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Abstract

This paper is a survey of inductive rule learning algorithms that use a separate-and-

conquer strategy. This strategy can be traced back to the AQ learning system and still

enjoys popularity as can be seen from its frequent use in inductive logic programming sys-

tems. We will put this wide variety of algorithms into a single framework and analyze them

along three di�erent dimensions, namely their search, language and over�tting avoidance

biases.

1. Introduction

In this paper we will give an overview of a large family of symbolic rule learning algorithms,

the so-called separate-and-conquer or covering algorithms. All members of this family share

the same top-level loop: basically a separate-and-conquer algorithm searches for a rule that

explains a part of its training instances, separates these examples, and recursively conquers

the remaining examples by learning more rules until no examples remain. This ensures that

each instance of the original training set is covered by at least one rule.

It is well-known that learning algorithms need an appropriate bias for making an \in-

ductive leap". Mitchell (1980) de�ned bias as

\any basis for choosing one generalization over another, other than strict con-

sistency with the observed training instances."

A learning algorithm can thus be characterized with the bias it employs. While the basic

top-level loop is invariant for all algorithms of the separate-and-conquer family, their method

for learning single rules can vary considerably for di�erent members of this family. We will

characterize separate-and-conquer algorithms along three dimensions:

Language Bias: The search space for a learning algorithm is de�ned by its hypothesis

language. Certain concepts may not be expressible or may have an awkward repre-

sentation in certain hypothesis languages. An appropriate choice of the hypothesis

language thus constitutes an important form of bias.

Search Bias: The term search bias refers to the way the hypothesis space is searched. It

includes the search algorithm (hill-climbing, beam search, etc.), its search strategy

(top-down or bottom-up), and the search heuristics that are used to evaluate the

found hypotheses.

Over�tting Avoidance Bias: Many algorithms employ heuristics for avoiding over�tting

of noisy data. They may prefer simpler rules to more complex rules even when the
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accuracy of the simpler rules on the training data is lower in the hope that their

accuracy on unseen data will be higher. Such a bias for simpler rules has recently

been termed over�tting avoidance bias (Scha�er, 1993; Wolpert, 1993).

1

We will start with the description of a generic separate-and-conquer algorithm that can

be instantiated to various existing (and new) learning algorithms by specifying di�erent

biases.

2. The Separate-and-Conquer Strategy

The separate-and-conquer strategy has its origins in the AQ family of algorithms (Michalski,

1969) under the name covering strategy. The term separate-and-conquer has been coined by

Pagallo and Haussler (1990) because of the way of developing a theory that characterizes this

learning strategy: learn a rule that covers a part of the given training examples, remove the

covered examples from the training set (the separate part) and recursively learn another rule

that covers some of the remaining examples (the conquer part) until no examples remain.

The terminological choice is a matter of personal taste, both terms can be found in the

literature. We will use the term separate-and-conquer learning.

Separate-and-conquer algorithms have been developed for a variety of di�erent learn-

ing tasks. Figure 1 shows a collection of well-known algorithms grouped by the types of

concepts they learn. The classical separate-and-conquer algorithms induce rule sets for

attribute-value based concept learning problems. Variants generalize this approach to in-

ducing ordered rule sets (also called decision lists) for multi-class problems. Problems with

continuous class variables can be solved by learning regression rules. Research in the �eld

of inductive logic programming (Bergadano & Gunetti, 1995; Muggleton, 1992; De Raedt,

1995) has developed a variety of separate-and-conquer algorithms that can solve the above

tasks in a richer representation language by inducing logic programs for classi�cation or for

predicting output values in functional relations.

In this paper we will mainly concentrate on concept learning tasks, as they seem to be

the most common application of separate-and-conquer algorithms in the literature. We will

start with a brief formalization of this learning problem (section 2.1), proceed to formalize

a generic separate-and-conquer algorithm that can address this problem (section 2.2) and

briey discuss important variants that handle related learning problems (section 2.3).

2.1 The Learning Problem

Figure 2 shows the inductive concept learning problem. Given are positive and negative

examples of a target concept, described with a �xed number of attributes maybe enriched

with additional background knowledge. The goal of the algorithm is to discover a description

for the target concept in the form of explicit rules formulated in terms of tests for certain

values of the attributes or the background knowledge. The resulting rule set should be able

to correctly recognize instances of the target concept and discriminate them from objects

that do not belong to the target concept.

1. Strictly speaking an over�tting avoidance bias is another form of search bias. However, in particular in

the context of separate-and-conquer rule learning, there are often two separate criteria for growing and

simplifying hypotheses. Thus we feel that a separate treatment of these two issues is justi�ed.
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propositional rule sets (DNF):

AQ (Michalski, 1969), AQ15 (Michalski et al., 1986), AQ17 (Bloedorn & Michalski, 1991;

Wnek & Michalski, 1994; Bloedorn et al., 1993) PRISM (Cendrowska, 1987), SWAP-1

(Weiss & Indurkhya, 1991), POSEIDON (Bergadano et al., 1992), PFOIL (Mooney,

1995), JoJo (Fensel & Wiese, 1993; Wiese, 1996) ATRIS (Kononenko & Kova�ci�c, 1992;

Mladeni�c, 1993) CiPF (Pfahringer, 1994a, 1994b) DLG (Webb, 1992; Webb & Agar,

1992), CLASS (Webb, 1993), SIA (Venturini, 1993) GROW (Cohen, 1993), RIPPER

(Cohen, 1995), BEXA (Theron & Cloete, 1996)

CNF:

PFOIL-CNF (Mooney, 1995), ICL (De Raedt & Van Laer, 1995)

decision lists:

(Rivest, 1987), CN2 (Clark & Niblett, 1989; Clark & Boswell, 1991), CN2-MCI (Kramer,

1994) GREEDY3 (Pagallo & Haussler, 1990), PREPEND (Webb & Brki�c, 1993; Webb,

1994), FOIDL (Mooney & Cali�, 1995)

logic programs:

INDUCE (Michalski, 1980), FOIL (Quinlan, 1990; Quinlan & Cameron-Jones, 1995a),

mFOIL (D�zeroski & Bratko, 1992), SFOIL (Pompe et al., 1993), MILP (Kova�ci�c,

1994b) HYDRA (Ali & Pazzani, 1993), CHAMP (Kijsirikul et al., 1991, 1992), FOSSIL

(F�urnkranz, 1994b), REP (Brunk & Pazzani, 1991), TDP (F�urnkranz, 1994c), I-REP

(F�urnkranz & Widmer, 1994), I

2

-REP (F�urnkranz, 1995), ML-SMART (Bergadano &

Giordana, 1988), GA-SMART (Giordana & Sale, 1992), SMART+ (Botta & Giordana,

1993), FOCL (Pazzani & Kibler, 1992), GRENDEL (Cohen, 1994), GOLEM (Muggleton

& Feng, 1990), NINA (Ad�e et al., 1995), PROGOL (Muggleton, 1995)

functional relations:

FILP (Bergadano & Gunetti, 1993), FFOIL (Quinlan, 1996)

regression rules:

IBL-SMART (Widmer, 1993) RULE (Weiss & Indurkhya, 1993, 1995), FORS (Karali�c,

1995)

Figure 1: Separate-and-conquer algorithms grouped by the type of concepts they learn.
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Given:

� a target concept,

� positive and negative examples

� described with several features and

� optional background knowledge

Find:

� a simple set of rules that discriminates between (unseen)

positive and negative examples of the target concept

Figure 2: The inductive concept learning problem

There are various approaches for tackling this problem. The most commonly used

alternative is decision tree learning via the divide-and-conquer strategy (Quinlan, 1986).

Much of the popularity of decision tree learning stems from its e�ciency in learning and

classi�cation (Bostr�om, 1995). Moreover, decision trees can easily be turned into a rule set

by generating one rule for each path from the root a leaf. However, there are several aspects

which make rule learning via the separate-and-conquer strategy attractive:

� Decision trees are often quite complex and hard to understand. Quinlan (1993) has

noted that even pruned decision trees may be too cumbersome, complex, and in-

scrutable to provide insight into the domain at hand and has consequently devised

procedures for simplifying decision trees into pruned production rule sets (Quinlan,

1987a, 1993). Additional evidence for this comes from Rivest (1987) who shows that

decision lists (ordered rule sets) with at most k conditions per rule are strictlymore ex-

pressive than decision trees of depth k. A similar result has been proven in (Bostr�om,

1995).

� The restriction of decision tree learning algorithms to non-overlapping rules imposes

strong constraints on learnable rules. One problem resulting from this constraint

is the replicated subtree problem (Pagallo & Haussler, 1990): It often happens that

identical subtrees have to be learned at various places in a decision tree, because of

the fragmentation of the example space imposed by the restriction to non-overlapping

rules. Separate-and-conquer learners do not make such a restriction and are thus less

susceptible to this problem. An extreme example for this problem can be found in

(Cendrowska, 1987), where it is shown that the minimal decision tree for the concept

x de�ned as

x :- a = 3, b = 3.

x :- c = 3, d = 3.

has 10 interior nodes and 21 leafs assuming that the attributes a : : :d each have three

values.
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procedure SimpleSeparateAndConquer(Examples)

Theory = ;

while Positive(Examples) 6= ;

BestRule = ftrueg

Rule = BestRule

while Negative(Cover) 6= ;

for Condition 2 Conditions

Re�nement = Rule [ Condition

if Purity(Re�nement,Examples) > Purity(BestRule,Examples)

BestRule = Re�nement

Rule = BestRule

Theory = Theory [ Rule

Examples = Examples � Cover

return(Theory)

Figure 3: A simple separate-and-conquer algorithm

� Propositional separate-and-conquer algorithm extend naturally to the �rst-order in-

ductive logic programming framework, where the goal is basically the induction of a

PROLOG program. First-order background knowledge can also be used for decision-

tree induction (Watanabe & Rendell, 1991; Lavra�c, D�zeroski, & Grobelnik, 1991;

Kramer, 1996), but once more, Watanabe and Rendell (1991) have noted that �rst-

order decision trees are usually more complex than �rst-order rules.

In particular the last issue has contributed to a recent revival of separate-and-conquer

learning strategies, which has been a source of motivation for this systematic overview.

2.2 The Algorithm

Figure 3 shows a simple separate-and-conquer algorithm, which has been implemented

in a more or less equivalent form in the PRISM learning system (Cendrowska, 1987). It

starts with an empty theory and successively adds rules to it until all positive examples are

covered. The learning of single rules starts with a rule whose body is always true. As long

as it still covers negative examples the current rule is specialized by adding conditions to its

body. Possible conditions are tests on the presence of certain values of various attributes.

In order to move towards the goal of �nding a rule that covers no negative examples, the

algorithm selects a test that optimizes the purity of the rule, i.e. a test that maximizes the

percentage of positive examples among all covered examples. When a rule has been found

that covers only positive examples, all covered examples will be removed and another rule

will be learned from the remaining examples. This is repeated until no examples remain.

Thus it is ensured that the learned rules together cover all of the given positive examples

(completeness), but none of the negative examples (consistency).
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All separate-and-conquer algorithms share the basic structure of this simple algorithm.

However, many learning tasks require modi�cations of this procedure. The induction of

complete and consistent theories, for example, can lead to over�tting if the data are noisy.

