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Abstract

The limitations of using self-organizing maps (SOM) for either

clustering/vector quantization (VQ) or multidimensional scaling

(MDS) are being discussed by reviewing recent empirical �ndings

and the relevant theory. SOM's remaining ability of doing both VQ

and MDS at the same time is challenged by a new combined tech-

nique of online K-means clustering plus Sammon mapping of the

cluster centroids. SOM are shown to perform signi�cantly worse in

terms of quantization error, in recovering the structure of the clus-

ters and in preserving the topology in a comprehensive empirical

study using a series of multivariate normal clustering problems.

1 Introduction

Self-organizing maps (SOM) introduced by [Kohonen 84] are a very popular tool

used for visualization of high dimensional data spaces. SOM can be said to do vector

quantization (VQ) and/or clustering and at the same time to preserve the spatial

ordering of the input data reected by an ordering of the code book vectors (cluster

centroids) in a one or two dimensional output space, where the latter property

is closely related to multidimensional scaling (MDS) in statistics. Although the

level of activity and research around the SOM algorithm is quite large (a recent

overview of the literature by [Kohonen 95] contains more than 1000 citations), only

little comparison among the numerous existing variants of the basic approach and



also to more traditional statistical techniques of the larger frameworks of VQ and

MDS is available. Additionally, there is only little advice in the literature about

how to properly use SOM in order to get optimal results in terms of either vector

quantization (VQ) or multidimensional scaling or maybe even both of them. To

make the notion of SOM being a tool for \data visualization" more precise, the

following question has to be answered: Should SOM be used for doing VQ, MDS,

both at the same time or none of them?

Two recent comprehensive studies comparing SOM either to traditional VQ or

MDS techniques separately seem to indicate that SOM is not competitive when

used for either VQ or MDS: [Balakrishnan et al. 94] compare SOM to traditional

K-means clustering on 108 multivariate normal clustering problems with known

clustering solutions and show that SOM performs signi�cantly worse in terms of

data points misclassi�ed

1

, especially with higher numbers of clusters in the data sets.

[Bezdek & Nikhil 95] compare SOM to principal component analysis and the MDS-

technique Sammon mapping on seven arti�cial data sets with di�erent numbers of

points and dimensionality and di�erent shapes of input distributions. The degree

of preservation of the spatial ordering of the input data is measured via a Spearman

rank correlation between the distances of points in the input space and the distances

of their projections in the two dimensional output space. The traditional MDS-

techniques preserve the distances much more e�ectively than SOM, the performance

of which decreases rapidly with increasing dimensionality of the input data.

Despite these strong empirical �ndings that against the use of SOM for either VQ

or MDS there remains the appealing ability of SOM to do both VQ and MDS at

the same time. It is the aim of this work to �nd out, whether a combined technique

of traditional vector quantization (clustering) plus MDS on the code book vectors

(cluster centroids) can perform better than Kohonen's SOM on a series of multi-

variate normal clustering problems in terms of quantization error (mean squared

error), recovering the cluster structure (Rand index) and preserving the topology

(Pearson correlation). All the experiments were done in a rigoruos statistical design

using multiple analysis of variance for evaluation of the results.

2 SOM and vector quantization/clustering

A vector quantizer (VQ) is a mapping, q, that assigns to each input vector x a

reproduction (code book) vector x̂ = q(x) drawn from a �nite reproduction alphabet

^

A = fx̂

i

; i = 1; : : : ; Ng. The quantizer q is completely described by the reproduction

alphabet (or codebook)

^

A together with the partition S = fS

i

; i = 1; : : : ; Ng, of the

input vector space into the sets S

i

= fx : q(x) = x̂

i

g of input vectors mapping into

the i

th

reproduction vector (or code word) [Linde et al. 80]. To be compareable to

SOM, our VQ assigns to each of the input vectors x = (x

0

; x

1

; : : : ; x

k�1

) a socalled

code book vector x̂ = (x̂

0

; x̂

1

; : : : ; x̂

k�1

) of the same dimensionality k. For reasons of

data compression, the number of code book vectors N � n, where n is the number

of input vectors.

