

NewTrain = ;

OldTest = ;

for Example 2 Test

Test = Test n Example

if Classify(Theory,Example) 6= Class(Example)

NewTrain = NewTrain [ Example

else

OldTest = OldTest [ Example

if jNewTrainj= MaxIncSize

exit for

Test = Append(Test,OldTest)

Train = Train [ NewTrain

until NewTrain = ;

Figure 1: Extending DOS with windowing.

stringent at that time. Figure 1 depicts the basic windowing as we have implemented it in

Common LISP.

The algorithm starts by picking a random sample of a user-settable size InitSize from

the total set of Examples. It uses these examples for learning a theory with a given learning

algorithm, in our case the DOS algorithm briey described in the last section. This theory

is then tested on the remaining examples and all examples that are misclassi�ed by the

current theory are removed from the test set and added to the training set of the next

iteration. In order to keep the size of training set small, another parameter, MaxIncSize,

controls the maximum number of examples that can be added to the training set in one

iteration. If this number is reached no further examples are tested and the next theory is

learned from the new training set. To make sure that all examples are tested in the �rst

few iterations, our implementation appends the examples that have already been tested to

the remaining examples in the test set, so that testing will start with new examples in the

next iteration.

4 A More E�cient Version of Windowing

One thing that happens frequently when using windowing with a separate-and-conquer rule

learning algorithm is that good rules have to be discovered again and again in subsequent

iterations of the windowing procedure. Although correctly learned rules will add no more

examples to the current window, they have to be re-learned in the next iteration as long

as the current theory is not complete and consistent with the entire training set. We have
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procedure Win-DOS-95(Examples,InitSize,MaxIncSize)

Train = RandomSample(Examples,InitSize)

Test = Examples n Train

OldTheory = ;

repeat

NewTheory = DOS(Train)

Theory = NewTheory [ OldTheory

NewTrain = ;

OldTest = ;

for Example 2 Test

Test = Test n Example

if Classify(Theory,Example) 6= Class(Example)

NewTrain = NewTrain [ Example

else

OldTest = OldTest [ Example

if jNewTrainj= MaxIncSize

exit for

Test = Append(Test,OldTest)

Train = Train [ NewTrain [ Cover(OldTheory)

OldTheory = ;

for Rule 2 Theory

if Consistent(Rule,NewTrain)

OldTheory = OldTheory [ Rule

Train = Train n Cover(Rule)

until NewTrain = ;

Figure 2: A more e�cient version of windowing.

developed a new version of windowing, which tries to exploit the property of separate-and-

conquer learning algorithms that regions of the example space that are already covered by

good rules need not be further considered in subsequent iterations.

At the beginning the algorithm proceeds just like Win-DOS-3.1: it selects a random

subset of the examples, learns a theory from these examples, and tests it on the remaining

examples. However, contrary to Win-DOS-3.1, it does not merely add all examples that

have been incorrectly classi�ed to the window for the next iteration, but it also removes

all examples that have been classi�ed by consistent rules from this window. A rule is

considered consistent, when it did not cover a negative example during the testing phase.

Note that this does not necessarily mean that the rule is consistent with all examples in the

training set, as it may contradict a testing example which has not yet been tested because

more than MaxIncWin examples have already been incorrectly classi�ed. Thus apparently

consistent rules have to be remembered and tested again in the next iteration. However,

we expect that removing examples that are covered by these rules from the window should

keep the window size small and and thus decrease learning time.

In preliminary experiments it showed that one problem that happens more frequently
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Mushroom: Test Accuracy
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Figure 3: Results in the Mushroom domain.

inWin-DOS-95 than in regular windowing or basic separate-and-conquer learning is that

of over-specialized rules. Often a consistent rule is found at a low example size, but other

rules are found later that cover all of the examples this special rule covers. Note that this

problem cannot be removed with a syntactic generality test. Consider, for example, the

case where a rule stating that a KRK position is illegal if the two kings are on the same

square is learned from a small set of the data, and a more general rule is discovered later

which states that all positions are illegal in which the two kings occupy adjacent squares.