Thus many algorithms relax this constraint and use stopping criteria or post-processing

methods to be able to learn simpler theories that are not complete and consistent, but

are more predictive on unseen data. Other algorithms replace the top-down search of the

inner while-loop with a bottom-up search, where rules are successively generalized starting

with a most speci�c rule (e.g. consisting of one of the positive examples itself). Yet other

algorithms do not use hill-climbing, but employ less myopic search algorithms like beam

search or best-�rst search. Another issue is the type of conditions that can be used in

the formulation of the hypotheses. The algorithm of �gure 3 can only formulate rules in

propositional logic, but research in inductive logic programming has developed algorithms

that can learn rules in �rst-order logic.

Figure 4 shows a generic separate-and-conquer rule learning algorithm that calls various

subroutines which can be used to instantiate the generic algorithm into speci�c algorithms

known from the literature. SeparateAndConquer starts with an empty theory. If there

are any positive examples in the training set it calls the subroutine FindBestRule for

learning a rule that will cover a subset of the positive examples. All covered examples are

then separated from the training set, the learned rule is added to the theory, and another

rule is learned from the remaining examples. Rules are learned in this way until no positive

examples are left or until the RuleStoppingCriterion �res. Often the resulting theory

undergoes some PostProcessing.

The procedure FindBestRule searches the hypothesis space for a rule that optimizes

a given quality criterion de�ned in EvaluateRule. The value of this heuristic function

usually is the higher the more positive and the less negative examples are covered by the

candidate rule. FindBestRule maintains Rules, a sorted list of candidate rules, which

is initialized by the procedure InitializeRule. New rules will be inserted in appropriate

places (InsertSort), so that Rules will always be sorted in decreasing order by the heuris-

tic evaluations of the rules. At each cycle SelectCandidates selects a subset of these

candidate rules, which are then re�ned using RefineRule.

2

Each re�nement is evaluated

and inserted into the sorted Rules list unless the StoppingCriterion prevents this. If the

evaluation of the NewRule is better than the best rule found previously, the BestRule is

set to NewRule. FilterRules selects the subset of the ordered rule list that will be used

in further iterations. When all candidate rules have been processed, the best rule will be

returned.

Di�erent choices of these functions de�ne di�erent biases for the separate-and-conquer

learner. The search bias can be de�ned by the choice of an appropriate search strat-

egy (InitializeRule and RefineRule), a search algorithm (SelectCandidates and

FilterRules), and a search heuristic (EvaluateRule). The re�nement operator Re-

fineRule constitutes the language bias of the algorithm. An over�tting avoidance bias can

be implemented via the two stopping criteria and/or in a post-processing phase.

As an example assume we want to instantiate the generic algorithm into the simple

algorithm of �gure 3. SimpleSeparateAndConquer searches the hypothesis space in a

top-down fashion. InitializeRule will thus return the most general rule, i.e. the rule with

2. Note that in the following we will use the term \re�nement" for both specialization and generalization.
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procedure SeparateAndConquer(Examples)

Theory = ;

while Positive(Examples) 6= ;

Rule = FindBestRule(Examples)

Covered = Cover(Rule,Examples)

if RuleStoppingCriterion(Theory,Rule,Examples)

exit while

Examples = Examples n Covered

Theory = Theory [ Rule

Theory = PostProcess (Theory)

return(Theory)

procedure FindBestRule(Examples)

InitRule = InitializeRule(Examples)

InitVal = EvaluateRule(InitRule)

BestRule = <InitVal,InitRule>

Rules = fBestRuleg

while Rules 6= ;

Candidates = SelectCandidates(Rules, Examples)

Rules = Rules n Candidates

for Candidate 2 Candidates

Re�nements = RefineRule(Candidate, Examples)

for Re�nement 2 Re�nements

Evaluation = EvaluateRule(Re�nement, Examples)

unless StoppingCriterion(Re�nement, Evaluation, Examples)

NewRule = <Evaluation,Re�nement>

Rules = InsertSort(NewRule, Rules)

if NewRule > BestRule

BestRule = NewRule

Rules = FilterRules(Rules, Examples)

return(BestRule)

Figure 4: A generic separate-and-conquer rule learning algorithm
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the body ftrueg. RefineRule will specialize a given rule by adding a condition to it. The

rules will be evaluated by the percentage of covered examples that are positive, i.e. Evalu-

ateRule will implement the Purity subroutine used in �gure 3. FilterRules will only

let the best re�nement pass for the next iteration, so that SelectCandidates will always

have only one choice. Together these two procedures implement the hill-climbing search.

As of the sorted list of all re�nements only the �rst (and best) element will be used, this

part of the code is equivalent to the corresponding part in SimpleSeparateAndConquer.

Both stopping criteria will always be false and the learned rules will not be post-processed.

Making all these choices instantiates SeparateAndConquer into SimpleSeparateAnd-

Conquer.

2.3 Rule Ordering

Note that we assume a binary classi�cation task: the goal of the induced concept is to dis-

criminate between positive and negative examples of a concept. Many separate-and-conquer

learning algorithms, in particular the algorithms used in inductive logic programming, are

based on this assumption. In this case the order in which the rules are learned or used for

classi�cation does not matter, because the rules only describe one class, the positive class.

Negative examples will be classi�ed using negation as failure, i.e. when no rule �res for a

given example, it will be classi�ed as negative. This is equivalent to assuming a default rule

for the negative class at the end of an ordered rule list.

However, many real world problems are concerned with multi-valued or even continuous

class variables. In such multi-class or regression problems the order of the rules is very

important, because each example could be covered by several rules that make di�erent

predictions. A di�erent rule order can thus make a di�erent prediction for an example.

This problem is known as the overlap problem. Segal and Etzioni (1994) address this

problem by allowing only homogeneous rules. A homogeneous rule is a rule for which all

specializations of the rule have the same heuristic evaluation as the rule itself. Segal and

Etzioni (1994) have shown that for each decision list there exists a logically equivalent

homogeneous decision list. The latter has the advantage that the evaluation of its rules

does not change with their position in the list.

Theories that impose a �xed evaluation order on their rules are commonly referred to

as decision lists (Rivest, 1987). They can be viewed as a PROLOG program where each

rule ends with a cut (!) (Mooney & Cali�, 1995). CN2 (Clark & Niblett, 1989) is able

to handle multi-class problems using an evaluation function that gives preference to class

distributions where examples of one class dominate (see section 4.3). Each learned rule

will predict the class that is dominant among the examples it covers. Learning stops when

all examples are covered by at least one rule. To handle clashes (when multiple rules �re)

CN2 orders rules in the order they have been learned. This seems to be a natural strategy,

because most search heuristics tend to learn more general rules �rst. However, it has been

pointed out in (Webb & Brki�c, 1993) that prepending a new rule to the previously learned

rules can produce simpler concepts. The intuition behind this argument is that there are

often simple rules that would cover many of the positive examples, but also cover a few

negative examples that have to be excluded as exceptions to the rule. Placing this simple

general rule near the end of the rule list allows to handle these exceptions with rules that
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are placed before the general rule and keep the general rule simple. This hypothesis has

been empirically con�rmed in (Webb, 1994) and (Mooney & Cali�, 1995).

Another method for inducing multi-class concepts is to learn a separate concept descrip-

tion for each class taking all examples of other classes as negative examples for the class

to learn. Then the program assigns a weight to each rule according to some heuristic and

the class predicted by the rule with the highest weight will be returned. This method is

used in HYDRA (Ali & Pazzani, 1993) where the ls-content of a rule (see section 4.3) is

used as a weighting heuristic. In AQ-15 (Michalski et al., 1986) each rule is weighted by

the percentage of positive examples in the set of examples covered by it. The weights of

rules of the same class are combined to a weight for the entire class and the class with the

highest weight will be returned. Quinlan (1987a) sorts the rules by their advantage, i.e. by

the number of examples that would be erroneously classi�ed after deleting the rule. In later

work, Quinlan (1993) replaced this algorithm by a scheme that groups the rules according

to the classes they predict and orders these groups using a heuristic based on the minimum

description length principle (Rissanen, 1978). This increases the comprehensibility of the

learned concepts.

Similar problems have to be tackled in �rst-order function learning (Quinlan, 1996),

where the learned rules do not check the validity of a given ground instance but derive

ground values for its unbound variables. Di�erent rules might derive di�erent values and

thus some ordering of the rules is needed to handle these clashes. Finally, the ordering of

the rules is also important when learning recursive concepts, where it has to be ensured

that the base case of the recursion comes before the recursive rule as e.g. in FOIL (Quinlan,

1990). In the remainder of this paper we will neglect the aspect of rule ordering and simply

assume that rules are used in the same order in which they are learned.

3. Language Bias

Before the user invokes a certain learning algorithms he already has to make a choice of a

suitable representation language for the hypotheses to learn. This choice naturally has a

considerable inuence on the result of the learning procedure (Mitchell, 1980). Although

most options for hypothesis languages that we will discuss in this section are also available

or could probably be adapted for other learning approaches like divide-and-conquer deci-

sion tree learning algorithms, many of them have been developed for separate-and-conquer

rule learning systems, in particular in inductive logic programming where the ability to

restrict the possibly in�nite space of �rst-order logic clauses

3

proved to be crucial. Flexible

mechanisms that use an explicit representation of the language bias are particularly useful.

We will �rst discuss static approaches, where the user has to �x the language bias

before the induction task, and then shortly summarize several options for learning systems

to autonomously change the language bias when it proves to be inadequate.

3. Rules are often called (de�nite) clauses in logic programming terminology. In the remainder of this paper

we will use these terms interchangeably. In general we will follow the logic programming terminology

de�ned in (Lloyd, 1987).
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3.1 Static Language Bias

There is a wide variety of condition types that can be made available for a classi�cation

learning algorithm. The spectrum reaches from simple selectors that relate the value of an

attribute to one of its domain values (section 3.1.1) to rule models that o�er a exible way

to restrict the huge search space for �rst-order classi�cation rules (section 3.1.5).

3.1.1 Selectors

Selectors are the most commonly used form of representation language in inductive learning.

The term selector was introduced by Michalski (1973). A selector is a condition of the form

Attribute # constant

where an example's value of a certain attribute is related to a constant value of its domain

via relations like =, >, or <. The equality relations used for symbolic attributes, while the

inequalities are more often used for numeric, in particular for continuous attributes. Often

the negations of these relations (i.e. 6=, �, �) are also available.

Algorithms of the AQ-family (Michalski, 1980; Michalski et al., 1986; Bergadano et al.,

1992) are able to extend these elementary selectors to using attribute sets (internal con-

junctions), value sets (internal disjunctions), and intervals (range operators). Moreover,

they can also make use of tree-structured attributes. A description of these extensions can

be found in (Michalski, 1980).

3.1.2 Literals

Research in inductive logic programming (ILP), in particular on FOIL and related sys-

tems (Quinlan & Cameron-Jones, 1995a), has produced algorithms for solving classi�cation

problems in �rst-order logic. In these cases the target concept is usually represented as a

PROLOG relation in the form

concept name(A1,A2,: : :,An)

where concept name is an n-ary PROLOG predicate denoting the concept to learn. Its n

arguments represent the attributes that have been measured for this concept. Thus each

propositional learning problem of the type discussed in section 3.1.1 can be transformed

into a �rst-order learning problem by turning examples into PROLOG literals using the

class variable as the predicate symbol and the attributes' values as arguments. All selectors

discussed in the previous sections can be trivially used as possible conditions in the learned

rules.

