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Abstract

This paper provides an overview over the most common neural network types for

time series processing, i.e. pattern recognition and forecasting in spatio-temporal

patterns. Emphasis is put on the relationships between neural network models

and more classical approaches to time series processing, in particular, forecasting.

The paper begins with an introduction of the basics of time series processing, and

discusses feedforward as well as recurrent neural networks, with respect to their

ability to model non-linear dependencies in spatio-temporal patterns.

1 Introduction

The world is always changing. Whatever we observe or measure { be it a

physical value such as temperature or the price of a freely traded good { is

bound to be di�erent at di�erent points in time. Classical pattern recogni-

tion, and with it a large part of neural network applications, has mainly been

concerned with detecting systematic patterns in an array of measurements

which do not change in time (static patterns). Typical applications involve

the classi�cation of input vectors into one of several classes (discriminant

analysis), or the approximate description of dependencies between observ-

ables (regression). When changes over time are also taken into account,

an additional, temporal dimension is added. Although to a large extent

such a problem can still be viewed in classical pattern recognition terms,

several additional important aspects come into play. The �eld of statistics

concerned with analysing such spatio-temporal data (i.e. data that has a

spatial and temporal dimension) is usually termed time series processing.

This paper aims at introducing the fundamentals of using neural net-

works for time series processing. As a tutorial article it naturally can only
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scratch the surface of this �eld and leave many important details untouched.

Nevertheless, it provides an overview of the most relevant aspects which

form the basis of work in this �eld. Throughout the paper, references are

given as a guide to further, more detailed literature. Basic knowledge about

neural networks, architectures, and learning algorithms is assumed.

2 Time series processing

2.1 Basics

In formal terms, a time series is a sequence of vectors, depending on time t:

~x(t); t = 0; 1; ::: (1)

The components of the vectors can be any observable variable, such as, for

instance

� the temperature of air in a building

� the price of a certain commodity at a given stock exchange

� the number of births in a given city

� the amount of water consumed in a given community

Theoretically, ~x can be seen as a continuous function of the time variable t.

For practical purposes, however, time is usually viewed in terms of discrete

time steps, leading to an instance of ~x at every end point of a { usually

�xed-size { time interval. This is why one speaks of a time sequence or

series. The size of the time interval usually depends on the problem at

hand, and can be anything from millseconds, hours to days, or even years.

In many cases, observables are available only at discrete time steps (e.g.

the price of a commodity at each hour, or day) naturally giving rise to a

time series. In other cases (e.g. the number of births in a city), values

have to be accumulated or averaged over a time interval (e.g. to lead to the

number of births per month) to obtain the series. In domains where time is

indeed continuous (e.g. when temperature in a given place is the observable)

one must measure the variable at points given through the chosen time

interval (e.g. measuring the temperature at every full hour) to obtain a

series. This is called sampling. The sampling frequency, i.e. the number

of points measured resulting from the chosen time interval, is a crucial

parameter in this case, since di�erent frequencies can essentially change the

main characteristics of the resulting time series.



It should be noted that there is another �eld very closely related to time

series processing, namely signal processing. Examples are speech recogni-

tion, detection of abnormal patterns in electrocardiograms (ECGs), or the

automatic staging of sleep-electroencephalograms (EEGs). A signal, when

sampled into a sequence of values at discrete time steps, constitutes a time

series as de�ned above. Thus there is no formal distinction between signal

and time series processing. Di�erences can be found in the type of prevalent

applications (e.g. recognition or �ltering in signal processing; forecasting in

time series processing), the nature of the time series (the time interval in

a sampled signal is usually a fraction of a second, while in time series pro-

cessing the interval often is from hours upwards.), etc. But this is only an

observation in terms of prototypical applications, and no clear boundary

can be drawn. Thus, time series processing can pro�t from exploring meth-

ods from signal processing, and vice versa. An overview of neural network

applications in signal processing can be found, among others, in [54, 51].
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If the vector ~x contains only one component, which is the case in many

applications, one speaks of a univariate time series, otherwise it is a multi-

variate one. It depends very much on the problem at hand whether a uni-

variate treatment can lead to results with respect to recognizing patterns

or systematicities. If several observables in
uence each other { such as the

air temperature and the consumption of water { a multivariate treatment

{ i.e. an analysis based on several observables (more than one component

in ~x) { would be indicated. In most of the discussions that follow I will

nevertheless concentrate on univariate time series processing.