Sometimes the examples of the special case can also be covered by more than one of the

other rules. We have thus developed the following procedure to remove redundant rules:

After a theory has been learned, each rule is tested on the complete training set and rules

are ordered according to the number of examples they cover. Starting with the rules with

the least coverage, each rule is tested whether the examples it covers are also covered by

the remaining rules. If so, the rule will be removed. This procedure can be implemented

quite e�ciently and will only be performed once at the end of each of the three algorithms.

5 Experimental Evaluation

We have compared both versions of windowing on a variety of noise-free domains. In each

domain we ran a series of experiments with varying training set sizes. For each training

set size 10 di�erent subsets of this size were selected from the entire set of preclassi�ed

examples. All three algorithms, DOS,Win-DOS-3.1, andWin-DOS-95 were run on each

of these subsets and the results of the 10 experiments were averaged. For each experiment

we measured the accuracy of the learned theory on the entire example set, the total run-

time of the algorithm,

2

and the total number of examples that are processed by the basic

learning algorithm. For DOS, this is of course the size of the respective training set, while

2

Measured in CPU seconds of a microSPARC 110MHz running compiled Allegro Common Lisp code

under SUN Unix 4.1.3.
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for the windowing algorithms this is the sum of the training set sizes of all iterations of

windowing. All experiments shown below were conducted with a setting of InitSize = 100

and MaxIncSize = 50. This setting is briey discussed in the next section.

Figure 3 shows the accuracy, run-time, and number of processed examples results for

the three algorithms in the 8124 example Mushroom database. Win-DOS-3.1 seems to

be e�ective in this domain, at least for higher (> 1000) training set sizes. Our improved

version, Win-DOS-95, clearly outperforms simple windowing in terms of run-time, while

there are no signi�cant di�erences in terms of accuracy. Win-DOS-3.1 needs to submit a

total of about 1000 examples to the DOS learner, whileWin-DOS-95 can save about half

of them. In a typical run with the above parameter settings, Win-DOS-3.1 needs about

4 to 5 iterations, the last of them using a window size of about 200 to 350 examples for

learning the correct concept. Win-DOS-95 needs about the same number of iterations,

but it rarely keeps more than 150 examples in its window.

This domain is particularly interesting, because windowing with the decision tree

learner ID3 could not achieve signi�cant run-time gains over pure ID3 in a previous study

(�gure 2 of (Wirth and Catlett 1988)), while the slightly modi�ed version of windowing

used in C4.5 is able to achieve a run-time improvement of only about 15% (p. 59 of (Quin-

lan 1993)). Our results, on the other hand, show that windowing is able to achieve a

signi�cant advantage in terms of run-time at example sizes of about 3000 or above, where

both windowing algorithms reach a plateau. We think that the reason for these di�erent

results is that divide-and-conquer learning as used in ID3 is more sensitive to changes

in class distributions in the training examples, because at each interior node ID3 has to

choose a test that maximizes the information gain over all classes and over all outcomes of

the test. The sensitivity of ID3 to such changes is also con�rmed by (Quinlan 1993) where

it is reported that changing windowing in a way such that the class distribution in the

initial window is as uniform as possible (this is the standard procedure in C4.5) produces

better results. On the other hand, di�erent class distributions will only have a minor e�ect

on separate-and-conquer learners, because they are only learning rules for a single class.

Adding uncovered positive examples to the current window will not alter the evaluation of

rules that do not cover the new examples, but may cause the selection of a new root node

in decision tree learning.

Figure 4 shows the results of experiments in four other noise-free domains in terms

of accuracy and run-time. The graphs for the total number of examples processed by

DOS, which we had to omit because of space limitations, were quite similar to the run-

time graphs in all important aspects. The �rst domain is a propositional version of the

well-known king-rook-king classi�cation task (Muggleton, Bain, Hayes-Michie, and Michie

1989), which is commonly used as a benchmark for relational learning algorithms. The

propositional version of this domain consists of 18 binary attributes that encode the validity

or invalidity of relations like adjacent, <, and = between the coordinates of three pieces

on a chess board. The target concept is to learn rules for recognizing illegal white-to-move

chess positions with only the white king and rook and the black king on the board. This

task seems to be well-suited for windowing. Predictive accuracy reaches 100% at about

5000 training examples for all three algorithms. The accuracy di�erences for lower training
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KRK: Test Accuracy

