
Defeasibility in CLP(Q) through Generalized

Slack Variables

Christian Holzbaur

y

, Francisco Menezes

z

and Pedro Barahona

z

y

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

email: christian@ai.univie.ac.at

z

Departamento de Inform�atica

Faculdade de Ciências e T�ecnologia

Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

email: ffm,pbg@fct.unl.pt

Abstract. This paper presents a defeasible constraint solver for the do-

main of linear equations, disequations and inequalities over the body of

rational/real numbers. As extra requirements resulting from the incor-

poration of the solver into an Incremental Hierarchical Constraint Solver

(IHCS) scenario we identi�ed: a)the ability to refer to individual con-

straints by a label, b) the ability to report the (minimal) cause for the

unsatis�ability of a set of constraints, and c) the ability to undo the

e�ects of a formerly activated constraint.

We develop the new functionalities after starting the presentation with

a general architecture for defeasible constraint solving, through a solved

form algorithm that utilizes a generalized, incremental variant of the

Simplex algorithm, where the domain of a variable can be restricted

to an arbitrary interval. We demonstrate how generalized slacks form

the basis for the computation of explanations regarding the cause of

unsatis�ability and/or entailment in terms of the constraints told, and

the possible deactivation of constraints as demanded by the hierarchy

handler.

Keywords: Constraint Logic Programming, Linear Programming, Defeasible

Constraint Solving

1 Introduction

Although Constraint Logic Programming enhances the limited expressive power

and execution e�ciency of Logic Programming, it is insu�cient to cope with

problems for which many solutions might satisfy a set of mandatory (or hard)

constraints of the problem, but where some solutions are preferred to others.

In this case, the user should somehow select from the set of all solutions found



by a CLP program those that (s)he prefers, and this is not practical when the

solution set is large.

An alternative approach is to use an overconstrained speci�cation, including

both hard constraints and soft constraints (that merely specify preferences), and

have a system to compute the solutions that satisfy in the best possible way a

subset of these preference constraints. This was the approach taken by [2, 16],

that proposed an HCLP scheme that allows non-required (or soft) constraints

to be speci�ed with some preference level and rely on a constraint solver that

explores this hierarchy of constraints to detect the best solutions.

Although the scheme is quite general, little details were published on the

implementation of this scheme. In [13, 14] we presented, IHCS, an e�cient and

incremental defeasible constraint solver that is used as the kernel of an HCLP

instance for �nite domains. The key points of our implementation were a) early

detection of failures through the use of the usual node- and arc-consistency tech-

niques for these domains; b) detection of con
ict sets, i.e. the sets of constraints

responsible for the failures (this is done by keeping dependencies between con-

straints through shared variables by adaptation of the AC-5 algorithm [12]); c)

selection from these con
ict sets of constraints that should be relaxed, together

with the selection of constraints (currently relaxed because of con
icts with the

former) that can now be safely reactivated; and d) defeating the constraints, i.e.

remove the e�ects of relaxed constraints avoiding reevaluation from scratch.

Although our scheme could in principle be applied to any other domain, early

implementation of IHCS did not separate the constraint solver (responsible for

the detection of failures and their causes) from the hierarchy manager (responsi-

ble for choosing, given some preference criterion, which constraints to relax and

which to reactivate).

Moreover, the constraint solver detected unsatis�able sets of constraints by

means of constraint propagation on a constraint network, and the method is not

applicable to domains that do not use this representation of constraints. This is

the case with (linear) constraint solvers over the reals/rationals which rely on

algebraic methods (e.g. some variant of the Simplex algorithm). To e�ectively

apply our scheme to other domains it was thus necessary a) to clearly separate

the constraint solver component from the hierarchy handler, and b) to enhance

constraint solvers of these domains to cope with the new demands of defeasibility.

These requirements are twofold. On the one hand, the constraint solver must

be able to explain the cause of unsatis�ability and/or entailment in terms of the

constraints told. On the other hand, it must be able to cope with the incremental

activation and deactivation of constraints as demanded by the hierarchy handler.

