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Abstract

The topic of this paper is the problem of outlier detection for neural

networks trained by Bayesian inference. I will show that marginalization

is not a good method to get moderated probabilities for classes in outly-

ing regions. The reason why marginalization fails to indicate outliers is

analysed and an alternative measure, that is a more reliable indicator for

outliers, is proposed. A simple arti�cial classi�cation problem is used to

visualize the di�erences. Finally both methods are used to classify a real

world problem, where outlier detection is mandatory.

1 Introduction

Neural networks are often used in safety-critical applications for regression or

classi�cation purpose. Since neural networks are unable to extrapolate into

regions not covered by the training data (see [6]), one should not use their pre-

dictions in such regions. Consequently methods for outlier detection got a lot

of attraction. Outliers may be detected by assigning a con�dence measure to

network decisions. Con�dence should be high in regions well represented in the

training data and low everywhere else. Di�erent methods can be used to get a

con�dence measure for network decisions. In [6] S. Roberts et. al. use an ar-

ti�cial class outside training data subspace. In [3] D.J. MacKay uses Bayesian

inference and marginalization to get moderated probabilities for classes in out-

lying regions. In conjunction with doubt levels this should prohibit classi�cation

of outliers. The aim of my paper is to discuss marginalization and compare it to

a di�erent method for outlier detection, that can be used within the Bayesian

framework. The e�ects of both methods are visualized using a simple arti�-
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cial classi�cation problem. Results of a real world classi�cation problem with

outliers are presented in the �nal section.

2 Marginalization, the current practice

In this chapter I want to review how con�dence is incorporated into classi�cation

decisions within a Bayesian framework. I assume, that the neural network is

designed to solve a two class problem, extension to 1 of c class problems is

straightforward. In such a case, a neural network with one hidden layer with

sigmoid activations and a single output unit is used. As shown in (1), the

output is transformed by a �nal sigmoid, a method that can be proven to lead

to outputs, that are posterior probabilities for classes. Details are presented in

[1].

P (C

1

j x) = g(a)

g(a) =

1

1 + exp(�a)

(1)

If the targets for classes are 1 and 0 for C

1

and C

2

respectively, then g(a) is

the probability for class 1 and 1� g(a) is the probability for class 2. In (1) the

input into the �nal sigmoid is represented by a.

A Bayesian solution for neural networks is a posterior distribution over

weight space calculated via Bayes theorem using a prior over weights.

p(w j D) =

p(D j w)p(w)

p(D)

(2)

In (2) w is the weight vector of the network and D represents the training

data. Two di�erent possibilities are known to calculate the posterior in (2). In

[2] D.J. MacKay derives an analytical expression assuming a Gaussian distri-

bution, in [4] R. Neal uses a hybrid Monte Carlo method to sample from the

posterior. The posterior over weight space will lead to a distribution of network

outputs for one input pattern. We expect a distribution with small deviation

in regions well represented in the training data space, since the likelihood term

p(D j w) forces the outputs to lie close to the target patterns and a distribution

with large deviation everywhere else. For a classi�cation problem, following

MacKay [3], the network guess is calculated by marginalization over the output

distribution as shown in (3).

P (C

1

j x;D) =

Z

P (C

1

j x;w)p(w j D)dw

=

Z

y(x;w)p(w j D)dw (3)

According to MacKay [3], marginalization over weights leads to moderated out-

puts of the classi�er in regions where \the ensemble is very uncertain about
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what class is". Suspicious cases can be detected by using doubt levels. Since

the integral can not be solved directly due to the sigmoid activation used in the

output node, he approximates the integral as shown in (4).

P (C

1

j x;D) = g(�(�

a

)a
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)

�(�

a

) = (1 +

��

2

a

8

)

�1=2

(4)

In (4) a

MP

denotes the input into the sigmoid of the output unit according to

the most probable weight vector and �

2

a

is the corresponding variance resulting

from the distribution over weights. As shown in [4], sampling from the posterior

allows us to calculate (3) as a sum over �nite network guesses directly.

For both methods, the question arises whether marginalization shows the

desired e�ect of moderated probabilities for classes in regions not covered in

the training set. Two important thoughts will guide us. The authors of [7]

have shown, that a neural network, used for classi�cation, performs a sort of

nonlinear discriminant analysis. Data points close to the decision boundaries

of input space are mapped to input values of the �nal sigmoid close to 0, cor-

responding to network outputs of approximately 0.5. Data points arbitrary far

from the decision boundary are mapped to arbitrary large positive or negative

input values of the �nal sigmoid, resulting in output values of approximately 1

or 0 respectively. On the other hand in [4] R. Neal has investigated the e�ects

of Gaussian priors and shown, that the variance of the outputs of a two layer

network with sigmoid activation in the hidden layer units and linear output

activation is bounded under a Gaussian prior. Therefore, in our classi�cation

problem, the variance of the input of the sigmoid activation function of the

output unit has to be bounded. Both facts together let us conclude, that there

must exist regions in input space not covered by training data, where marginal-

ization will not lead to moderated probabilities for classes. Outlier detection

with marginalization will not be possible in those regions.