DOS

WIN-DOS-3.1

WIN-DOS-95

% Correct

3Train Exs x 10

98.60

98.70

98.80

98.90

99.00

99.10

99.20

99.30

99.40

99.50

99.60

99.70

99.80

99.90

100.00

0.00 2.00 4.00 6.00 8.00 10.00
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KRKN: Test Accuracy
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Tic-Tac-Toe: Test Accuracy
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KRKP: Test Accuracy
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Figure 4: Results in the KRK, KRKN, Tic-Tac-Toe, and KRKP domains.
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set sizes are not signi�cant. At the same size, the run-time of both windowing algorithms

reaches a plateau. The results in the KRKN chess endgame domain with training set sizes

of up to 10,000 examples are quite similar. However, for smaller training set sizes, which

presumably do not contain enough redundancy, windowing can take signi�cantly longer

than learning from the complete data set. A similar behavior has been observed in the 958

example Tic-Tac-Toe endgame domain.

3

Here, predictive accuracy of all three algorithms

reaches 100% at about half the total example set size. Interestingly,Win-DOS-3.1 reaches

this point considerably earlier (at about 250 examples). On the other hand,Win-DOS-3.1

is not able to achieve an advantage over DOS in terms of run-time, although it is obvious

that it would overtake DOS at slightly larger training set sizes. Win-DOS-95 reaches this

break-even point much earlier and continues to build up a signi�cant gain in run-time at

larger training set sizes. Thus in all domains discussed so far, Win-DOS-95 is able to

achieve signi�cant run-time gains by avoiding to re-learn good rules that have already been

discovered in earlier iterations.

In all domains considered so far, removing a few randomly chosen examples from the

larger training set sizes did not a�ect the learned theories. Intuitively, we would call

such a training set redundant. In the 3196 example KRKP data set, on the other hand,

the algorithms were not able to learn theories that are 100% correct when tested on the

complete data set unless they use the entire data set for training. We would call such a

data set non-redundant, as it seems to be the case that randomly removing only a few

examples will already a�ect the learned theories. In this domain,Win-DOS-3.1 processes

about twice as much examples as DOS for each training set size. Our improved version

of windowing, on the other hand, processes only a little more examples than DOS at

lower sizes, but seems to be able to exploit some redundancies of the domain at larger

training set sizes. The reason for this behavior is that even in non-redundant training sets,

some parts of the example space may be redundant, i.e. while removing randomly chosen

examples from the entire example space will probably e�ect the learning result, removing

randomly chosen examples from certain regions of the example space will not e�ect the

result. Windowing aims at exploiting this fact, but our version does so more e�ciently by

avoiding to re-learn rules that cover such parts of the example space.

6 Parameter Settings

All experiments reported above have been performed with a setting of InitSize = 100 and

MaxIncSize = 50. Di�erent variations of the InitSize parameter have been investigated in

(Wirth and Catlett 1988) and the results indicate that the algorithm is quite insensitive

to this parameter. We consider the parameterMaxIncSize more important, which speci�es

the maximum number of examples that can be added to a window. Experiments with

di�erent settings of this parameter showed that in the KRK domain the performance of

the algorithms in terms of run-time and total number of examples needed for learning is best

3

Note that this example set is only a subset of the Tic-Tac-Toe data set that has been studied in (Wirth

and Catlett 1988). We did not have access to the full data set.
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if this parameter is kept comparably low (10 to 50 examples). In this range, the parameter

is relatively insensitive to its exact setting. If more examples are added to the window size,

performance degrades. For example at MaxIncSize = 50, Win-DOS-3.1 performs about

4 iterations of the basic learning algorithm processing a total of about 700 examples, the

�nal window containing about 250 examples. At MaxIncSize = 1000 on the other hand,

the basic learning module not only has to process about twice as much examples, but

windowing also takes more iterations to converge. Similar behavior has been observed

for Win-DOS-95. Thus it seems to be important to continuously evaluate the learned

theories in order to focus the learner on the parts of the search space that have not yet

been correctly learned. This �nding contradicts the heuristic that is currently employed

in C4.5, namely to add at least half of the total misclassi�ed examples. However, this

heuristic was formed in order to make windowing more e�ective in noisy domains (Quinlan

1993), a goal that in our opinion cannot be achieved with merely using a noise-tolerant

learner inside the windowing loop for reasons discussed in the next section.