However, in addition to these selectors the user can also specify relations between several

attributes as background knowledge in the form of PROLOG predicates. These (or their

negations) can then be used as additional conditions in the �nal rules. A typical example

is the king-rook-king (KRK) chess endgame learning task (Muggleton et al., 1989) that has

developed into a standard benchmark problem for ILP algorithms. The goal concept is to

recognize illegal white-to-move positions in this endgame. These can be positions where two

or more pieces are on the same square or positions where the black king is in check. The

target predicate is illegal(WKF,WKR,WRF,WRR,BKF,BKR) where the six arguments specify

the �le and the row coordinates of the squares of the three pieces. Using only selectors no
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meaningful concept representation can be learned from this task (Muggleton et al., 1989).

However, if additional background relations like adjacent/2, </2, or =/2 can be used as

possible conditions, the �nal rules are able to check whether two pieces are on the same

�le or rank, on adjacent squares etc. With the help of these predicates, simple rules can

be learned for this concept. Note that the equality (and inequality) relations here are used

in a di�erent way as in section 3.1.1: while selectors can only compare the value of one

attribute with a certain domain constant, general literals are able to compare the values of

two attributes with each other.

In many cases these background relations can not only make use of the available at-

tributes, but also introduce new variables that can be used for subsequent tests in this rule.

For example the adjacent/2 relation can be added as a condition with one old and one

new variable. The condition adjacent(WKF,X) binds the new variable X to the �les that

are adjacent to �le on which the white king is located. Subsequent conditions of this rule

can then use the variable X in their arguments. New variables also allow the construction

of recursive rules.

A problem caused by conditions introducing new variables is that they have no discrim-

inatory power. The literal adjacent(WKF,X) is true for KRK positions, be they legal or

illegal, because every �le on which the white king is placed will always have an adjacent

�le X. Top-down hill-climbing algorithms that learn rules by adding one conditions at a

time will thus attribute low importance to these conditions. This is also the main reason

why propositional problems are usually translated in the way we speci�ed above. Alterna-

tive methods, like using a target relation with one argument | an index to the examples

| and one additional binary background relation for each attribute that takes the index

and the attribute's value as arguments, may easily run into the above problems (see also

section 4.3.6).

3.1.3 Syntactic Restrictions

Considering general �rst-order literals as conditions in the body of a rule may lead to

huge, even in�nite search spaces. The original version of FOIL (Quinlan, 1990) for example

allowed all possible combinations of variables in the arguments of the used literals. Thus

the search space grew exponentially with the number of attributes in the data set, which

severely handicapped the program in terms of both e�ciency and accuracy.

One observation that has been made is that in most applications the available variables

have di�erent types. Similarly many of the available background literals only make sense

when their arguments are instantiated with variables of certain types. For example, list-

processing predicates need list-valued variables, arithmetic operations need numbers and

so forth. These argument types can be speci�ed in advance so that attributes are only

used in appropriate places. The places where new variables can appear can be speci�ed by

so-called mode declarations. Arguments where only bound variables can appear are called

input variables , whereas arguments where new variables can be used as well are called

output variables . Type and mode declarations have already been used in early ILP systems

such as MIS (Shapiro, 1981). Many predicates are also symmetric in some of their input

arguments, i.e. they will produce the same result no matter in which order these arguments

are given. These symmetries can also be exploited by various programs.
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The programs used in (F�urnkranz, 1994a, 1996) for example can specify background

knowledge with statements like

known literal(adjacent(X,Y),[X-file,Y-file],[+,+],[X-Y]).

This declaration speci�es that the literal adjacent/2 can be used as a rule condition with

two input variables (+) of the type file. The literal is symmetric in the variables X and

Y. A more detailed description of this syntax can be found in the appendix of (F�urnkranz,

1994a). Similar declarations can be made in mFOIL (D�zeroski & Bratko, 1992), recent

versions of FOIL (Quinlan & Cameron-Jones, 1995a), PROGOL (Muggleton, 1995), and

others. Restrictions of this type can signi�cantly reduce the hypothesis space. Similar

e�ects can also be achieved by restricting the domains of the selectors. Several systems

allow declarations that declare certain values of an attribute as constants that can be used

in speci�ed places like the right-hand side of a selector. For example it may be useful to

specify that selectors for list-valued attributes will only be used with the empty list, but

not with arbitrary lists (Quinlan & Cameron-Jones, 1995a).

Many rule learning systems also place upper bounds on the complexity of the learned

rules in order to restrict the search space. PROGOL, e.g., has a parameter that can be used

to specify a maximum rule length. FOIL allows the speci�cation of a maximum variable

number and a maximum variable depth

4

. It also makes sense to allow only linked literals,

i.e. to literals that share variables with the head of the clause or with another linked literal

(Helft, 1989). Severe restrictions have to be used when learning recursive programs in order

to avoid in�nite recursions. This problem has been discussed at length in (Cameron-Jones

& Quinlan, 1993).

3.1.4 Relational Clich

�

es

In some cases it may proof useful for top-down algorithms to not only add one condition at

a time, but to add a conjunction of conditions at once. The classical example is to avoid

myopic behavior in hill-climbing algorithms. The simplest approach to achieve this sort of

behavior is to declare speci�c conjunctions as if they were single background literals. For

example in the known literal/4 declaration shown above the �rst argument does not have

to be a single literal; it could also be a conjunction that for example consists of one literal

that introduces a new variable (a generator) and one condition that uses this variable.

A similar idea has been explored further in (Silverstein & Pazzani, 1991). Relational

clich�es are conjunctions of the type explained above with the di�erence that the predicate

does not have to be exactly speci�ed. Instead the user can provide a place-holder that stands

for a certain class of predicates. For this purpose the predicates in the background knowledge

can often be organized into a symbol hierarchy, in which the leaves are the predicates and the

interior nodes represent certain predicate classes that can be used as predicate variables. A

typical example | the so-called threshold comparator clich�e | is a conjunction consisting of

a literal that introduces a new measurement and a selector that compares this new variable

to a domain value. Silverstein and Pazzani (1993) also demonstrate a method for learning

useful clich�es from experience. Similar ideas for improving the learning behavior by adding

4. The original attributes have depth 0. A new variable has depth i+1, where i is the maximum depth of

all old variables of the literal where the new variable is introduced.
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more than one literal at a time can also be found in ML-SMART (Bergadano & Giordana,

1988) and FOCL (Pazzani & Kibler, 1992). These systems allow to replace conditions of a

rule with the body of their de�nitions in the background knowledge.

In a later version of ML-SMART (Bergadano, Giordana, & Ponsero, 1989) one could

also specify so-called predicate sets. A predicate set is a set of literals that are known to

be relevant for the de�nition of a certain predicate. Although the precise de�nition of the

predicate is not available, it is known that it will contain a subset of these literals, which

will be identi�ed by the program.

3.1.5 Rule Models

Building upon previous work in ML-SMART, Giordana and Sale (1992) describe a simple

method for modeling the entire hypothesis space with a single clause consisting of multiple

predicate sets, a so-called template. Predicate sets have later been generalized to clause

sets (Bergadano & Gunetti, 1995). These are enhanced PROLOG programs, where sets of

variables, literals and clauses can appear in the de�nition. The task of the learner is to �nd

the best rules de�ned by appropriate subsets of these clause sets.

Similarly, the RDT rule learning system has expanded the relational clich�es idea to

modeling the entire hypothesis space instead of only certain conjunctions (Kietz & Wrobel,

1992). Hierarchically organized predicate variables can be used for writing down rule models

that can be instantiated by replacing all predicate variables in a rule models with a suitable

predicate. These rule models can be organized into a lattice that can be e�ciently searched

in a top-down fashion.

Ad�e et al. (1995) introduce a framework for comparing certain language bias mecha-

nisms in bottom-up separate-and-conquer learning algorithms. This framework combines

the advantages of rule models and clause sets by recognizing that predicate variables implic-

itly de�ne predicate sets. It has later been generalized into the DLAB declarative language

bias formalism (Dehaspe & De Raedt, 1996), which can also specify the number of items

that have to be chosen from an explicitly or implicitly de�ned predicate set.

The most exible and most expressive framework for explicitly modeling hypothe-

sis spaces are antecedent description grammars (Cohen, 1994) as used in the top-down

separate-and-conquer learning algorithm GRENDEL. An antecedent description grammar

is a context-free grammar whose symbols are logical literals. Its terminal symbols are liter-

als from the background knowledge. The grammar has a designated starting symbol which

will be successively expanded using the rules of the grammar. Sentences, i.e. rules consist-

ing only of terminal symbols, can be evaluated as in conventional algorithms. Sentential

forms, i.e. rules where not all non-terminal symbols have been expanded into terminals, can

be evaluated by replacing non-terminal symbols with a disjunction of all possible terminal

symbols that can be derived from them. In many cases non-terminal symbols will expand to

a disjunction that will always be true. These special cases can often be e�ciently recognized

and e�ciently computed.

Although antecedent description grammars are certainly the most exible and most ex-

pressive rule modeling technique, they are harder to understand than other rule models.

While it is usually obvious whether a certain clause can be generated from a certain clause

set, it is considerably harder to determine whether a certain clause can be derived from an

antecedent description grammar. Ad�e et al. (1995) and Bergadano and Gunetti (1995) dis-
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cuss several of the above approaches in more detail and evaluate their respective weaknesses

and merits.

3.2 Dynamic Language Bias

While the approaches discussed in the last section o�er a considerable exibility for de�ning

a language bias, they are all static. Once a language bias is de�ned it cannot be changed

without user intervention. In this section we will discuss approaches that can dynamically

adjust their language bias to the problem at hand via a so-called bias shift (Utgo�, 1986):

If the hypothesis space does not include an acceptable concept description, these techniques

allow the learner to shift to a weaker bias, i.e. allow to express concepts in a more expressive

representation language.

3.2.1 Language Hierarchies

A simple approach for implementing a procedure for dynamically shifting the language

bias has been �rst proposed for the �rst-order theory revision system CLINT (De Raedt &

Bruynooghe, 1990; De Raedt, 1992). CLINT makes use of a prede�ned (possibly in�nite)

series of hypothesis languages with increasing expressive power. Whenever it cannot learn a

complete and consistent concept with the given language it tries again with the next, more

expressive language. Although CLINT is not a separate-and-conquer learning algorithm,

this technique could be easily adapted for members of this family. In fact this idea has

already been used in the NINA separate-and-conquer framework for analyzing bottom-up

inductive logic programming algorithms (Ad�e et al., 1995). Furthermore, techniques for

explicitly modeling the language bias (see section 3.1.5) could be easily used for de�ning a

series of hypothesis languages with increasing expressiveness like the ones used in CLINT.

Other separate-and-conquer learning systems like FOIL or PROGOL have parameters for

controlling syntactic aspects of the hypothesis language (see section 3.1.3) that could be

systematically varied to allow expressing concepts in more complex languages. Kohavi and

John (1995) describe an approach how such parameters could be automatically adjusted.