2.2 Types of processing

Depending on the goal of time series analysis, the following typical applica-

tions can be distinguished:

1. forecasting of future developments of the time series

2. classi�cation of time series, or a part thereof, into one of several classes

3. description of a time series in terms of the parameters of a model

4. mapping of one time series onto another

Application type 1 is certainly the most wide-spread and imminent in

literature. From econometrics to energy planning a large number of time

series problem involve the prediction of future values of the vector ~x {

e.g. in order to decide upon a trading strategy or in order to optimize
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production. Formally, the problem is described as follows: Find a function

F : R

k�n+l

! R

k

(with k being the dimension of ~x) such as to obtain an

estimate

^

~x(t+ d) of the vector ~x at time t+ d, given the values of ~x up to

time t, plus a number of additional time-independent variables (exogenous

features) �

i

:

^

~x(t+ d) = F(~x(t); ~x(t� 1); : : : ; �

1

; : : : ; �

l

) (2)

d is called the lag for prediction. Typically, d = 1, meaning that the sub-

sequent vector should be estimated, but can take any value larger than 1,

as well (e.g. the prediction of energy consumption 5 days ahead). For the

sake of simplicity, I will neglect the additional variables �

i

throughout this

paper. We should keep in mind, though, that the inclusion of such features

(e.g. the size of the room a temperature is measured in) can be decisive in

some applications.

Viewed this way, forecasting becomes a problem of function approxi-

mation, where the chosen method is to approximate the continuous-valued

function F as closely as possible. In this sense, it can be compared to func-

tion approximation or regression problems involving static data vectors,

and many methods from that domain can be applied here, as well (see, for

instance, [18], for an introduction). This observation will turn out to be

important when discussing the use of neural networks for forecasting.

Usually the evaluation of forecasting performance is done by comput-

ing an error measure E over a number of time series elements, such as a

validation or test set:

E =

N

X

i=0

e(

^

~x(t� i); ~x(t� i)) (3)

e is a function measuring a single error between the estimated (forecast) and

actual sequence element. Typically, a distance measure (Euclidean or other)

is used here, but depending on the problem, any funtion can be used (e.g. a

function computing the cost resulting from forecasting ~x(t+d) incorrectly).

In many forecasting problems, the exact value of

^

~x(t+d) is not required,

only an indication of whether ~x(t + d) will be larger (rising) or smaller

(falling) than ~x(t), or remain approximately the same. If this is the case,

the problem turns into a classi�cation problem, mapping the sequence (or

a part thereof) onto the classes rising or falling (and perhaps constant).

In more general terms, classi�cation of time series (application type 2

above) can be expressed as the problem of �nding a function F

c

: R

k�n+l

!

B

k

assigning one out of several classes to a time series:

F

c

: (~x(t); ~x(t� 1); : : : ; �

1

; : : : ; �

l

)! ĉ

i

2 C (4)



where C is the set of available class labels. Formally, there is no essential

di�erence to the function approximation problem (equation 2). In other

words, classi�cation can be viewed as a special case of function approxima-

tion, where the function to be approximated maps continuous vectors onto

binary-valued ones. A di�erence comes from the way in which the problem

is viewed (i.e. a separation of vectors is sought rather than an approxima-

tion of the dependencies between them) { which can have an in
uence on

what method to derive the function is used { and from the way performance

is evaluated. Typically, an error function takes on the form

E = 1�

1

N

N

X

i=1

�

ĉ

i

;c

i

(5)

expressing the percentages of inputs whch are not correctly assigned the

desired class. �

ij

is the Kronecker symbol, i.e. �

ij

= 1 i� i = j, and 0

otherwise. c

i

is the known class label of input i. Again, this distinction

between approximation (regression) and classi�cation (discrimination) is the

same as in pattern recognition of vectors without temporal dimension. Thus,

a large number of results and methods from that domain can be used for

time series classi�cation, as well. Another di�erence in the domain of time

series processing is that classi�cation (with the exception of a classi�cation

into rising/falling) usually is retrospective { i.e. there is no time lag for the

estimated output { rather than prospective (forecast into the future).