Demanded is a VQ that produces a mapping q for which the expected distortion

caused by reproducing the input vectors x by code book vectors q(x) is at least

locally minimal. The expected distortion is usually esimated by using the aver-

age distortion D, where the most common distortion measure is the squared-error

1

Although SOM is an unsupervised technique not built for classi�cation, the number

of points missclassi�ed to a wrong cluster center is an appropriate and commonly used

performance measure for cluster procedures if the true cluster structure is known.
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The classical vector quantization technique to achieve such a mapping is the LBG-

algorithm [Linde et al. 80], where a given quantizer is iteratively improved. Al-

ready [Linde et al. 80] noted that their proposed algorithm is almost similar to

the k-means approach developed in the cluster analysis literature starting from

[MacQueen 67]. Closely related to SOM is online K-means clustering (oKMC) con-

sisting of the following steps:

1. Initialization: Given N = number of code book vectors, k = dimensionality

of the vectors, n = number of input vectors, a training sequence fx

j

; j =

0; : : : ; n�1g, an initial set

^

A

0

of N code book vectors x̂ and a discrete-time

coordinate t = 0 : : : ; n� 1.

2. Given
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t
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i

; i = 1; : : : ; Ng, �nd the minimum distortion partition

P (
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3. Update the code book vector with the minimum distortion

x̂

(t)

(S

i

) = x̂

(t�1)

(S

i

) + �[x

(t)

� x̂
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where � is a learning parameter to be de�ned by the user. De�ne

^

A

t+1

=

x̂(P (

^

A

t

)), replace t by t+ 1, if t = n� 1, halt. Else go to step 2.

The main di�erence between the SOM-algorithm and oKMC is the fact that the

code book vectors are ordered either on a line or on a planar grid (i.e. in a one or

two dimensional output space). The iterative procedure is the same as with oKMC

where formula (3) is replaced by

x̂

(t)

(S

i

) = x̂

(t�1)

(S

i

) + h[x

(t)

� x̂

(t�1)

(S

i

)] (4)

and this update is not only computed for the x̂

i

that gives minimumdistortion, but

also for all the code book vectors which are in the neighbourhood of this x̂

i

on the

line or planar grid. The degree of neighbourhood and amount of code book vectors

which are updated together with the x̂

i

that gives minimum distortion is expressed

by h, a function that decreases both with distance on the line or planar grid and

with time and that also includes an additional learning parameter �. If the degree

of neighbourhood is decreased to zero, the SOM-algorithm becomes equal to the

oKMC-algorithm.

Whereas local convergence is guaranteed for oKMC (at least for decreasing �,

[Bottou & Bengio 95]), no general proof for the convergence of SOM with nonzero

neighbourhood is known. [Kohonen 95, p.128] notes that the last steps of the SOM

algorithm should be computed with zero neighbourhood in order to guarantee \the

most accurate density approximation of the input samples".

3 SOM and multidimensional scaling

Formally, a topology preserving algorithm is a transformation � : R

k

7! R

p

, that

either preserves similarities or just similarity orderings of the points in the input

space R

k

when they are mapped into the outputspace R

p

. For most algorithms it is

the case that both the number of input vectors j x 2 R

k

j and the number of output



vectors j x̂ 2 R

p

j are equal to n. A transformation � : x̂ = �(x), that preserves

similarities poses the strongest possible constraint since d(x

i

; x

j

) =
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Techniques for �nding such transformations � are, among others, various forms of

multidimensional scaling
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(MDS) like metric MDS [Torgerson 52], nonmetric MDS

[Shepard 62] or Sammonmapping [Sammon 69], but also principal component anal-

ysis (PCA) (see e.g. [Jolli�e 86]) or SOM. Sammon mapping is doing MDS by

minimizing the following via steepest descent:

1
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(5)

Since the SOM has been designed heuristically and not to �nd an extremum for a

certain cost or energy function, such a function has not yet been described

3

and

the theoretical connection to the other MDS algorithms remains unclear. It should

be noted that for SOM the number of output vectors j x̂ 2 R

p

j is limited to N ,

the number of cluster centroids x̂ and that the x̂ are further restricted to lie on a

planar grid. This restriction entails a discretization of the outputspace R

p

.

4 Online K-means clustering plus Sammon mapping of the

cluster centroids

Our new combined approach consists of simply �nding the set of

^

A = fx̂

i

; i =

1; : : : ; Ng code book vectors that give the minimum distortion partition P (

^

A) =

fS

i

; i = 1; : : : ; Ng via the oKMC algorithm and then using the x̂

i

as input vectors

to Sammonmapping and thereby obtaining a two dimensional representation of the

x̂

i

via minimizing formula (5). Contrary to SOM, this two dimensional representa-

tion is not restricted to any �xed form and the distances between the N mapped

x̂

i

directly correspond to those in the original higher dimension. This combined

algorithm is abbreviated oKMC+.