3.2.2 Constructive Induction

In its original use (Utgo�, 1986) the term bias shift referred to the process of automati-

cally extending the representation language by constructing new features, a process that is

commonly known as constructive induction (Matheus, 1989). Contrary to the approaches

of section 3.2.1 the user does not have to prede�ne a series of hypothesis languages, but

constructive induction systems can automatically extend their representation language by

constructing new useful features or predicates on the basis of the given information. This

will not necessarily extend the space of representable concepts (new predicates could be

replaced by their de�nition), but adjusting the vocabulary to the task at hand may make

the learner's task easier.

The simplest approach to constructive induction with separate-and-conquer learning al-

gorithms is to apply a prede�ned set of arithmetic and logical operators to certain attributes

and compute new attributes from them. For example AQ17-DCI (Bloedorn & Michalski,

1991) | and to some extend AQ15 (Michalski et al., 1986) | can compute equality and

inequality relations, use addition and multiplication operators, and can determine optima,
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averages and frequencies in sets of features, reminiscent of some ideas previously used in the

BACON discovery system (Langley, Simon, & Bradshaw, 1987). The generated attributes

are then evaluated with an attribute quality function which basically computes the number

of attribute values that only occur in instances of single target classes.

However, a better evaluation for the quality of generated attributes might result from an

analysis of the performance of the learning algorithm that uses the new features. Many ap-

proaches to constructive induction implement this idea with a so-called wrapper approach

5

:

They use a stand-alone induction algorithm and wrap around it an algorithm that analyzes

the performance of the induction algorithm by estimating predictive accuracies, looking

for co-occurrences of certain conditions in the rules etc. Based on these observations the

wrapper changes the input representation or certain parameters of the learning algorithm to

improve the result. The prototypical system for this approach is the AQ17-HCI algorithm

(Wnek & Michalski, 1994), which incorporates several constructive induction operators

based on ideas used earlier in the INDUCE system (Michalski, 1980). AQ17-HCI scans

the rules generated by the AQ15 induction algorithm (Michalski et al., 1986) for patterns

of co-occurring values of a single attributes, co-occurring conjunctions, or even subsets of

the induced rule set that have a high pattern strength. Pattern strength is evaluated by

computing the ratio of positive examples over negative examples covered by the pattern

(with the possible addition of a factor proportional to the number of positive examples

uniquely covered by this pattern). Patterns that have a high strength will be turned into

additional attributes. Feature subset selection and discretization algorithms can also be

cast into this framework of constructive induction as a bias shift operation. AQ17-MCI

(Bloedorn et al., 1993) integrates the approaches taken by AQ17-DCI and AQ17-HCI into

a single system that is able to learn meta-rules that specify which types of constructive

operators are suitable for which type of tasks.

Similar ideas are implemented in CiPF (Pfahringer, 1994a, 1994b) which uses a propo-

sitional top-down separate-and-conquer algorithm as the basic induction module and in

CN2-MCI (Kramer, 1994) which introduces a new powerful constructive induction operator

for CN2-like algorithms. This operator constructs a new attribute from the cross-product

of attributes that often occur together in di�erent rules. Both systems evaluate the quality

of generated features by estimating the predictive accuracy of the concepts learned with the

new representation and stop when no further improvement is possible.

All approaches mentioned above either invoke constructive induction before the learning

process or after a careful analysis of the result of previous learning episodes. A few other

approaches that directly invoke constructive induction operators during the learning process

have been developed in inductive logic programming. In this context constructive induction

is often called predicate invention, as it is not concerned with the construction of new

features, but of new predicates.

CHAMP (Kijsirikul et al., 1992) reverts to inventing a new predicate whenever the

top-down �rst-order separate-and-conquer learner CHAM (Kijsirikul et al., 1991) cannot

complete the current clause by appending a literal from the background knowledge without

excluding all positive examples or without exceeding a certain clause length.

6

In that case

CHAMP constructs a new predicate. The arity of this predicate is determined by a search

5. The term wrapper is due to Kohavi (1995).

6. This clause length is computed dynamically using FOIL's encoding length restriction (see section 5.1).
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for a minimal set of variables that is able to form a discriminating relation between the

covered positive and negative instances. A de�nition for the invented predicate is then

induced from these examples by recursively calling CHAMP with the invented predicate as

the target predicate.

A very similar approach | called closed-world specialization | is taken in (Bain,

1991) and (Srinivasan, Muggleton, & Bain, 1992). Here over-general clauses learned by

the bottom-up �rst-order separate-and-conquer learner GOLEM (Muggleton & Feng, 1990)

are specialized by adding a negated new predicate. The intuition behind this approach is

that the original rule will already cover more positive than negative examples and the new

predicate will only be used for denoting the few exceptions to the rule. A de�nition for

this predicate will be learned by reverting the role of the positive and negative examples

covered by the original rule. Note that generalizing (specializing) the de�nition of the newly

invented predicate will specialize (generalize) the rules containing its negation.

4. Search Bias

There are several options for searching a given concept representation language for accept-

able rules. First, di�erent search algorithms can be employed, from a greedy hill-climbing

approach to an exhaustive search of the complete hypothesis space (section 4.1). Second,

the hypothesis space can be searched in di�erent directions: hypotheses can be re�ned

either by specialization or by generalization (section 4.2). Finally, various heuristic evalu-

ation functions can be used to compare di�erent candidate clauses (section 4.3). All these

search options can be implemented with the help of the various subroutines of the procedure

FindBestRule (�gure 4).

4.1 Search Algorithms

This section will discuss various options for searching the space of possible hypotheses

that can be implemented into the FindBestRule procedure (see �gure 4). The simplest

method would be to systematically generate all possible rules and check for each of them

whether it only covers positive examples. Rivest (1987) discusses such an algorithm that

examines all rules up to a maximum rule length k. Whenever it �nds a rule that covers only

positive examples it adds this rule to the current rule set, removes the covered examples,

and continues the search until all examples are covered. This simple algorithm will �nd a

complete and consistent concept description if there is one in the search space. For a �xed

k the time complexity of the algorithm is polynomial in the number of tests to choose from.

However, this algorithm was only developed for theoretical purposes. Its severe draw-

back (besides ine�ciency) is that it does not use any evaluation of the rules except for

predictive accuracy. Rivest (1987) notes that it would be advisable for practical purposes

to generate the rules ordered by simplicity. Thus simple consistent rules will be found �rst

and will therefore be preferred. For similar reasons most practical algorithms have access to

a preference criterion that estimates the quality of a found rule as a trade-o� between sim-

plicity and accuracy (see also section 4.3) and use this heuristic to guide its search through

the hypothesis space.

16



Separate-and-Conquer Rule Learning

4.1.1 Hill-Climbing

The most commonly used search algorithm in separate-and-conquer learning systems is hill-

climbing, which tries to �nd a rule with an optimal evaluation by continuously choosing the

re�nement operator that yields the best re�ned rule and halting when no further improve-

ment is possible. Hill-climbing tries to discover a global optimum by performing a series

of locally optimal re�nements. The simple algorithm �gure 3 employs such an approach.

Hill-climbing can be trivially implemented in the procedure FindBestLiteral of �gure 4

by specifying that FilterRules will only return the �rst and best rule of the list of all

re�ned rules.

The basic problem of this method is its myopia due to its elimination of all one-step

re�nements but one. If a re�ned rule is not locally optimal, but one of its re�nements

is the global optimum, hill-climbing will not �nd it unless it is also a re�nement of the

local optimum. A typical example for this myopia are �rst-order literals that introduce

new variables and have no discriminatory power as discussed in sections 3.1.2 and 4.3.6.

Nevertheless, most �rst-order top-down separate-and-conquer algorithms like FOIL and its

many relatives (Quinlan & Cameron-Jones, 1995a) use hill-climbing because of its e�ciency.

A simple technique for decreasing search myopia in hill-climbing is to look further ahead.

This can be done by choosing the best rule resulting from performing n re�nement steps

at once instead of only 1. This approach has been implemented in the ATRIS rule learning

shell (Mladeni�c, 1993). Its major de�ciency is its ine�ciency, as the search space for each

re�nement step grows exponentially with n.

4.1.2 Beam Search

Many algorithms try to alleviate the myopic behavior of hill-climbing by using beam search.

In addition to remembering the best rule found so far, beam search also keeps track of a �xed

number of alternatives, the so-called beam. While hill-climbing has to decide upon a single

re�nement at each step, beam search can defer some of the choices until later by keeping the

b best rules in its beam. It can be implemented by modifying the FilterRules procedure

of a hill-climbing algorithm so that it will return the b best elements of the re�nements of

the previous beam. Setting b = 1 will yield hill-climbing again.

Beam search e�ectively maintains hill-climbing's e�ciency (reduced by a constant fac-

tor), but can yield better results because it explores a larger portion of the hypothesis space.

Thus many separate-and-conquer algorithms use beam search in their FindBestRule pro-

cedures. Among them are AQ (Michalski et al., 1986), CN2 (Clark & Niblett, 1989),mFOIL

(D�zeroski & Bratko, 1992), and BEXA (Theron & Cloete, 1996). Extreme cases of myopia,

like non-discriminatory literals, are nevertheless a problem for beam search algorithms.

4.1.3 Best-First Search

Hill-climbing and beam search algorithms are both limited by myopia that results from

their restriction to storing only a �xed number of candidate rules and immediately pruning

the others. Best-�rst search, on the other hand, selects the best candidate rule (Select-

Candidates) and inserts all its re�nements into the sorted Rules list unless unpromising

rules are pruned by the StoppingCriterion. FilterRules will not remove any rules.

Thus best-�rst search does not restrict the number of candidate rules and may be viewed
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as a beam search with an in�nite beam size b = 1. ML-SMART (Bergadano, Giordana,

& Saitta, 1988) implements such a strategy with several coverage-based pruning heuristics

that discard unpromising rules. In (Botta, Giordana, & Saitta, 1992) this approach has

been shown to compare favorably to hill-climbing in an arti�cial domain.

When no pruning heuristics are used (i.e., StoppingCriterion always returns false)

the search space will be completely exhausted and it is guaranteed that an optimal solution

will be found. Nevertheless, the A* algorithm (Hart, Nilsson, & Raphael, 1968) allows to

prune large portions of the search space without losing an optimal solution. This optimality

can be guaranteed if the search heuristic is admissible. An admissible search heuristic usually

consists of two components, one for evaluating the quality of a rule and one for computing

an estimate for the quality of the rule's best re�nement. It has to be ensured that the latter

estimate will always return an optimistic value, i.e. it has to overestimate the quality of the

best re�nement of the rule. If this optimistic estimate is already worse than the evaluation

of the best rule found so far than the re�nements of the current rule need not be further

investigated, because their true evaluation can only be worse than the optimistic estimate

and thus be worse than the best rule.

The ILP system PROGOL (Muggleton, 1995) implements an A* best-�rst search. It

generates the most speci�c clause in the hypothesis space that covers a randomly chosen

example and searches the space of its generalizations in a top-down fashion. It guides this

search by a heuristic that computes the number of covered positive examples minus the

covered negative examples minus the length of the rule. Incomplete rules are evaluated by

subtracting an estimate for the number of literals that are needed to complete the rule and

adding the number of covered negative examples to this heuristic value. By doing so it is

assumed that the completed rule will cover all positive instances the incomplete rules covers,

but none of the negative instances, which clearly is an optimistic assumption. With this

admissible search heuristic PROGOL performs an exhaustive search through the hypothesis

space. However, for longer rules (> 4 conditions) this exhaustive search is too ine�cient for

practical problems (D�zeroski et al., 1996). A similar heuristic is used in FOIL's hill-climbing

algorithm for safely pruning certain branches of the search space (Quinlan, 1990). It might

be worth-while to try a best-�rst search with this heuristic.