In this paper we propose a solution to these extensions for CLP(Q), a linear

constraint solver over the body of rational numbers. Interestingly, both exten-

sions can be realized with the single, simple idea of generalized slack variables.

The following sections will describe a general architecture for defeasible con-

straint solving, recapture the working of the traditional Simplex algorithm, in-

troduce a variant through the generalization of slack variables, cover the identi-

�cation of minimal con
ict sets, and derive defeasibility.



2 An Architecture for Defeasible Constraint Solving

In [13, 14] an Incremental Hierarchical Constraint Solver (IHCS(X, �)) is pre-

sented as a general framework to handle, incrementally, hierarchies of constraints

in some domainX using some comparator �. In these papers, only the instanti-

ation of X to Finite Domains is addressed, and there is no clear division between

the component that handles the constraint hierarchies, the comparators used to

rank solutions, and the constraint solvers for speci�c domains.

This section presents the new architecture of IHCS that takes into account

such separation, and makes it truly general and able to include di�erent con-

straint solvers (and thus di�erent domains). Figure 1 depicts this general archi-

tecture and the interface among the separate components.

@�

insert(+constraint@level, �label)

changeLevel(+label, +newLevel)

remove(+label)

displayConstraint(+label)

HM(X,�)

@�

new(+constraint, +label)

activate(+label, �CS)

deactivate(+label)

remove(+label)

display(+label)

CS(X)

@�

next(+ �, +�, +CS, ��

next

)

Comparators

Library

Fig. 1. The Architecture of IHCS(X,�)

The functionality IHCS o�ers to any system requiring defeasible constraint

handling (in our case, IHCS is embedded in a Prolog like engine to yield a

HCLP(X, �) language) is displayed at the top of the Figure. This interface

highlights the defeasible nature of IHCS, by including primitives to add or remove

a constraint and to promote or demote some existing constraint (by changing

its strength or hierarchical level).

The Hierarchy Manager (HM) is responsible for demanding the activation

and relaxation of constraints, so as to maintain the best solution. Since it has

no speci�c knowledge of the domain theory X, it must rely on some specialized

constraint solver CS(X) to check satis�ability of constraints on domain X. The



insertion of a new constraint into CS(X) is made with predicate new(constraint,

label) which simply creates the constraint with a given label but does not activate

it. Constraint labels are required for future reference to the corresponding con-

straints. This is the case of their activation, via predicate activate(label, CS),

where CS (the con
ict set) returns the set of constraints responsible for the

possible unsatis�ability of the active constraints (CS is of course empty if these

constraints are satis�able). The reason why constraints are created and activated

with di�erent interface entries is that IHCS may require several activations or

deactivations (via predicate deactivate(label)) of a certain constraint during the

search for optimal solutions. A deactivated constraint may be removed from

CS(X) with predicate remove(label).

A library of comparators includes a set of procedures to compute the next

best con�guration according to a diversity of criteria. Given the sets of con-

straints currently active and relaxed (the current con�guration �), and a con
ict

set CS (returned by the CS(X) component), predicate next(�, �, CS, �

next

)

computes the next con�guration �

next

to be tried according to comparator �.

To summarize, and to comply with IHCS requirements, a CS(X) must be:

1. Incremental - upon the activation of a constraint (demanded through pred-

icate activate(label, CS)), the constraint solver must check the satis�ability

of the active set of constraints together with the new constraint;

2. Explanatory - once unsatis�ability is detected, its causes should be re-

ported to the HM (as a con
ict set CS);

3. Defeasible - upon the deactivation of a constraint (demanded through

predicate deactivate(label)), the e�ects of this formerly activated constraint

should be removed avoiding reevaluation from scratch.

Of course all the above requirements impose that, the labels used by the hi-

erarchical manager to refer to individual constraints are shared by the constraint

solver.

This requirements are met by our �nite domain constraint solver described

in [14]. The rest of this paper explains the changes made to a Constraint Solver

for linear constraints over rational/real numbers, namely its explanatory and

defeasibility enhancements.