5 Empirical comparison

The empirical comparison was done using a 3 factorial experimental design with

3 dependent variables. The multivariate normal distributions were generated us-

ing the procedure by [Milligan & Cooper 85], which since has been used for several

comparisons of cluster algorithms (see e.g. [Balakrishnan et al. 94]). The marginal

normal distributions gave internal cohesion of the clusters by warranting that more

than 99% of the data lie within 3 standard deviations (�). External isolation was

de�ned as having the �rst dimension nonoverlapping by truncating the normal dis-

tributions in the �rst dimension to �2� and de�ning the cluster centroids to be

4:5� apart. In all other dimensions the clusters were allowed to overlap by setting

the distance per dimension between two centroids randomly to lie between �6�.

The data was normalized to zero mean and unit variance in all dimensions.

2

Note that for MDS not the actual coordinates of the points in the input space but

only their distances or the ordering of the latter are needed.

3

[Erwin et al. 92] even showed that generally no energy function that SOM can be

considered to minimize exists.



algorithm no. clusters dimension msqe Rand corr.

SOM 4 4 0:53 1:00 0:64

6 1:53 0:91 0:72

8 1:15 0:99 0:74

9 4 0:33 0:97 0:48

6 0:54 0:97 0:66

8 0:81 0:96 0:74

mean SOM 0:81 0:97 0:67

oKMC+ 4 4 0:53 0:99 0:87

6 1:06 0:99 0:87

8 1:17 1:00 0:91

9 4 0:29 0:98 0:89

6 0:47 0:99 0:87

8 0:56 0:98 0:86

mean oKMC+ 0:68 0:99 0:88

Factor 1, Type of algorithm: The number of code book vectors of both the SOM

and the oKMC+ were set equal to the number of clusters known to be in the data.

The SOMs were planar grids consisting of 2� 2 (3� 3) code book vectors. During

the �rst phase (1000 code book updates) � was set to 0:05 and the radius of the

neighbourhood to 2 (5). During the second phase (10000 code book updates) � was

set to 0:02 and the radius of the neighbourhood to 0 to guarantee the most accurate

vector quantization [Kohonen 95, p.128]. The oKMC+ algorithmhad the parameter

� �xed to 0:02 and was trained using each data set 20 times, the minimization of

formula (5) was stopped after 100 iterations. Both SOM and oKMC+ were run 10

times on each data set and only the best solutions, in terms of mean squared error,

were used for further analysis.

Factor 2, Number of clusters was set to 4 and 9.

Factor 3, Number of dimensions was set to 4; 6; or8.

Dependent variable 1: mean squared error was computed using formula (1).

Dependent variable 2, Rand index (see [Hubert & Arabie 85]) is a measure of agree-

ment between the true, known partition structure and the obtained clusters. Both

the numerator and the denominator of the index reect frequency counts. For the

numerator, all possible pairs of data are taken and it is determined, whether the

data are treated in the same manner in both known and obtained clustering. There-

fore, the numerator is the number of times a pair of data is either in the same or in

di�erent clusters in both known and obtained clusterings. Since the denominator is

the total number of all possible pairwise comparisons, an index value of 1:0 indicates

an exact match of the clusterings.

Dependent variable 3, correlation is a measure of the topology preserving abilities of

the algorithms. The Pearson correlation of the distances d(x

1

; x

2

) in the input space

and the distances

^

d(x̂

i

; x̂

j

) in the output space for all possible pairwise comparisons

of data points is computed. Note that for SOM the coordinates of the code book

vectors on the planar grid were used to compute the

^

d. Of course, an algorithm that

perfectly preserves topology would preserve such distances and hence yield a value of

1:0 (see [Bezdek & Nikhil 95] for a discussion of measures of topolgy preservation).