However, there is considerable evidence that exhausting a search space can lead to worse

results because the chances that rules are encountered that �t the training data by chance

are increased. For example, (Webb, 1993) has used the e�cient best-�rst search algorithm

OPUS (Webb, 1995) for inducing decision lists in a covering framework and has surprisingly

found out that the generalizations discovered by beam search with CN2 are often superior

to those found by an exhaustive best-�rst-search. Quinlan and Cameron-Jones (1995b)

have later studied this problem of oversearching by studying the behavior of a CN2-like

algorithm at di�erent beam widths. They have empirically veri�ed in a variety of domains

that too large a beam width may lead to worse results. This is also con�rmed by early

results from statistical learning theory (Vapnik & Chervonenkis, 1971, 1981), where it has

been observed that larger hypothesis spaces can lead to poorer generalization behavior (see

also (Saitta & Bergadano, 1993)).
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4.1.4 Stochastic Search

Another approach to escape the danger of getting stuck in local optima is to use a stochastic

search, which be implemented into the framework of �gure 4 by allowing randomness in the

RefineRule procedure. In that case this procedure will not re�ne a given rule step by

step, but may (with a certain probability) also perform bigger leaps, so that the learner has

the chance to focus on entirely new regions of the hypothesis space. In the simplest case

each call to RefineRule will return a random rule of the search space. More elaborate

methods employ randomized generalization and specialization operators. The probability

with which these operators are selected is often correlated with the quality of the resulting

rule, so that better rules are selected with a higher chance, but seemingly bad candidates

also get a fair chance to be improved with further re�nement steps (stochastic hill-climbing).

The probability with which suboptimal rules are selected may also decrease over time so

that the algorithm will eventually stabilize (simulated annealing (Kirkpatrick, Gelatt, &

Vecchi, 1983)).

Kononenko and Kova�ci�c (1992) and Mladeni�c (1993) present and compare a variety of

such algorithms, ranging from an entirely random search to an approach based on Markovian

neural networks (Kova�ci�c, 1991). The latter algorithm has later been generalized into a

�rst-order framework (Kova�ci�c, 1994b). The resulting system, MILP performs a stochastic

hill-climbing search with simulated annealing. Whenever it reaches a local optimum, it

backtracks to a previous rule, whose successors have not yet been examined, in order to get

a new starting point. A similar approach is implemented in the SFOIL algorithm (Pompe

et al., 1993).

Another family of stochastic separate-and-conquer rule learning algorithms choose a

genetic algorithm (Goldberg, 1989) for �nding good rules. One such system, SIA (Venturini,

1993), selects a random starting example and searches for a suitable generalization in a

bottom-up fashion. It maintains a set of s candidate rules | a generation | which is

initialized with random generalizations of the selected examples. The next generation is

obtained by randomly generating new rules, randomly generalizing old rules, or randomly

exchanging conditions between rules. The resulting rules are evaluated using a weighted

average of their accuracy and complexity. The best s rules are selected to form the next

generation. This process is repeated until the best rule remains stable for a certain number

of generations. A similar approach was used in GA-SMART for learning �rst-order rules in

a top-down fashion (Giordana & Sale, 1992).

4.2 Search Strategy

An important decision that has to be made is in which direction the hypothesis space will

be searched. Rules can be organized into a generality lattice, the so-called version space

(Mitchell, 1982), where rule A is considered to be more general than rule B i� A covers all

instances that are covered by B. B is then said to be more speci�c than A. A separate-and-

conquer rule-learning algorithm can employ di�erent strategies for searching this lattice:

top-down (general-to-speci�c), bottom-up (speci�c-to-general), and bidirectional . These op-

tions can be implemented into the RefineRule procedure of �gure 4. After a rule has been

initialized appropriately with InitializeRule, RefineRule will specialize it when using

a top-down strategy and generalize it in the case of a bottom-up search strategy.
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4.2.1 Top-Down Search

Top-down search is most commonly used in separate-and-conquer learning algorithms. The

hypothesis space of possible rules is searched by repeatedly specializing candidate rules.

Typically the list of candidate rules is initialized with the rule with the sole condition true,

which usually is the most general rule in the hypothesis space. Candidate rules are then re-

�ned using specialization operators, most typically by adding conditions as in �gure 3. Most

declarative bias formalisms like DLAB and ADG (see section 3.1.5) return a specialization

re�nement operator that can be used in the RefineRule procedure.

Almost all separate-and-conquer learning algorithms use a top-down search strategy.

AQ, for example, selects a random example and repeatedly specializes the most general

rule until it still covers the selected example, but none of the negative examples. Later

algorithms, like CN2 and FOIL do not aim at covering a speci�c positive example, but

specialize the most general rule with the goal of covering as many positive examples as

possible without covering a negative example. Most recently, the ILP system PROGOL

(Muggleton, 1995) has returned to using a starting example for de�ning a lower bound on

the search space. Thus, as AQ does in propositional logic, PROGOL looks for a rule that is

more general than the most speci�c clause in the representation language that still covers

the selected positive example.

4.2.2 Bottom-Up Search

In bottom-up search the hypothesis space is examined by repeatedly generalizing a most

speci�c rule. In the propositional case this can simply be a randomly chosen positive

example, while �rst-order systems usually construct a starting clause that is more speci�c

than any other clause that entails this example. Usually this clause is constructed by adding

conditions that can be deduced from the background knowledge to the body of a rule that

has a generalization of a randomly chosen example as its head. This starting rule is then

generalized to increase the number of covered examples.

GOLEM, for example, forms a starting clause by computing the relative least general

generalization (Plotkin, 1971) of a set of randomly chosen pairs of positive examples. This

starting clause is successively generalized by greedily selecting additional positive examples

that will be used for building the rlgg. ITOU (Rouveirol, 1992) constructs a starting clause

by adding all conditions than can be proved from the background knowledge (saturation). A

representation change called attening that removes all function symbols from the examples

and the background knowledge allows to implement generalization with a single operator

that drops literals from rules (truncation) (Rouveirol, 1994). NINA (Ad�e et al., 1995)

is a bottom-up �rst-order separate-and-conquer algorithm that uni�es several bottom-up

ILP algorithms such as GOLEM (Muggleton & Feng, 1990), ITOU (Rouveirol, 1992), and

CLINT (De Raedt, 1992). As the most speci�c clauses can be exponentially large, even

in�nite in the case of general �rst-order horn-clause logic (Plotkin, 1971), the hypothesis

space has to be restricted to a subset of �rst-order logic using syntactic (section 3.1.3) or

semantic (section 4.3.6) restrictions.

There are only a few propositional bottom-up separate-and-conquer learning algorithms.

One such example is SIA (Venturini, 1993) which uses a genetic algorithm for searching the

space of generalizations of a randomly selected example. However, the stochastic search
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does not progress in a strictly bottom-up fashion. Another propositional rule learning

system, DLG (Webb, 1992), successively generalizes a starting example by constructing a

propositional least general generalization of the current rule and the next positive example.

If the resulting rule covers more positive examples without covering any negative examples

it is retained.

4.2.3 Bidirectional Search

The third option for searching the hypothesis space is to combine the previous approaches

into a bidirectional search that can employ both specialization and generalization operators

during the search for good rules. For example, the basic induction algorithm of the SWAP-1

rule learning procedure checks whether dropping or replacing a previously learned condition

can improve the rule's purity before it tries to improve it by adding a new condition.

Similarly, IBL-SMART (Widmer, 1993) can perform a generalization step by dropping a

condition whenever its top-down search leads to a rule that covers too few positive examples

(according some prede�ned threshold). However, both algorithms preserve an overall top-

down tendency in its search.

The JoJo algorithm (Fensel & Wiese, 1993) on the other hand starts the search at an

arbitrary point in the hypothesis space (e.g., a randomly generated rule) and improves it by

applying generalization and specialization operators, i.e., by adding or dropping conditions.

Recent additions allow the system to directly replace conditions in rules (Fensel & Wiese,

1994) and to use general �rst-order literals (Wiese, 1996). The ATRIS rule learning shell

(Mladeni�c, 1993) allows to perform a similar bidirectional search, but replaces JoJo's hill-

climbing search with less myopic stochastic search procedures as in (Kononenko & Kova�ci�c,

1992) or a generalized hill-climbing that allows to perform a �xed number of re�nement

operations at a time.

4.3 Search Heuristics

The most inuential bias is the search heuristic, which estimates the quality of rules found

in the search space and ideally guides the search algorithms into the right regions of the

hypothesis space. In this section we describe several commonly used heuristics, which can

be implemented into the EvaluateRule subroutine, and the intuitions behind them.

In general the search heuristics used in separate-and-conquer rule learning are similar to

the heuristics used in other inductive learning algorithms like those discussed in (Mingers,

1989; Buntine & Niblett, 1992). The major di�erence between heuristics for rule learning

and heuristics for decision tree learning is that the latter evaluate the average quality of

a number of disjoint sets (one for each value of the attribute that is tested), while rule

learning approaches only evaluate the quality of the set of examples that is covered by the

candidate rule.

All common heuristics are based on determining several basic properties of a candidate

rule, like the number of positive and negative examples that it covers. Minor variations

in counting are possible, as for example in FOIL (Quinlan, 1990) which does not rely on

counting instances but instead counts the number of di�erent instantiations of the rule

body that allow to infer a given example (counting proofs). The relative merits of these

approaches have not yet been evaluated.
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In subsequent sections we will use the following basic measures:

P : : : the total number of positive examples

N : : : the total number of negative examples

r : : : the candidate rule

r

0

: : : the predecessor of r, i.e. r 2 RefineRule(r

0

)

p : : : the number of positive examples covered by r

n : : : the number of negative examples covered by r

l : : : number of conditions in r

x

0

: : : denotes the value of x for r

0

4.3.1 Basic Heuristics

As the goal of the FindBestRule procedure is to �nd a rule that covers as many positive

examples while covering as few negative examples as possible, most search heuristics try to

�nd a trade-o� between these two conditions. The most commonly used among them are:

Accuracy:

A(r) =

p+ (N � n)

P +N

�

=

p� n

This measure evaluates the accuracy of r as a theory containing only one rule. It

computes the percentage of correctly classi�ed examples, i.e., the positive examples

covered by rule plus the negative examples not covered by the rule. As P and N are

constant for all candidate rules, maximizing accuracy amounts to maximizing p� n.

In this form it is part of the admissible search heuristic used in PROGOL (Muggleton,

1995). It is also used in I-REP (F�urnkranz & Widmer, 1994), which will be discussed

in section 5.4, where we will also mention some de�ciencies of this measure.

Purity:

P (r) =

p

p+ n

The simplest approach is to evaluate rules with their purity, i.e., the percentage of

positive examples among the examples covered by the rule. This measure will attain

its optimal value when no negative examples are covered. However, it does not aim at

covering many positive examples. It is used in the GREEDY3 (Pagallo & Haussler,

1990) and SWAP-1 (Weiss & Indurkhya, 1991) algorithms.