3 Simplex with Generalized Slack Variables

Classical Simplex [5] deals with a single sort of slack variables: S

i

� 0. Free

variables, negative variables and strict inequalities create minor problems, some

of which are addressed by using pairs of slacks.

We will now generalize the concept of slack variables by allowing for arbitrary

intervals as the domains of variables. This covers of course the classical Simplex

slacks with a non-strict lower bound of zero.

Example 1.



Input constraints Equations with classical slacks

X � 10

X � 8

X � 2

X + S

1

= 10

X + S

2

= 8

�X + S

3

= �2

Instead of introducing three slack variables with their corresponding rows in

the Simplex tableaux, the bounds are represented as attributes of the a�ected

variable directly.

Example 2.

Input constraints Representation with generalized slacks

X � 10

X � 8

X � 2

X

[2;8]

The next section deals with the interaction of generalized slacks with higher

dimensional constraints.

3.1 Solved Form for Inequalities over Bounded Variables

The idea proper has been realized a long time ago in the area of linear pro-

gramming under the name of bounded variable linear programs [15]. In bounded

variable linear programs, some or all variables are restricted to lie within in-

dividual lower and upper bounds. Such problems can of course be solved by

including all bound restrictions as constraints, i.e. rows in the simplex tableau.

The advantage of keeping them out of the tableau is that the size of the working

basis is smaller. Trivial non-satis�ability, redundancy and implicit equalities are

detected by trivial tests of O(1) complexity. Obviously the thread matches and

advances current activities in the CLP area that try to restrict the use of general

decision methods to the cases where they are unavoidable [10].

We formalize bounded variable linear programs as:

Minimize cx

subject to (1:a) Ax = b

(1:b) l

j

� x

j

� u

j

for j�J

(1:c) x

i

unrestricted for i 6 �J

(1)

Where Ax = b denotes the subset of the constraints fc

i

jdim(c

i

) > 1g, and

inequalities have been transformed into equations through the introduction of

generalized slack variables. A feasible solution x of (1) is a Basic Feasible Solution

(BFS) i� the set

fA

;j

: j�J; l

j

� x

j

� u

j

g [ fA

;j

: j 6 �Jg (2)

where A

;j

is the j-th column vector of A, is linearly independent. A working basis

for (1) is a square, nonsingular sub matrix of A of order m. Variables associated



with column vectors of the working basis will be called basic variables. All other

variables will be called non-basic variables. It is clear that a feasible solution x is

an extreme point in the solution space, i� there exists a corresponding working

basis with the property that:

1. all non-basic variables are either at their lower or upper bound

2. the basic variables are within their bounds

The working basis, together with conditions 1 and 2 from above, constitutes our

proposed solved form for linear inequalities over bounded variables.

Example 3.

Input constraints Solved form

x1 + x2 + 2x3 � 4;

3x2 + 4x3 � 6;

0 � x1; x1 � 2;

0 � x2; x2 � 9;

0 � x3

x1

[0;2]

= 1 +

1

2

x2 +

1

2

s2 � s1

x3

[0; ]

=

3

2

�

3

4

x2�

1

4

s2

)

basis

s1

[0; ]

s2

[0; ]

x2

[0;9]

Notational conventions: x1

[0;2]

means that x1 has a (non-strict) lower bound of

zero and a (non-strict) upper bound of two. An unspeci�ed bound is denoted as

in x3

[0; ]

, where we have no �nite upper bound. The active bound of non-basic

variables is denoted by overlining as in x2

[0;9]

. If you insert the values for the

active bounds into the right hand sides (rhs) of the equations de�ning the basic

variables x1; x3, you will �nd that the resulting values for x1; x3 are within the

respective bounds. Note that only the two higher dimensional inequalities led to

the introduction of slack variables s1; s2.

Algorithmic Details: Finding the solved form of a bounded variable linear

program can be rephrased as a search problem, where we have:

1. A given initial state, consisting of a system where the solved form invariants

may be violated.