For each cell in the full-factorial 2� 2� 3 design 3 data sets with 25 points for each

cluster were generated resulting in a total of 36 data sets. A multiple analysis of

variance (MANOVA) yielded the following signi�cant e�ects at the :05 error level:



The mean squared error is lower for oKMC+ than for SOM, it is lower for the 9-

cluster problem than for the 4-cluster problem and is higher for higher dimensional

data. There is also a combined e�ect of the number of clusters and dimensions on

the mean squared error. The Rand index is higher for oKMC+ than for SOM, there

is also a combined e�ect of the number of clusters and dimensions. The correlation

index is higher for oKMC+ than for SOM. Since the main interest of this study is the

e�ect of the type of algorithm on the dependent variables, the mean performances

for SOM and oKMC+ are printed in bold letters in the table. Note that the overall

di�erences in the performances of the two algorithms are blurred by the signi�cant

e�ects of the other factors and that therefore the di�erences of the grand means

across the type of algorithms appear rather small. Only by applying a MANOVA,

e�ects of the factor `type of algorithms' that are masked by additional e�ects of

the other two factors `number of clusters' and `number of dimensions' could still be

detected.

6 Discussion and Conclusion

From the theoretical comparison of SOM to oKMC it should be clear that in terms

of quantization error, SOM should only be possible to perform as good as oKMC

if SOM's neighbourhood is set to zero. Additional experiments, not reported here

in detail for brevity, with nonzero neighbourhood till the end of SOM training

gave even worse results since the neighbourhood tends to pull the obtained clus-

ter centroids away from the true ones. The Rand index is only slightly better for

oKMC+. The high values indicate that both algorithms were able to recover the

known cluster structure. Topology preserving is where SOM performs worst com-

pared to oKMC+. This is a direct implication of the restriction to planar grids

which allows only

P

s

i=2

i;(s�2) di�erent distances in an s � s planar grid instead

of

N(N�1)

2

di�erent distances for N = s � s cluster centroids mapped via Sammon

mapping in the case of oKMC+. Using a nonzero neighbourhood at the end of SOM

training did again not warrant any improvements.

An argument that could be brought forward against our approach towards compar-

ing SOM and oKMC+ is that it would be unfair or not correct to set the number

of SOM's code book vectors equal to the number of clusters known to be in the

data. In fact it seems to be common practice to apply SOM with numbers of code

book vectors that are a multiple of the input vectors available for training (see e.g.

[Kohonen 95, pp.113]). Two things have to be said against such an argumentation:

First if one uses more or even only the same amount of code book vectors than input

vectors during vector quantization, each code book vector will become identical to

one of the input vectors in the limit of learning. So every x

i

is replaced with an

identical x̂

i

, which does not make any sense and runs counter to every notion of vec-

tor quantization. This means that SOMs employing numbers of code book vectors

that are a multiple of the input vectors available can be used for MDS only. But

even such big SOMs do MDS in a very crude way: We computed SOMs consisting

of either 20 � 20 (for data sets consisting of 4 clusters and 100 points) or 30 � 30

(for data sets consisting of 9 clusters and 225 points) code book vectors for all 36

data sets which gave an average correlation of 0:77 between the distances d

i

and

^

d

i

.

This is signi�cantly worse at the :05 error level compared to the average correlation

of 0:95 achieved by Sammon mapping applied to the input data directly.

Our data sets consisted of iid multivariate normal distributions which therefore have

spherical shape. All VQ algorithms using squared distances as a distortion measure,

including our versions of oKMC as well as SOM, are inherently designed for such

distributions. Therefore, the clustering problems in this study, being also perfectly



seperable in one dimension, were very simple and should be solveable with little or

no error by any clustering or MDS algorithm.

In this work we examined the vague concept of using SOM as a \data visualization

tool" both from a theoretical and empirical point of view. SOM cannot outperform

traditional VQ techniques in terms of quantization error and that SOM should

therefore not be used for doing VQ. From [Bezdek & Nikhil 95] as well as from our

discussion of SOM's restriction to planar grids in the output space which allows only

a restricted number of di�erent distances to be represented, it should be evident

that SOM is also a rather crude way of doing MDS. Our own empirical results show

that if one wants to have an algorithm that does both VQ and MDS at the same

time, there exists a very simple combination of traditional techniques (our oKMC+)

with wellknown and established properties that clearly outperforms SOM.

Whether it is a good idea to combine clustering or vector quantization and multi-

dimensional scaling at all and whether more principled approaches towards such a

combination (see e.g. [Hofmann & Buhmann 95]) can yield even better results than

our oKMC+ and last but not least what self-organizing maps should be used for

under this new light remain questions to be answered by future investigations.
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