Information content:

IC(r) = � log

p

p+ n

Sometimes the logarithm of the rule's purity is used, which measures the amount of

information contained in the classi�cation of the covered examples. This estimate is

essentially used in PRISM (Cendrowska, 1987). It is basically equivalent to the purity

estimate in the sense that a set of rules ordered by ascending information content will

exhibit the same order as when ordered by descending purity. Thus its disadvantages

apply here as well. The main advantage of using a logarithmic scale is that it tends

to assign higher penalties to less frequent events.
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Entropy:

E(r) = �

p

p+ n

log

p

p+ n

�

n

p+ n

log

n

p+ n

The entropy is the weighted average of the information content of the positive and

negative class. Originating from the ID3 decision tree learning system (Quinlan, 1983),

this measure has been used in early versions of the CN2 learning algorithm (Clark &

Niblett, 1989). However, it su�ers from similar de�ciencies as purity and information

content and has later been replaced by the Laplace estimate (Clark & Boswell, 1991).

Cross Entropy:

CE(r) = �

p

p+ n

log

p

p+n

P

P+N

�

n

p+ n

log

n

p+n

N

P+N

The cross entropy is an information theoretic measure for the distance between the a

priori distribution of examples and the a posteriori distribution of the examples that

are covered by r. It has been used in the J-measure (Goodman & Smyth, 1988) and

in the signi�cance tests for rules used in CN2 (Clark & Niblett, 1989). Both will be

discussed below.

Laplace estimate:

LAP (r) =

p+ 1

p+ n+ 2

The Laplace estimate penalizes rules with low coverage. If a rule covers no examples,

its Laplace will be

1

2

(random guessing). On the other hand, if the rule's coverage goes

to in�nity, LAP (r) converges towards P (r).

7

Because of its simplicity this heuristic

is quite popular and is used in CN2 (Clark & Boswell, 1991), mFOIL (D�zeroski &

Bratko, 1992), CLASS (Webb, 1993), BEXA (Theron & Cloete, 1996) and several

others.

m-estimate:

M(r) =

p+m

P

P+N

p+ n +m

Them-estimate generalizes the Laplace so that rules with 0-coverage will be evaluated

with the a priori probability of the positive examples in the training set instead of

1

2

. The parameter m can be used to control the inuence of the a priori probability.

The Laplace estimate can be obtained from the m-estimate for m = 2 in problems

with an equal number of positive and negative examples (strati�ed sampling). Both,

the Laplace and the m-estimate can also be used for estimating probabilities in more

complicated formulas. The m-estimate is primarily used in CN2 (Clark & Boswell,

1991) and mFOIL (D�zeroski & Bratko, 1992).

7. In its general form the Laplace estimate has the number of classes c in its denominator, so that it will

return

1

c

for rules with no coverage.
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ls-content:

LS(r) =

p+1

P+2

n+1

N+2

�

=

p+ 1

n+ 1

In its general form, the ls-content divides the proportion of positive examples that

are covered by the current rule by the proportion of covered negative examples, both

estimated with the Laplace correction. As the denominators P + 2 and N + 2 remain

constant inside the FindBestRule procedure, they can be omitted without changing

the behavior of the program. In its more general form it is used in HYDRA (Ali &

Pazzani, 1993) for assessing the quality of rules in multi-class problems.

Correlation:

CORR(r) =

p+tn�fn�n

p

0

+n

0

� (

p

0

�n

0

p

0

+n

0

)(

p+n�(tn+fn)

p

0

+n

0

)

(1� (

p

0

�n

0

p

0

+n

0

)

2

)(1� (

p+n�(tn+fn)

p

0

+n

0

)

2

)

tn = n

0

� n; fn = p

0

� p

This correlation estimate has been suggested for the top-down hill-climbing algorithm

FOSSIL (F�urnkranz, 1994b). It computes the correlation between the true split of

the examples covered by r

0

into positive (p

0

) and negative (n

0

) and the split suggested

by its re�nement r = r

0

[ c. r will cover p positive and n negative examples, and

leave tn negative examples and fn positive examples uncovered. The result is a value

between �1 and +1. Negative values indicate a negative correlation, which suggests

to add the negation of the condition c to r

0

. For a derivation of this formula, its

e�cient computation, and a discussion of its advantages we have to refer the reader

to (F�urnkranz, 1994b).

4.3.2 Complexity Estimates

There are a variety of heuristics for measuring the complexity of candidate rules. Among

them are:

Rule Length:

L(r) = l

This simple measure estimates the complexity of a rule with the number of its con-

ditions. For example it is used in components of the search heuristics of PROGOL

(Muggleton, 1995).

Positive Coverage:

C(r) = p

This measurement for the complexity of a rule is based on the assumption that shorter

rules are more general and thus cover a higher number of positive examples. DLG

(Webb, 1992) employs it as a search heuristic, but it is more often used as a weighting

function (as e.g. in FOIL (Quinlan, 1990)).

24



Separate-and-Conquer Rule Learning

Abductivity:

ABD(r) = 1�

l

G

l

S

This measure has been used in various versions of the SMART family of algorithms

(Botta & Giordana, 1993). It aims at measuring how well r is explained by the

available background knowledge. For this purpose it computes r

G

, a generalization

of r that can be obtained by repeatedly replacing conditions of r that match the

body of a rule in the background knowledge with the head of this rule (absorption).

Similarly, it computes r

S

, a specialization of r that can be obtained by adding these

rule heads to r (saturation). ABD(r) is the percentage of conditions that appear

in r

S

, but not in r

G

. If no background knowledge is available l

G

= l

S

= l and thus

ABD(r) = 0. For details we refer to (Botta & Giordana, 1993). In some versions l

G

is

approximated by l. l

S

can be approximated with the length of the language template

used in GA-SMART (see section 3.1.5). Venturini (1993) uses a propositional version

of this estimate that computes the proportion of attributes that are not tested in the

body of the rule.

Minimum Description Length:

MDL(H) = I(H) + I(EjH)

The minimum description length principle (Wallace & Boulton, 1968; Rissanen, 1978)

has recently gained popularity in inductive learning as a heuristic that aims at �nding

a trade-o� between the complexity and the accuracy of a hypothesis (George� &

Wallace, 1984). It is de�ned as the amount of information needed to transmit a

hypothesis H and the amount of information needed to transmit a set of examples E

with the help of this hypothesis. The latter task is usually reduced to transmitting

only the classi�cation of the examples which basically amounts to transmitting the

exceptions to the theory. The goal is to minimize this measure. Unfortunately, both

terms are not computable and have to be approximated. For various computable

approximations for rule learning we refer to (Kova�ci�c, 1994a, 1994b) and (Pfahringer,

1995a, 1995b). FOIL (Quinlan, 1990) uses a variant of the MDL principle as a stopping

criterion (see section 5.1).

These complexity heuristics are rarely used on their own, but often form components of

more complex heuristics that combine various measures into one evaluation function so that

di�erent aspects of a candidate rule can be taken into account. The most popular methods

for combining heuristics are described in the following sections.

4.3.3 Gain Heuristics

Gain heuristics compute the di�erence in the heuristic estimates between the candidate rule

r and its predecessor r

0

, i.e., it computes the heuristic gain that can be achieved by re�ning

r

0

to r. This di�erence is often multiplied with a weighting function,

8

so that its general

8. H(r

0

) will often be constant for all candidate clauses (e.g. when using hill-climbing), so that optimizing

G(r) for a constant function W (r) would produce the same behavior as directly optimizing H(r).
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form is the following:

G(r) = W (r)(H(r)�H(r

0

))

Some examples for gain heuristics are:

Weighted Information Gain:

WIG(r) = �C(r)(IC(r)� IC(r

0

))

The classical example for a gain heuristic is the weighted information gain heuristic

used in FOIL (Quinlan, 1990). Here the basic heuristic is information content and the

di�erence is weighted with the number of covered positive examples. The sign has to

be reversed as IC(r) is a heuristic that has to minimized so that IC(r)� IC(r

0

) < 0

will usually hold. In its original formulation (Quinlan, 1990) IC(r) and IC(r

0

) are

computed by counting proofs, while C(r) is computed by counting instances.

Coverage Gain:

CG(r) =

p� p

0

P

�

n� n

0

N

This heuristic is used for pruning in the POSEIDON algorithm (Bergadano et al.,

1992). In the case of specialization operators, where p

0

� p and n

0

� n, it measures

the increase in uncovered negative examples minus the decrease in covered positive

examples, for generalization operators vice versa.

ls-Gain:

LSG(r) = C(r)LS(r)� C(r

0

)LS(r

0

)

HYDRA (Ali & Pazzani, 1993) uses the gain in ls-content times coverage between a

rule and its re�nement as a search heuristic.

4.3.4 Weighted Heuristics

Many heuristics use weighting functions for combining several basic heuristics or for adjust-

ing the behavior of a single heuristic in a certain direction (as for example in the weighted

information gain heuristic discussed above). The general form of weighted heuristics is the

following:

WH(r) =

n

X

i=1

W

i

(r)H

i

(r)

Some of the best-known weighted heuristics are:

J-measure:

J(r) = C(r)CE(r)

The J-measure has �rst been described in (Goodman & Smyth, 1988) and later used

in the stochastic search experiments of (Kononenko & Kova�ci�c, 1992). Its weights the

cross entropy measure with the positive coverage complexity estimate.
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SMART+:

SMART (r) = aWIG(r) + b

C(r)

P

P (r) + cABD(r)

This and similar measures have been used in various versions of the ML-SMART and

GA-SMART algorithms (Botta et al., 1992; Giordana & Sale, 1992) and their succes-

sor, the SMART+ learning tool (Botta & Giordana, 1993). It computes the weighted

average of three terms, the weighted information gain used in FOIL, a weighted con-

sistency measure based on purity, and the abductivity measure. The weights a, b, and

c can be used to trade o� the relative importance of the three factors of the evaluation

function. Venturini (1993) uses a similar measure with a = 0.

4.3.5 Lexicographic Evaluation Functionals

Many heuristics are quite likely to evaluate di�erent rules with the same value, so that some

form tie breaking has to be used to establish a total order between the candidate rules.

Lexicographic evaluation functionals (lef s) (Michalski, 1983) are a general mechanism for

using a hierarchy of evaluation functions. A lef is an ordered set of pairs (H

i

(r); t

i

), where

the H

i

are heuristic functions and the t

i

2 [0 : : :1] are tolerance thresholds. The heuristics

are evaluated in order. All candidate rules that have an optimal evaluation on H

i

(r) or

are within the tolerance threshold (H

i

(r) � t

i

H

i

(r

opt

)) are evaluated by the next pair

(H

i+1

(r); t

i+1

). This is continued until a total order is established between all candidates.

This type of heuristics is primarily used in the AQ-family of algorithms. Michalski (1983)

suggests the use of not covered negative examples and covered positive examples as the basic

heuristics for a lef. In their special case where t

i

= 1 lef s are often used for breaking ties.

PRISM (Cendrowska, 1987) for example evaluates rules with a variant of the information

content heuristic and breaks ties using positive coverage.