2. The speci�cation of a solution state through the solved form invariants.

3. The operators:

(a) pivot(x

i

; x

j

)

(b) toggle active bound(x

i

) for non-basic variables

The non-determinism in the selection of the the operators and their arguments

can be removed by the same rules that are employed in the original Simplex

algorithm:

{ In order to enter the basis, the type of the non-basic variable must be com-

patibe with the sign of the coe�cient of the variable

in the objective function



{ The leaving variable corresponds to the row in the working basis that imposes

the tightest constraint on the entering variable

{ The active bound of a variable may be toggled if the tightest constraint

imposed on the variable through the working basis accomodates the change

A violation of the solved form is always detected by locating a basic variable

that is out of its bounds. As the solved form will be computed incrementally,

there will always be at most one such row and it will correspond to the m+1-st

source constraint.

Theorem1.

1. The incremental solved form algorithm constitutes a decision algorithm for

the satis�ability problem of a polyheral set

2. The incremental solved form algorithm detects implicitly �xed values

Proof. The solved form obviously satis�es

8

k�1:::m

l

k

� inf(x

k

) � �(x

k

) � sup(x

k

) � u

k

(3)

To establish the corresponding relation for the challenging row i = m + 1, we

interpret the linear combination of non-basic variables that de�nes the basic

variable as arti�cial objective function.

x

i

[l;u]

=

X

jjx

j

6�basis

k

ij

x

j

+ b

i

(4)

The evaluation �(x

i

) of x

i

with respect to the BFS may give rise to a re-

pair action consisting in the iterated application of the operators pivot and

toggle active bound in order to decrement (increment) �(x

i

) until

1. l

i

< �(x

i

) < u

i

: solved form established. Satis�able.

2. None of the operators is applicable, optimality, thus

�(x

i

) = inf(x

i

) or �(x

i

) = sup(x

i

) (5)

(a) �(x

i

) = inf(x

i

) > u

i

: unsatis�able

(b) �(x

i

) = inf(x

i

) = u

i

! x

i

= u

i

: �xed value

(c) �(x

i

) = sup(x

i

) < l

i

: unsatis�able

(d) �(x

i

) = sup(x

i

) = l

i

! x

i

= l

i

: �xed value

ut



Practical Details: The incremental solved form for bounded variable linear

programs forms the basis for the implementation of the CLP(Q) and CLP(R)

systems distributed with the SICStus and Eclipse Prolog. The coverage is at

least as complete as that of earlier CLP(R) implementations: The system incre-

mentally solves linear equations over rational or real valued variables, covers the

lazy treatment of nonlinear equations, features a decision algorithm for linear in-

equalities that detects �xed values, removes redundancies, performs projections

(quanti�er elimination), allows for linear dis-equations, and provides for linear

optimization.

It is coded in Prolog using Attributed Variables [8] which serve as direct access

storage locations for properties associated with variables. At the same time,

attributed variables make the uni�cation part of a uni�cation based language,

Prolog in our particular case, user-de�nable within the language under extension

[7, 9].

Empirics: In the following table we list the execution time ratio b=s between

the solved form algorithm using bounded variables and a 'crippled' version which

works like the original Simplex with one slack and a row for each inequality. The

�rst two examples are from [4] computing the �rst and all solutions to the geo-

metric covering problem where nine squares of unknown and di�erent sizes are

required �ll an unspeci�ed rectangle, the remaining ones are executions of a very

simple minded branch and bound (BB) code on top of our solved form for some

of the smaller examples from the MIPLIB mixed integer linear programming

examples. Branch and bound is expected to bene�t from generalized slacks be-

cause BB strengthens the original problem relaxation with simple inequalities

like x � b�(x)c and x � d�(x)e when branching.

example b/s

9 squares 1st 0.78

9 squares all 0.76


ugpl 0.48

stein15 0.68

sample2 0.70

bm23 0.73

egout 0.11

enigma 0.59

mod013 0.42

pipex 0.57

sentoy 0.77

On this collection, the solver with generalized slacks is roughly twice as fast,

everything else held constant: same solver data structures, same base numeric

(rationals), same machine. Basically the same ratios are obtained when comput-

ing with 
oating point numbers.