Application type 3 { modeling of time series { is implicitly contained in

most instances of 1 (forecasting) and 2 (classi�cation). The function F in

equation 2 can be considered as a model of the time series which is capable

of generating the series, by successively substituting inputs by estimates. To

be useful, a model should have fewer parameters (degrees-of-freedom in the

estimation of F) than elements in the time series. Since the latter number is

potentially in�nite, this basically means that the function F should depend

only on a �nite and �xed number of parameters (which, as we will see

below, does not mean that it can only depend on a bounded number of past

sequence elements). Besides its use in forecasting and classi�cation, a model

can also be used as a description of the time series, its parameters being

viewed as a kind of features of the series, which can be used in a subsequent

analysis (e.g. a subsequent classi�cation, together with time-independent

features). This can be compared with the process of modeling with the aim

of compressing data vectors in the purely spatial domain (e.g. by realising

an auto-associative mapping with a neural network, [13]).

Finally, while modeling is a form of mapping a time series onto itself (i.e.

�nding model parameters based on the time series in order to reproduce

the series), the mapping of one time series onto another, di�erent, one

is conceivable as well (application type 4). A simple example would be



forecasting the value of one series (e.g. the price of oil) given the values

of another (e.g. interest rates). More complex applications could involve

the separate modeling of two time series and �nding a functional mapping

between them. Since in its simplest form, mapping between time series is a

special case of mulivariate time series processing (discussed above), and in

the more complex case it is not very common, this application type will not

be discussed further. State-space models, however (to be discussed below),

can be viewed in this context.

In what follows, I will mainly discuss forecasting problems, while keeping

in mind that the other application types are very closely related to this type.

2.3 Stochasticity of time series

The above considerations implicitly assume that theoretically an exact model

of a time series can be found (i.e. one that minimizes the error measure to

any desired degree). For real-world applications, this assumption is not re-

alistic. Due to measuring errors and unknown or uncontrollable in
uencing

factors, one almost always has to assume that even the most optimal model

will lead to a residual error � which cannot be erased. Usually, this error is

assumed to be the result of a noise process, i.e. produced randomly by an

unknown source. Therefore, equation 2 has to be extended as following:

~x(t+ d) = F(~x(t); ~x(t� 1); :::) + ~�(t) (6)

This noise ~�(t) cannot be included into the model explictly. However, many

methods assume a certain characteristic of the noise (e.g. Gaussian white

noise), the main describing parameters of which (e.g. mean and standard

deviation) can be included in the modeling process. By doing this in fore-

casting, for instance, one cannot only give an estimate of the forecast value,

but also an estimate of how much this value will be disturbed by noise. This

is the focus of so-called ARCH models [4].

2.4 Preprocessing of time series

In only a few cases it will be appropriate to use the measured observables

immediatly for processing. In most cases, it is necessary to pre-analyze,

as well as preprocess the time series to ensure an optimal outcome of the

processing. One one hand, this has to do with the method employed, which

can usually extract only certain kinds of systematicities (i.e. usually those

that are expressed in terms of vector similarities). On the other hand,

it is necessary to remove known systematicities which could hamper the

performance. An example are clear (linear or non-linear) trends, i.e. the

phenomenon that the average value of sequence elements is constantly rising



Figure 1: A time series showing a close-to-linear falling trend. The series

consists of tick-by-tick currency exchange rates (Swiss franc - US$). Source:

ftp://ftp.cs.colorado.edu/pub/Time-Series/SantaFe

or falling (see �gure 1, taken from [50]). By replacing the time series ~x(t)

with a series ~x

0

(t), consisting of the di�erences between subsequent values,

~x

0

(t) = ~x(t)� ~x(t� 1) (7)

a linear trend is removed (see �gure 2). This di�erencing process corre-

sponds to di�erentiation of continuous functions. Similarly, seasonalities,

i.e. periodic patterns due to a periodic in
uencing factor (e.g. day of the

week in product sales), can be eliminated by computing the di�erences be-

tween corresponding sequence elements:

~x

0

(t) = ~x(t)� ~x(t� s) (8)

(e.g. s = 7 if the time interval are days, and corresponding days of the week

show similar patterns).