7 The Problem of Noise in Windowing

A major e�ort in future research has to go into incorporating noise handling capabilities

into windowing procedures. An adaptation of the procedures discussed in this paper to

noisy domains is a non-trivial endeavor. We see the major problem with windowing in

noisy domains in the fact that windowing will eventually incorporate all noisy examples

into the learning window (as they will either be uncovered or contradict one of the learned

rules), but a typical window will only contain a subset of the original learning examples.

Thus the proportion of noisy examples in the learning window will be much higher than

the noise level in the entire data set, which will make learning considerably harder.

Assume for example that Win-DOS has learned a correct theory from 1000 examples

in a 11,000 examples domain, where 10% of the examples are misclassi�ed due to noise. In

the next iteration, about 1000 noisy examples will be misclassi�ed by the correct theory

and will be added to the window, thus doubling its size. Half of the examples in the new

window are now erroneous, so that the classi�cation of the examples in the new window is

in fact entirely random. It can be assumed that many more examples have to be added to

the window in order to recover the structure that is inherent in the data. This hypothesis

is consistent with the results of (Wirth and Catlett 1988) and (Catlett 1991), where it was

shown that windowing is highly sensitive to noise.

A possible approach to solving this problem may lie in strong assumptions about the

noise level in the data, so that examples are only added to the window if their number

exceeds a certain percentage of error on the remaining test set. However, then one still has

the problem of distinguishing true exceptions and misclassi�cations due to noise. Adding

all examples that have been misclassi�ed to the current window will again result in training

sets containing too high a noise level.

Another approach for subsampling in noisy domains might be to use variants of uncer-

tainty sampling (Lewis and Catlett 1994), which do not select the new window on the basis
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of misclassi�ed examples, but on the basis of the learner's con�dence in the learned theory.

The examples that are classi�ed with the least con�dence will be added to the training set

in the next iteration.

However, we also think that our approach, which shows a simple way for integrating

windowing into a learning algorithm instead of only using it as a wrapper, may be a

�rst step on the right track. We feel that the ability of separate-and-conquer rule learning

algorithms to separate regions of the instance space that have already been su�ciently well

explained by the learned rules and to concentrate on covering the remaining portions of the

instance space can form the basis of noise-tolerant windowing procedures. Currently we

are thinking about ways to integrate the work presented in this paper with ideas discussed

in (F�urnkranz and Widmer 1994) and (Cohen 1995), where it was shown that pruning

individual rules instead of pruning complete theories is the more adequate procedure for

separate-and-conquer rule learning algorithms. Thus our future work will focus on the

integration of pruning operations for single rules into a windowing framework in order to

achieve noise tolerance.

8 Conclusion and Further Research

We have presented a re-evaluation for windowing using separate-and-conquer rule learning

algorithms, which shows that for this type of algorithm signi�cant gains in e�ciency are

possible. In particular, we have shown that separate-and-conquer algorithms allow a more

exible integration of windowing into the learning algorithm. However, the presented

results are limited to redundant, noise-free domains, but we hope that the exibility of the

separate-and-conquer strategy may be a good basis for developing noise-tolerant extensions

of the basic algorithm.

Further assumptions our algorithms make about the domain are that the order of

the examples is completely random (otherwise, the ordering could maliciously e�ect the

performance of the presented algorithms), and that we have con�ned ourselves to symbolic

data. The costs for choosing thresholds, the standard procedure for handling numerical

data, decreases with the number of di�erent numeric values in the examples. Thus, we

hope that windowing will also be able to speed up learning in these cases, although it is

an open question, how the reduced number of thresholds in the learning window will a�ect

predictive accuracy.

Except for the integration of noise-handling procedures, which, in our opinion, is the

most important research goal, we also plan to further optimize the windowing procedure by

keeping track of which rules have been tested on which examples and be able to recognize

rules which have been on all training examples. These rules need not be tested again

and can be put directly into the �nal theory. Additional gains in e�ciency could also be

achieved by trying to specialize over-general rules, instead of entirely removing them. For

this purpose we plan to adapt ideas from research in theory revision.
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