4 Determining Minimal Con
ict Sets

In the section we will see how generalized slacks can be used to determine the

reasons for the unsatis�ability of a set of constraints. We distinguish between

equations, inequalities and disequalities, i.e. constraints of the form

n

X

j=1

a

ij

x

j

./ b

i

where ./ �f=; 6=;�; <;�; >g (6)

Interface: In the sequel we need the ability to refer to individual constraints

by a symbolic name which we call a label. Figure 1 depicts the interface between

the CLP(Q) solver kernel and the hierarchy manager part of IHCS(X,�). The

activation operation supplies the solver with the label of the constraint to be

activated and the solver returns a con
ict set (CS) where the label is an abstract

data type not looked at by the solver, and the CS is a union of labels, possibly

empty.

4.1 Failure Analysis for Equations

We solve systems of equations by Gaussian elimination. At any time, the set of

variables is partitioned into basic and non-basic variables. The basic variables

are expressed in terms of the non-basics. Upon the addition of a constraint it is

dereferenced against the solved form. That is, references to the basic variables are

replaced by their de�nitions. If the resulting expression is 0 = 0, the constraint

is entailed. The constraint is in con
ict with the solved form if 0 = k; k 6= 0.

Otherwise, we solve for an arbitrary variable in the dereferenced expression and

add this de�nition to the solved form.

We extend this scheme through the addition of a unique slack variable with

bounds [0; 0] to each equation. The basis for the validity of this operation is that

one may substitute zero at any time for all such variables without changing the

original problem statement. We call this special sort of slack variables witness

variables after [6] where the very same trick was applied for a completely di�erent

purpose. The initial coe�cients for the witness variables is immaterial, but 1 is

convenient. As the solved form is manipulated, the coe�cients change, and the

witness variables track the dependencies between the constraints which originate

from dereferencing and from pivot operations.

Example 4.

input constraint(s) solved form

a+ b = 10 a = 10� b� w

1

a+ b = 10 a = 5�

1

2

w

1

+

1

2

w

2

a = b b = 5�

1

2

w

1

�

1

2

w

2

(7)

The two equations determine the values for a and b, as can be seen by substitut-

ing zero for w

i

. Adding a third, incompatible constraint a = 4 dereferences into

�1 = �

1

2

w

1

+

1

2

w

2

+ w

3

. That is �1 = 0 and the culprits are identi�ed by the



witness variables w

1:::3

: removing any of the corresponding equations restores

satis�ability.

Proposition2. Witness variables with nonzero coe�cients in a dereferenced

equation identify the original constraints which are responsible for the entailment

or unsatis�ability of the equation.

4.2 Failure Analysis for Disequalities

By the use of a unique slack variables we turn each

n

X

j=1

a

ij

x

j

6= b

i

into

n

X

j=1

a

ij

x

j

� b

i

= s

nz

(8)

where s

nz

may assume any value but zero. The resulting equation is dealt with as

outlined in the previous section. In the implementation, an obvious optimization

is to combine the slack s

nz

with the witness variable for the equation.

4.3 Failure Analysis for Inequalities

After the solved form algorithm fails to inc/decrease the row that violates the

solved form, as described in section (3.1), the following holds:

Proposition3. The basic variables with non-zero coe�cients in this row iden-

tify the constraints that are in con
ict with the constraint the row represents

itself.

This is because the termination condition of the solved form algorithm, i.e. the

non-applicability of the operators pivot and toggle active bound is, like in the

original Simplex algorithm based on the signs, and in our case types, of the

variables in the objective function. Upon termination, the value of the objective

function is known and a corresponding set of non-basic variables is identi�ed. A

stronger result is:

Theorem4. Once the solved form algorithm detects unsatis�ability in (5), the

constraints identi�ed by the non-basic variables with nonzero coe�cients consti-

tute a minimal inconsistent subset of the set of constraints.

We draw upon a result by deBacker [1], which extended Lassez's Quasi-Dual

results [11] based on Fourier's theorem.

Theorem5 Fourier 1827. A set S of inequalities is inconsistent i� there exists

a positive linear combination of inequalities which give 0 � k, where k < 0.