4.3.6 Determinate Literals

Several inductive logic programming algorithms, like GOLEM (Muggleton & Feng, 1990),

restrict the conditions that may be used in the body of a rule to determinate literals, i.e.

to literals that have at most one valid ground substitution for each combination of input

variables. In this case the counting-instances and counting-proofs methods discussed at

the beginning of this section produce identical results. In FOIL such determinate literals

are added to the body of the rule when no other condition is given a high evaluation by

the search heuristic (Quinlan, 1991). This is necessary, because determinate literals usually

have a low heuristic evaluation, because they will typically have a valid ground instantiation

for all positive and negative training examples. Thus they will not exclude any negative

examples and a rule that is re�ned by adding such a literal consequently receives a low

heuristic value by most common heuristics. This problem is also addressed by the merit

heuristic used in CHAM (Kijsirikul et al., 1991), which computes a weighted average of

information gain and a measure that computes the similarity of the instantiations of the

variables used in the body of the rule with the output variables for a randomly chosen seed

example. This results in higher heuristic values for conditions that introduce new variables

whose values are similar to those of the output variables.
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5. Over�tting Avoidance Bias

The SimpleSeparateAndConquer algorithm of �gure 3 has a severe drawback: real-

world data may be noisy. Noisy data are a problem for many learning algorithms, because

it is hard to distinguish between rare exceptions and erroneous examples. The algorithm

forms a complete and consistent theory, i.e. it tries to cover all of the positive and none

of the negative examples. In the presence of noise it will therefore attempt to add literals

to rules in order to exclude positive examples that have a negative classi�cation in the

training set and add rules in order to cover negative examples that have erroneously been

classi�ed as positive. Thus complete and consistent theories generated from noisy examples

are typically very complicated and exhibit low predictive accuracy on classifying unseen

examples. This problem is known as over�tting the noise.

One remedy for the over�tting problem is to try to increase the predictive accuracy by

considering not only complete and consistent theories, but also approximate, but simpler

theories. A simple theory that covers most positive examples and excludes most negative

examples of the training set will often be more predictive than a complete and consistent,

but very complex theory. Such a bias towards simpler theories has been termed over�tting

avoidance bias (Scha�er, 1993; Wolpert, 1993).

Several algorithms, such as CLASS (Webb, 1993), rely on the noise handling capabilities

of search heuristics like the Laplace-estimate, which can prefer rules that cover only a few

negative examples over clauses that cover no negative examples if the former cover more

positive examples. Other algorithms such as PROGOL (Muggleton, 1995), can also rely on a

severely constrained hypothesis language which is unlikely to contain over�tting hypotheses.

On the other hand, a wide variety of algorithms employs techniques that are speci�cally

designed for over�tting avoidance. The remainder of this section is devoted to a discussion

of such pruning heuristics and algorithms.

5.1 Pre-pruning

Pre-pruning methods deal with noise during concept generation. They are implemented into

the StoppingCriterion subroutine of �gure 4. Their basic idea is to stop the re�nement

of rules although they may still be over-general. Thus, rules are allowed to cover a few

negative examples if excluding the negative examples is esteemed to be too costly by the

stopping criterion.

The most commonly used stopping criteria are

� Minimum Purity Criterion: This simple criterion requires that a certain percentage

of the examples covered by the learned rules is positive. It is for example used in the

SFOIL algorithm (Pompe et al., 1993) as a termination criterion for the stochastic

search. In FOIL (Quinlan, 1990) this criterion is used as aRuleStoppingCriterion:

When the best rule is below a certain purity threshold (usually 80%) it is rejected

and the learned theory is considered to be complete.

� Encoding Length Restriction: This heuristic used in the ILP algorithm FOIL (Quinlan,

1990) is based on the Minimum Description Length principle (Rissanen, 1978). It tries

to avoid learning complicated rules that cover only a few examples by making sure

that the number of bits that are needed to encode a clause is less than the number
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of bits needed to encode the instances covered by it. For encoding p positive and

n negative training instances one needs at least log

2

(p + n) + log

2

(

 

p+ n

p

!

) bits.

Literals can be encoded by specifying one out of r relations (log

2

(r) bits), one out

of v variabilizations (log

2

(v) bits) and whether it is negated or not (1 bit). The sum

of these terms for all l literals of the clause has to be reduced by log

2

(l !) since the

ordering of literals within a clause is in general irrelevant.

� Signi�cance Testing was �rst used as rule stopping criterion in the propositional CN2

induction algorithm (Clark & Niblett, 1989) and later on in the relational learner

mFOIL (D�zeroski & Bratko, 1992). It tests for signi�cant di�erences between the dis-

tribution of positive and negative examples covered by a rule and the overall distribu-

tion of positive and negative examples. For this test it exploits the fact that the likeli-

hood ratio statistic that can be derived from the J-measure as LRS(r) = 2(P+N)J(r)

is approximately distributed �

2

with 1 degree of freedom. Insigni�cant rules can thus

be rejected. In BEXA (Theron & Cloete, 1996) this test is also used for comparing

the distribution of instances covered by a rule to that of its direct predecessor. If the

di�erence is insigni�cant, the rule is discarded.

� The Cuto� Stopping Criterion compares the heuristic evaluation of a literal to a user-

set threshold and only admits literals that have an evaluation above this cuto�.

9

It has

been used in the relational separate-and-conquer learning system FOSSIL (F�urnkranz,

1994b). Under the assumption that the search heuristic returns values between 0 and

1, FOSSIL will �t all of the data at cuto� = 0 (no pre-pruning). On the other hand,

cuto� = 1 means that FOSSIL will learn an empty theory (maximum pre-pruning).

Values between 0 and 1 trade o� the two extremes. For the correlation heuristic, a

value of 0:3 has been shown to yield good results at di�erent training set sizes and at

di�ering levels of noise (F�urnkranz, 1994b) as well as across a variety of test domains

(F�urnkranz, 1996).

5.2 Post-pruning

While pre-pruning techniques try to account for the noise in the data while constructing

the �nal theory, post-pruning methods attempt to improve the learned theory in a post-

processing phase (subroutine PostProcess of �gure 4). A commonly used post-processing

technique aims at removing redundant conditions from the body of a rule and removing

unnecessary rules from the concept. The latter technique has already been used in various

versions of the AQ algorithm (Michalski et al., 1986). The basic idea is to test whether

the removal of a single condition or even of an entire rule would lead to a decrease in the

quality of the concept description, usually measured in terms of classi�cation accuracy on

the training set. If this is not the case, the condition or rule will be removed.

This framework has later been generalized in the POSEIDON system (Bergadano et al.,

1992). POSEIDON can simplify a complete and consistent concept description, which has

been induced by AQ15 (Michalski et al., 1986), by removing conditions and rules and by

9. Note that it di�ers from the minimum purity criterion in the way that it directly thresholds the search

heuristic instead of using purity as a separate criterion.
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procedure REP(Examples, SplitRatio)

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Theory = SeparateAndConquer(GrowingSet)

loop

NewTheory = BestSimplification(Theory,PruningSet)

if Accuracy(NewTheory,PruningSet) < Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory

return(Theory)

Figure 5: A post-pruning algorithm

contracting and extending intervals and internal disjunctions. POSEIDON successively

applies the operator that results in the highest coverage gain (see section 4.3.3) as long as

the resulting theory increases some quality criterion.

This method can be easily adopted for avoiding over�tting of noisy data. A frequently

used approach is to maximize the predictive accuracy measured on a separate set of data

that has not been available to the learner during theory construction. This method has been

suggested in in (Pagallo & Haussler, 1990) based on similar algorithms for pruning decision

trees (Quinlan, 1987b). Before learning a complete and consistent concept description

the training set is split into two subsets: a growing set (usually 2/3) and a pruning set

(1/3). The concept description that has been learned from the growing set is subsequently

simpli�ed by greedily deleting conditions and rules from the theory until any further deletion

would result in a decrease of predictive accuracy measured on the pruning set.

Figure 5 shows this algorithm in pseudo-code. The subroutine BestSimplification

selects the theory with the highest accuracy on the pruning set from the set of simpli�ca-

tions of the current theory. Simpli�cations that are usually tried are deleting an entire rule,

or deleting the last condition of a rule as in reduced error pruning (REP) (Brunk & Paz-

zani, 1991). Other algorithms employ additional simpli�cation operators like deleting each

condition of a rule (F�urnkranz & Widmer, 1994), deleting a �nal sequence of conditions

(Cohen, 1993), �nding the best replacement for a condition (Weiss & Indurkhya, 1991), and

extending and contracting internal disjunctions and intervals (Bergadano et al., 1992). If

the accuracy of the best simpli�cation is not below the accuracy of the unpruned theory,

REP will continue to prune the new theory. This is repeated until the accuracy of the best

pruned theory is below that of its predecessor.

Brunk and Pazzani (1991) have empirically shown that REP can learn more accurate

theories than FOIL, which uses pre-pruning. However, post-pruning has also several disad-

vantages, most notably e�ciency. Cohen (1993) has shown that REP has a time complexity

of 
(n

4

) on purely random data. Therefore he proposed GROW a new pruning algorithm

based on a technique used in the GROVE learning system (Pagallo & Haussler, 1990). Like

REP, GROW �rst �nds a theory that over�ts the data. But instead of pruning the interme-

diate theory until any further deletion results in a decrease of accuracy on the pruning set,
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generalizations of rules from this theory are successively selected to form the �nal concept

description until no more rules will improve predictive accuracy on the pruning set. Thus

GROW performs a top-down search instead of REP's bottom-up search. For noisy data the

asymptotic costs of this pruning algorithm have been shown to be below the costs of the

initial phase of over�tting.

5.3 Combining Pre- and Post-pruning

The advantages of pre- and post-pruning are typically complementary: While pre-pruning

is more e�cient, post-pruning will often produce better results. Although the GROW algo-

rithm as described in the last section can drastically reduce the costs of pruning an overly

complex theory, its overall costs are still unnecessarily high. The reason is that GROW

like REP, has to learn an over�tting intermediate theory. An obvious improvement would

therefore be to limit the amount of over�tting by using pre-pruning heuristics inside the

SeparateAndConquer program that is called in the algorithm of �gure 5. (Cohen, 1993)

improves the GROW algorithm in such a way by using two weak MDL-based stopping cri-

teria. These are not intended to entirely prevent over�tting like the pre-pruning approaches

of section 5.1, but to reduce the amount of over�tting, so that the post-pruning phase can

start with a better theory and has to do less work. Recently, the BEXA algorithm (Theron

& Cloete, 1996) has used signi�cance testing as a pre-pruning criterion and performs an

additional post-pruning phase where conditions and rules are pruned in the way described

in (Quinlan, 1987a).

However, there is always the danger that a prede�ned stopping criterion will over-

simplify the theory. To avoid this F�urnkranz (1994c) has developed an algorithm called

Top-Down Pruning (TDP). This algorithm generates all theories that can be learned with

di�erent settings of the cuto� parameter of FOSSIL's cuto� stopping criterion (F�urnkranz,

1994b). This series of theories is generated in a top-down fashion. The most complex

theory within one standard error of classi�cation of the most accurate theory is selected

as a starting point for the post-pruning phase.