Visuaizations in this section are done with a two layer network with two

inputs, 20 hidden units and one output unit. The number of 20 hidden units

is motivated by the results reported by R. Neal in [4]. R.Neal studied the

properties of multi layer perceptron networks with in�nite number of hidden

units under Gaussian priors. He concluded that in a correct Bayesian framework,

there is no need to limit the number of hidden units.

The left sub plot in �gure 1 shows an example of moderated outputs cal-

culated by approximation of the integral in (3) by a sum over discrete weight

vectors. The right sub plot shows MacKay's approximation of the marginal-

ized output formulated in (4). I generated an arti�cial two class problem with

bivariate Gaussian class conditional densities. Training data are two Gaus-

sian distributions with means (1,0) and (-1,0) and standard deviations of the

marginal distributions of �

x

= 0:5 and �

y

= 2. As expected marginalization

over the posterior distribution has no moderating e�ect in regions far outside
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the subspace covered by training data, it is impossible to make outlier decisions.
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Figure 1: Marginalized output and its approximation for a classi�er using inputs

far beyond the training data subspace

3 Equivalent error bars as a measure of con�-

dence

The last section showed that marginalization is not a good method for outlier

detection. Obviously on one hand the mean of the distribution p(a j x;D)

(a is the input to the �nal sigmoid) grows fast and unbounded as we move

away from the decision boundary. On the other hand the variance �

2

a

of that

distribution stays bounded. The �nal sigmoidmaps the resulting distribution to

values close to 0 or 1. Nevertheless it is possible to get a measure of con�dence,

since the variance �

2

a

is small in regions covered by the training data and larger

everywhere else.

Such a measure of con�dence can be calculated by mapping the standard

deviation, �

a

, of p(a j x;D) into the range [0; 1]. A possible mapping, is shown

in (5). It uses the logistic sigmoid to perform the mapping.

e(x) = g(k�

a

)� g(�k�

a

)

=

exp(k�

a

)� 1

exp(k�

a

) + 1

(5)
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The factor k allows to adjust the probability of jm

a

� a(x;D)j to be within k�

a

.

For the delimiting mapping in (5) we could have used any delimiting function.

Using the logistic sigmoid, g(k�

a

), gives us the possibility to interpret e(x) as

an \error bar" of a classi�cation decision with equivalent variance, �

2

a

, close

to a decision boundary. Since (5) is an \error bar", smaller values indicate

higher con�dence. Consequently a measure for con�dence is given by 1� e(x).

The plots in �gure 2 were produced with the same training data, already used

to visualize marginalization e�ects in �gure 1. In both plots training data is

shown without showing class labels. The left illustration in �gure 2 shows the

\equivalent error bar" and training data. The right sub plot shows training data

and a contour plot of the equivalent error bar. It is easy to see, that a threshold

of 0.54 can be used to delimit the subspace covered by training data.
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Figure 2: Equivalent error bar and training data

4 Outlier detection in cushing's syndrome data

Cushing's syndrome data is one of the datasets

0

used by B.D. Ripley in his recent

book [5]. Each pattern is one of four classes, there are three types of syndrome

and two samples marked as \other". The data set contains training and test

data. I used two types of syndrome, \adenoma" and \bilateral hyperplasia",

0

I used Cushing's syndrome data generously provided by B.D. Ripley electronically via

http://markov.stats.ox.ac.uk/pub/PRNN.
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as training samples. The third type of syndrome, \carcinoma" and the test set

were used for testing. The observations in the data set are the urinary excretion

rates of tetrahydrocortisone and pregnanetriol (mg/24h).

The task of the trained network was to classify examples in the test set and

refuse classi�cation of suspicious patterns. In this case all samples from class

\carcinoma" and \others" are suspicious cases. Simulations were done using

a two layer network with 2 inputs 20 hidden units and one output. The large

number of hidden units is again motivated by the results from R. Neal, reported

in [4].

Outlier detection is done by assigning samples to class doubt within an in-

terval from 0.3 to 0.7 when using marginalization. To detect outliers when using

the equivalent error bar, we need an outlier threshold. It was set to a value where

about 5% of the training data are declared as outliers. The results are summa-

rized by following table:

Method Outliers Cor. \a" Wrg. \a" Cor. \b" Wrg. \b"

Marginalization 3 1 0 2 5

Eq. Error Bar 9 1 0 1 0

Using the \equivalent error bar" for outlier detection, one of the test samples

of class \bilateral hyperplasia" was declared as an outlier. Using marginalization

and a doubt level, three of the samples of class \carcinoma" and both \other"

samples were classi�ed as class \bilateral hyperplasia" and not declared as an

outlier.

5 Conclusion

Visualizations of an arti�cial classi�cation problem showed that the equivalent

error bar of the classi�er is a more reliable method for outlier detection than its

marginalized output. Using Cushing's syndrome data I showed that it is likely

that the reliability of the classi�er can be enhanced by using the equivalent

error bar as an indicator for outliers. The method is currently enhanced by

investigating di�erent training procedures that return a maximum threshold

level for the equivalent error bar.
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