S :

8

<

:

n

X

j=1

a

ij

x

j

� b

i

9

=

;

i�1::m

(9)



Theorem6 Lassez 1990. For S as de�ned above its quasi dual is:

Q :

8

<

:

P

m

i=1

�

i

a

ij

= 0

P

m

i=1

�

i

= 1

8i�1::m; �

i

� 0

9

=

;

j�1::n

(10)

{ If Q is empty then S is solvable

{ Otherwise let M = min

P

�

i

b

i

� If M � 0, S is solvable

� If M < 0, S is unsolvable

Theorem7 deBacker 1991. When S is unsolvable, we have a witness vertex

of Q corresponding to M. A subset of S given by the indices �

i

6= 0 is a minimal

inconsistent subset of S.

Proof of theorem 4. We exhibit the correspondence between the dual problem

that arises from the repair action in the solved form algorithm for an unsatis�able

constraint and the quasi dual formulation for the whole system of constraints.

The dual problem [15] for an optimization problem in standard form

n

P

n

j=1

a

ij

x

j

� b

i

o

i�1::m

maximize

P

n

j=1

c

j

x

j

(11)

is

n

P

m

j=1

a

ij

�

0

j

� c

i

o

i�1::n

8j�1::m; �

0

j

� 0

minimize

P

m

j=1

b

j

�

0

j

(12)

The quasi dual for the total system including the m + 1-th row is

Q

total

:

8

<

:

P

m+1

i=1

�

i

a

ij

= 0

P

m+1

i=1

�

i

= 1

8i�1::m+ 1; �

i

� 0

9

=

;

j�1:::n

(13)

The dual and the quasi dual are related by:

8

>

<

>

:

m

X

i=1

�

0

i

a

ij

| {z }

�c

j

+�

m+1

c

j

= 0

9

>

=

>

;

j�1:::n

(14)

Thus, except for

P

i

�

i

= 1, the dual and the quasi dual correspond. The presence

of this sum in the quasi dual is just a technical trick to force a unique solution

to the minimization problem in (10). Therefore, without it, and because in (12)

the non-basic �'s are zero at the optimum, the �'s correspond under the scaling:

�

0

m+1

= 1 and �

0

i

= �

i

=�

m+1

(15)

which yields of course the same incidence relation regarding minimal inconsistent

subsets of S. ut



Example 5. The �rst six of the following constraints are satis�able. The addition

of the seventh results in unsatis�ability.

source constraint label

x+ 3y + 2z � 5; 1

2x+ 2y + z � 2; 2

4x� 2y + 3z � �1; 3

x � 0; 4

y � 0; 5

z � 0; 6

6x+ 5y + 2z � 4 7

(16)

Put into standard form, the quasi dual reads:

0

@

�1 �2 �4 �1 0 0 6

�3 �2 2 0 �1 0 5

�2 �1 �3 0 0 �1 2

1

A

�

� =

�

0

P

7

i=1

�

i

= 1; 8i�1::7; �

i

� 0

minimize(�5�

1

� 2�

2

+ �

3

+ 4�

7

)

gives :

�

� = (

1

9

; 0; 0;

5

9

;

2

9

; 0;

1

9

)

(17)

Taking

1

9

sc

1

+

5

9

sc

4

+

2

9

sc

5

+

1

9

sc

7

results in 0 � �1, where sc

i

is the i-th source

constraint.

In our solved for we have the following: after the addition of sc

7

, the solved form

is violated at the corresponding slack variable s

7[ ;0]

, where the upper bound is

0 but �(s

7

) =

47

13

:

(�) s

7[ ;0]

=

47

13

+

75

13

x�

19

13

s

1

+

4

13

s

3

s

2[ ;0]

=

�15

13

�

22

13

x+

8

13

s

1

�

1

13

s

3

y

[0; ]

=

17

13

+

5

13

x�

3

13

s

1

+

2

13

s

3

z

[0; ]

=

7

13

�

14

13

x�

2

13

s

1

�

3

13

s

3

s

3[ ;0]

x

[0; ]

s

1[ ;0]

(18)

The application of pivot(y; s

3

) reduces �(s

7

) to 1, but the solved form is still

violated. None of the variables x; y; s

1

can enter the basis, thus �(s

7

) = 1 =

inf(s

7

).