Identifying trends and seasonalities, when they are a clearly visible prop-

erty of the time series, lead to prior knowledge about the series. Like for any

statistical problem, such prior knowledge should be handled explicitely (by

di�erencing, and summation after processing to obtain the original values).

Otherwise any forecasting method will mainly attempt to model these per-

spicuous characteristics, leaving little or no room for the more �ne-grained

characteristics. (Thus a naive forecaster, e.g. \forecast today's value plus a

constant increment" will probably fare equally well.) For non-linear trends,

usually a parametric model (e.g. an exponential curve) is assumed and

etsimated, based on which an elimination can be done, as well.

Another reason for eliminating trends and seasonalities (or, for that mat-

ter, any other clearly visible or well-known pattern) is that many methods



Figure 2: The time series from the previous �gure, after di�erencing

require stationarity of the time series (more on this below).

3 Neural nets for time series processing

Several authors have given an overview of di�erent types of neural networks

for use in time series processing. [47], for instance, distinguishes di�erent

neural networks according to the type of mechanism to deal with temporal

information. Since most neural networks have previously been de�ned for

pattern recognition in static patterns, the temporal dimension has to be

supplied in an appropriate way. [47] distinguishes the following mechanisms:

� layer delay without feedback (or time windows)

� layer delay with feedback

� unit delay without feedback

� unit delay with feedback (self-recurrent loops)

[33] bases his overview on a distinction concerning the type of memory:

delay (akin to time windows and delays), exponential (akin to recurrent

connections) and gamma (a memory model for continuous time domains).

I would like to give a slightly di�erent overview. Given the above dis-

cussion of time series processing, the use of neural networks in this �eld

can mainly be seen in the context of function approximation and classi�-

cation. In the following, the main neural network types will be introduced

and discussed along more traditional ways of sequence processing.

Other introductions can be found in [45], [41], [10], and [23]. Extensive

treatments of neural networks for sequence processing are the book by [3].



4 Mulilayer perceptrons and radial basis

function nets: autoregressive models

Among the most wide-spread neural networks are feedforward networks for

classi�cation and function approximation, such as multilayer perceptrons

(MLP; hidden units with sigmoidal transfer functions, [42]) and radial basis

function networks (RBFN; hidden units using a distance propagation rule

and a Gaussian, or other, transfer functions, [8]). Both network types have

been proven to be universal function approximators (see [14, 25] for the

MLP, and [30, 22] for the RBFN). This means that they can approximate

any reasonable function F(~p) : R

n

!R

m

arbitrarily closely by

F

MLP

(~p) =

0

@

k

X

j=1

v

jl

�(

n

X

i=1

w

ij

p

i

� �

j

)� �

l

1

A

; l = 1::m (9)

{ where � is the sigmoid function (or any other non-linear, non-polynomial

function), k is the number of hidden units, v

jl

and w

ij

are weights, and �

i

are thresholds (biases) { or by

F

RBF

(~p) =

0

@

k

X

j=1

v

jl

�(

n

X

i=1

(w

ij

� p

i

)

2

)� �

l

1

A

; l = 1::m (10)

where � is the Gaussian function, provided k is su�ciently large. Approxi-

mation of non-linearity is done by a superposition of several instances of the

basis function (e.g., sigmoid or Gaussian). With a �xed number of hidden

units (as is the case in most neural network applications) the method could

be called a semi-parametric approximation of functions: It does not make

speci�c assumptions about the shape of the function (as would a parametric

method), but it cannot approximate any arbitrarily complex function (as

could a non-parametric techniqu; note that we assumed a �xed number of

hidden units, while the above proofs require an arbitrarily large number of

units, not �xed beforehand) { see, for instance, [18] or [5].

From this observation, MLPs and RBFNs o�er a straight-forward exten-

sion to a wide-spread classical way of modeling time series: linear autore-

gressive models. Linear autoregresive time series modeling (see [7]) assumes

the function F in equation 2 to be a linear combination of a �xed number

of previous series vectors.