10

The hope is that this theory will not be

an over-simpli�cation (it is more complex than the most accurate theory found so far), but

will also be close to the intended theory (its accuracy is still close to the best so far). Thus

only a limited amount of pruning has to be performed. TDP's implementation made use

of several optimizations, so that �nding this theory is often cheaper than completely �tting

the noise.

5.4 Integrating Pre- and Post-pruning

There is another fundamental problem with post-pruning in separate-and-conquer algo-

rithms, which was �rst pointed out in (F�urnkranz & Widmer, 1994). Although the separate-

and-conquer approach shares many similarities with the divide-and-conquer strategy, there

is one important di�erence: Pruning of branches in a decision tree will never a�ect the

neighboring branches, whereas pruning of conditions of a rule will a�ect all subsequent

rules. Figure 6(a) illustrates how post-pruning works in decision tree learning. The right

half of the over�tting tree covers the sets C and D of the training instances. When the

10. This method is inspired by the approach taken in CART (Breiman, Friedman, Olshen, & Stone, 1984)

where the most general decision tree within this standard error margin is selected as a �nal theory.
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pruning algorithm decides to prune these two leaves, their ancestor node becomes a leaf

that now covers the examples C [D. The left branch of the decision tree is not inuenced

by this operation.

Pruning

Training
ExamplesA B C D A B C D

(a)

Pruning

Training
Examples

Training
Examples

A

B

C

C
AB1

B2

(b)

Figure 6: Post-pruning in (a) divide-and-conquer and (b) separate-and-conquer learning

algorithms.

On the other hand, pruning a condition from a rule means that it will be generalized, i.e.,

it will cover more positive and negative instances. Consequently those additional positive

and negative instances should be removed from the training set so that they cannot inuence

the learning of subsequent rules. In the example of �gure 6(b) the �rst of three rules is

simpli�ed and now covers not only the examples its original version has covered, but also all

of the examples that the third rule has covered and several of the examples that the second

rule has covered. While the third rule could easily be removed by a post-pruning algorithm,

the situation is not as simple with the remaining set of examples B2. The second rule will

naturally cover all examples of the set B2, because it has been learned in order to cover the

examples of its superset B. However, it might well be the case that a di�erent rule could

be more appropriate for discriminating the positive examples in B2 from the remaining

negative examples. As pruning conditions from a rule can only generalize the concept, i.e.
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procedure I-REP (Examples, SplitRatio)

Theory = ;

while Positive(Examples) 6= ;

Rule = ;

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Covered = GrowingSet

while Negative(Covered) 6= ;

Rule = RefineRule(Rule; Covered)

Covered = Cover(Rule,Covered)

loop

NewRule = BestSimplification(Rule,PruningSet)

if Accuracy(NewRule,PruningSet) < Accuracy(Rule,PruningSet)

exit loop

Rule = NewRule

if Accuracy(Rule,PruningSet) � Accuracy(fail,PruningSet)

exit while

Theory = Theory [ Rule

Examples = Examples � Covered

return(Theory)

Figure 7: Integrating pre- and post-pruning

increase the set of covered examples, a post-pruning algorithm has no means for adjusting

the second rule to this new situation. Thus the learner may be lead down a garden path,

because the set of examples that remain uncovered by the unpruned rules at the beginning

of a theory may yield a di�erent evaluation of candidate conditions for subsequent rules

than the set of examples that remain uncovered by the pruned versions of these rules.

Incremental reduced error pruning (I-REP) (F�urnkranz & Widmer, 1994) addresses this

problem by pruning each individual rule right after it has been learned. This ensures that

the algorithm can remove the training examples that are covered by the pruned rule before

subsequent rules are learned. Thus it can be avoided that these examples inuence the

learning of subsequent rules.

Figure 7 shows pseudo-code for this algorithm. As in REP the current set of training

examples is split into a growing and a pruning set. However, not an entire theory, but

only one rule is learned from the growing set. Then conditions are deleted from this rule

in a greedy fashion until any further deletion would decrease the accuracy of this rule on

the pruning set. Single pruning steps can be performed by submitting a one-rule theory to

the same BestSimplification subroutine used in REP. The best rule found by repeatedly

pruning the original rule is added to the concept description and all covered positive and

negative examples are removed from the training | growing and pruning | set. The

remaining training instances are then redistributed into a new growing and a new pruning

set to ensure that each of the two sets contains the prede�ned percentage of the remaining
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examples. The next rule is then learned from the new growing set and pruned on the

new pruning set. When the predictive accuracy of the pruned rule is below the predictive

accuracy of the empty rule (i.e. the rule with the body fail), the rule is not added to the

concept description and I-REP returns the learned rules. Thus the accuracy of the pruned

rules on the pruning set also serves as a stopping criterion. Post-pruning methods are used

as pre-pruning heuristics.

I-REP has been shown to outperform various other pruning algorithms in a variety of

noisy domains, in particular in terms of e�ciency (F�urnkranz & Widmer, 1994; F�urnkranz,

1996). However, it has several weaknesses, which have been addressed in subsequent work

(Cohen, 1995). First Cohen (1995) has shown that accuracy estimates for low-coverage rules

will have a high variance and therefore I-REP is likely to stop prematurely and to over-

generalize in domains that are susceptible to the small disjuncts problem (Holte, Acker,

& Porter, 1989). Second, the accuracy-based pruning criterion used in I-REP basically

optimizes the di�erence between the positive and negative examples covered by a rule.

Cohen (1995) points out that this measure can lead to undesirable choices. For example

it would prefer a rule that covers 2000 positive and 1000 negative instances over a rule

that covers 1000 positive and only 1 negative instance. As an alternative Cohen (1995)

suggests to divide this di�erence by the total number of covered examples and shows that

this choice leads to signi�cantly better results. In addition he shows that an alternative

rule stopping criterion based on theory description length and an additional post-pruning

phase can further improve I-REP. The resulting algorithm, RIPPER, has been shown to

be competitive with C4.5rules (Quinlan, 1993) without losing I-REP's e�ciency.

6. Related Work

In the literature one can also �nd a variety of separate-and-conquer learning algorithms

that tackle slightly di�erent tasks than the inductive concept learning problem as de�ned

in �gure 2. Mooney (1995) for example describes an algorithm that learns conjunctions of

disjunctive rules by �nding rules that cover all positive examples and exclude some of the

negative examples. Such rules are added to the theory until all negative examples have been

excluded. Thus the algorithm is a dual to conventional separate-and-conquer algorithms in

the sense that it learns by covering on the negative examples. All algorithms and heuristics

discussed in this paper can be applied to this task as well with only slight modi�cations

(e.g., to swap the role of p and n in the heuristics). ICL (De Raedt & Van Laer, 1995) is a

similar approach that learns in a �rst-order logic framework. The basic entity that it covers

are not single examples, but (partial) ground models of the target theory.

Separate-and-conquer algorithms have also been used to tackle regression problems, i.e.,

the prediction of real-valued instead of discrete class variables. The key issue here is the

de�nition of an appropriate evaluation criterion. This is a non-trivial issue, because the real-

valued prediction of a regression rule will in general never be identical to the true value. In

IBL-SMART (Widmer, 1993), another algorithm from the ML-SMART family, this problem

is solved by using a discretized class variable for learning. A numeric prediction for a new

example is then derived by �nding a rule that covers the example and using the numeric

class variables of all other examples covered by that rule for deriving a prediction. RULE

(Weiss & Indurkhya, 1995) and FORS (Karali�c, 1995) are able to directly use real-valued
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class variables. They employ a top-down hill-climbing algorithm for �nding a rule body that

minimizes an error function (like the mean squared error) on the prediction of the covered

examples. The problem here is that rules that cover only one example appear to commit

no error when they predict this value. FORS tries to solve this problem of over�tting with

the introduction of a variety of stopping criteria, like a maximum rule length or a minimum

number of examples that a rule must cover.

There are also a variety of other rule learning approaches that do not use separate-and-

conquer frameworks. In particular several algorithms that use a bottom-up learning strategy

start with a set of rules, each representing one example, and successively generalize the

entire rule set. RISE (Domingos, 1996b) is a particularly successful system that uses such

an approach, where single rules are minimally generalized so that they cover the example

that is most similar to them. Domingos (1996b) has named his method \conquering without

separating". A similar approach has also been taken in the inductive logic programming

algorithm CHILLIN (Zelle, Mooney, & Konvisser, 1994), where rules are generalized by

forming their least general generalization (Plotkin, 1970) and, if necessary, successively

specialized using top-down hill-climbing as in FOIL. CWS (Domingos, 1996a) interleaves

the induction of di�erent rules by starting to induce the next rule in the same cycle as

the second condition of the current rule is learned. ITRULE (Goodman & Smyth, 1988)

performs an e�cient exhaustive search for a �xed number of rule with a �xed maximum

length. BBG (Van Horn & Martinez, 1993) learns a decision list by inserting a learned rule

at appropriate places and evaluating the quality of the resulting decision list on the entire

training set. Last but not least, the C4.5 decision tree induction algorithm has an option

that allows to generate compact decision lists from decision trees by turning a decision

tree into a set of non-overlapping rules, pruning these rules, and ordering the resulting

overlapping rules into a decision list (Quinlan, 1987a, 1993).

7. Conclusion

In this paper we have given a survey of the best-known members of the family of separate-

and-conquer or covering learning algorithms, which have been in use for almost 30 years

now. Despite its age the separate-and-conquer technique still enjoys a great popularity, so

that we feel a survey of this sort has been overdue.

We have mostly con�ned ourselves to binary concept learning tasks, which can be de�ned

with a number of positive and negative examples for the target concept. A separate-and-

conquer algorithm continues to learn rules until all (or most) of the positive examples are

covered without covering any (or only few) negative examples. Table 1 shows the most

important separate-and-conquer concept learning algorithms discussed in this paper. Ref-

erences to papers describing the algorithms had to be omitted because of space restrictions,

but can be most quickly found in �gure 1.

Discussions of the pros and cons of each individual algorithm, empirical comparisons

of various bias options, and recommendations are beyond the scope of this paper, and will

depend on the task at hand. However, we hope that this paper can help the practitioner

to pick the right algorithm based on its characteristics as well as guide the researcher to

interesting research directions and suggest possible bias combinations that still have to be

explored.
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AQ � � � �

AQ15 � � � � �

AQ17 � � � � �

ATRIS � � � � �

BEXA � � � � � �

CHAMP � � � � � � � �

CiPF � � � � �

CN2 � � � � �

CN2-MCI � � � � � �

CLASS � � �

DLG � � � �

FOCL � � � � � �

FOIL � � � � � �

FOSSIL � � � � � � �

GA-SMART � � � � � � �

GOLEM � � � �

GREEDY3 � � � �

GRENDEL � � �

GROW � � � �

HYDRA � � � �

IBL-SMART � � � � � �

INDUCE � � � � �

I-REP, I

2

-REP � � � � � � �

JoJo � � � �

m-FOIL � � � � � � �

MILP � � � � � �

ML-SMART � � � � � � � �

NINA � � � �

POSEIDON � � � � �

PREPEND � � �

PRISM � � �

PROGOL � � � � �

REP � � � � � �

RIPPER � � � � �

RDT � � �

SFOIL � � � �

SIA � � � �

SMART+ � � � � � � � � � �

SWAP-1 � � � �

TDP � � � � � � � �

Table 1: Biases of selected separate-and-conquer rule learning algorithms
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