(�) s

7[ ;0]

= 1+ 5x+ 2y � s

1

s

2[ ;0]

=

�1

2

�

3

2

x1

1

2

y +

1

2

s

1

s

3[ ;0]

=

�17

2

�

5

2

x�

13

2

y +

1

2

s

1

z

[0; ]

=

5

2

�

1

2

x�

3

2

y �

1

2

s

1

y

[0; ]

x

[0; ]

s

1[ ;0]

(19)

Reading o� the coe�cients from (*), we get: �

0

= (�1; 0; 0; 5; 2;0; 1) Note that

the �rst component of this vector is negative because we assumed normalized



inequalities, i.e. every inequality expressed as

P

k

ij

x

i

� b, in the proof only.

Application gives:

�x� 3y � 2z � �5

5x � 0

2y � 0

6x+ 5y + 2z � 4

normalize

�!

�x� 3y � 2z � �5

�5x � 0

�2y � 0

6x+ 5y + 2z � 4

! 0 � �1 (20)

5 Deactivation of Constraints

Again we organize this section after the classes of constraints we deal with. The

basis for the correctness of the operations performed is the invertability of lin-

ear transformations. Space not permitting for more details, we only mention a)

that entailed constraints have to be reactivated if no longer entailed because

of the deactivation of an entailing constraint, and b) that deactivation has of

course to deal with the transitive closure of consequences of �xed value detec-

tion/propagation.

5.1 Deactivating Equations

An equation is deactivated by solving for the corresponding witness variable.

Between the introduction of the witness variable and the time we are about to

relax the equation, the solved form was changed by linear transformations only,

which is the guarantee that we can solve for the witness variable. Solving for a

variable removes it from all the right hand sides of all basic variables where it

occurs, and then we may abandon the row for the witness variable. Consider our

example again:

Example 6.

input constraint(s) solved form

a+ b = 10 a = 10� b� w

1

a+ b = 10 a = 5�

1

2

w

1

+

1

2

w

2

a = b b = 5�

1

2

w

1

�

1

2

w

2

(21)

To deactivate the second equation a = b, we solve for w

2

= �10 + 2a + w

1

,

substitute and drop the row for w

2

:

Example 7.

input constraint(s) solved form

a+ b = 10 b = 10� a �w

1

(22)

Which is equivalent to the solved form for a + b = 10. If we deactivate the �rst

equation instead, we have w

1

= 10� 2a+w

2

and:

input constraint(s) solved form

a = b b = a� w

2

(23)



5.2 Deactivating Disequations

Recall that disequations are turned into equations via slacks. Deactivating a

disequation is by solving for the witness variable for the corresponding equation,

and dropping the row afterwards.

5.3 Deactivating Inequations

An inequation is deactivated by bringing the associated slack variable into the

basis and by removing the corresponding bound. A variable is brought into the

basis by pivoting it with the most constraining row in the basis. If there is no

constraining row for a non-basic variable, we may simply drop the bound to be

deactivated.

6 Conclusion

It turned out to be remarkable simple to meet the explanatory and defeasibility

requirements of the IHCS scenario for the instantiation of the constraint solver

component to CLP(Q). One concept, generalized slacks, provides both mecha-

nisms. With regard to computational complexity, explanations are for free if we

have to deal with inequalities free of �xed values only. If there are (implicitly)

�xed values and/or additional equations, the extra cost for carrying along the

witness variables is rewarded by the possibilities a) to deactivate the constraints

later, and b) although not elaborated on here, to have backtracking without

trailing in the constraint solver [6]. Our work shares objectives with [3]. Our

improvement is in the addition of defeasibility to the thread and that we don't

need an explicit inverse of the basis for CS computations.

With respect to applications we naturally envision classical dependency di-

rected backtracking applications, but expect more rewarding results from the

extra expressiveness and 
exibility through the IHCS architecture.

Acknowledgments

This joint work was made possible by project SOL from the Human Capital and

Mobility Programme of the European Union. Financial support for the Austrian

Research Institute for Arti�cial Intelligence is provided by the Austrian Federal

Ministry for Science, Research, and the Arts. The work at Faculdade de Ciências

e T�ecnologia of the Universidade Nova de Lisboa was supported by Junta Na-

cional de Investiga�c~ao Cient

�

i�ca e Tecnol�ogica (grant PBIC/C/TIT/1242/92).

References

1. Backer B.de, Beringer H.: Intelligent Backtracking for CLP Languages: An Appli-

cation to CLP(R), in Saraswat V. & Ueda K.(eds.), Symposion on Logic Program-

ming, MIT Press, Cambridge, MA, pp.405-419, 1991.



2. A. Borning, M. Maher, A. Martingale, and M. Wilson. Constraints hierarchies and

logic programming. In Levi and Martelli, editors, Logic Programming: Proceedings

of the 6th International Conference, pages 149{164, Lisbon, Portugal, June 1989.

The MIT Press.

3. Burg J., Lang S.-D., Hughes C.E.: Finding Con
ict Sets and Backtrack Points

in CLP(R), in Hentenryck P.van(ed.), Proceedings of the Eleventh International

Conference on Logic Programming (ICLP94), MIT Press, Cambridge, MA, 1994.

4. Colmerauer A.: An Introduction to Prolog III, Communications of the ACM, 33(7),

69-90, 1990.

5. Dantzig G.B.: Linear Programming and Extensions, Princeton University Press,

Princeton, NJ, 1963.

6. Hentenryck P.van, Ranachandran V.: Backtracking without Trailing in CLP(R),

Dept.of Computer Science, Brown University, CS-93-51, 1993.

7. Holzbaur C.: Speci�cation of Constraint Based Inference Mechanisms through Ex-

tended Uni�cation, Department of Medical Cybernetics and Arti�cial Intelligence,

University of Vienna, Dissertation, 1990.

8. Holzbaur C.: Metastructures vs. Attributed Variables in the Context of Extensi-

ble Uni�cation, in Bruynooghe M. & Wirsing M.(eds.), Programming Language

Implementation and Logic Programming, Springer, LNCS 631, pp.260-268, 1992.

9. Holzbaur C.: Extensible Uni�cation as Basis for the Implementation of CLP Lan-

guages, in Baader F., et al., Proceedings of the Sixth International Workshop on

Uni�cation, Boston University, MA, TR-93-004, pp.56-60, 1993.

10. Imbert J.-L., Cohen J., Weeger M.-D.: An Algorithm for Linear Constraint Solving:

Its Incorporation in a Prolog Meta-Interpreter for CLP, in Special Issue: Constraint

Logic Programming, Journal of Logic Programming, 16(3&4), 235-253, 1993.

11. Lassez J.L.: Parametric Queries, Linear Constraints and Variable Elimination, in

Proceedings of the Conference on Design and Implementation of Symbolic Compu-

tation Systems, Capri, pp.164-173, 1990.

12. Menezes F., Barahona P.: Preliminary Formalization of an Incremental Hierarchi-

cal Constraint Solver. In L. Damas L and M. Filgueiras (eds.), In Proceedings of

EPIA'93, Springer-Verlag, Porto, October 1993.

13. Menezes F., Barahona P.: An Incremental Hierarchical Constraint Solver. In V.

Saraswat and P. Van Hentenryck, editors, Principles and Practice of Constraint

Programming, MIT Press, 1995.

14. Menezes F., Barahona P.: Defeasible Constraint Solving. In Proceedings of Ib-

eramia 94, McGraw-Hill Interamericana de Venezuela, Caracas, October 1994.

15. Murty K.G.: Linear and Combinatorial Programming, Wiley, New York, 1976.

16. Wilson M., Borning A.: Hierarchical Constraint Logic Programming. J. Logic Pro-

gramming, 1993:16.