2

Including the noise term �,

x(t) =

p

X

i=1

�

i

x(t� i) + �(t) (11)

2

for simpli�cation, a univariate series is assumed, by replacing the vectors ~x with

scalars x



= F

L

(x(t� 1); : : : ; x(t� p)) + �(t) (12)

If p previous sequence elements are taken, one speaks of an AR[p] model

of the time series (autoregressive model of order p). Finding an appro-

priate AR[p] model means choosing an appropriate p and estimating the

coe�cients �

i

, e.g. through a least squares optimization procedure (see [7]

for an extensive treatment of this topic). This technique, although rather

powerful, is naturally limited, since it assumes a linear relationship among

sequence elements. Most importantly, it also assumes stationarity of the

time series, meaning that the main moments (mean, standard deviation) do

not change over time (i.e. mean and standard deviation over a part of the

series are independent of where in the series this part is extracted).

It becomes clear from equations 9 and 11 (or 10 and 11, respectively)

that an MLP or RBFN can replace the linear function F

L

in equation 11 by

an arbitrary non-linear function F

NN

(with NN being eitherMLP or RBF):

x(t) = F

NN

(x(t); : : : ; x(t� p)) + �(t) (13)

This non-linear function can be estimated based on samples from the series,

using one of the well-known learning or optimization techniques for these

networks (e.g. backpropagation, conjugent gradient, etc.). Making F

NN

dependent on p previous sequence elements is identical to using p input

units being fed with p adjacent sequence elements (see Fig. 3). This input

is usually refered to as a time window (see section 3), since it provides a

limited view on part of the series. It can also be viewed as a simple way of

transforming the temporal dimension into another spatial dimension.

Non-linear autoregressive models are potentially more powerful than lin-

ear ones in that

� they can model much more complex underlying characteristics of the

series

� they theoretically do not have to assume stationarity

However, as in static pattern recognition, they require much more care and

caution than linear methods in that they

� require large numbers of sample data, due to their large number of

degrees-of-freedom

� can run into a variety of problems, such as over�tting, sub-optimal

minima as a result of estimation (learning), etc., which are more severe

than in the linear case (where over�tting can come about by chossing

too high a value for the parameter p, for instance)
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^
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x(t� p)x(t� 3)x(t� 2)x(t� 1)

FNN(x(t� 1), ...)

Figure 3: A feedforward neural net with time window as a non-linear AR

model

� do not necessarily include the linear case in a trivial way

Especially the �rst point is important for many real-world applications

where only limited data is available. A linear model might still be preferable

in many cases, even if the dependencies are non-linear. The second point

concerns the learning algorithm employed. Backpropagation very often is

not the most appropriate choice to obtain optimal models.

Examples of feedforward neural networks in forecasting are [9, 36, 49, 53]

and numerous other papers in [44] and [37].

3

4.1 Time-delay neural networks

Another mechanism to supply neural networks with \memory" to deal with

the temporal dimension is the introduction of time delays on connections.

In other words, through delays, inputs arrive at hidden units at di�erent

points in time, thus being \stored" long enough to in
uence subsequent in-

puts. This approach, called a time-delay neural network (TDNN) has been

extensively employed in speech recognition, for instance, by [52]. Formally,

time delays are identical to time windows and can thus be viewed as au-

toregressive models, as well. An interesting extension is the introduction of

time delays also on connections between hidden and output units, providing

additional, more \abstract" memory to the network.

5 \Jordan" nets: moving average models

An alternative approach to modeling time series is to assume the series being

generated through a linear combination of q \noise" signals (see, again, [7]):

3

This, again, is one example of a proceedings series, resulting from the annual con-

ference \Neural Networks and the Capital Markets", providing an excellent overview of

work on forecasting with neural networks in the �nancial domain.



x(t) = �

q

X

i=1

�

i

�(t� i) + �(t) (14)

= F

L

(�(t� 1); : : : ; �(t� q)) + �(t) (15)

This is refered to as a moving average (or MA[q]) model (\of order q"). The

approach seems paradoxical at �rst: a non-random time series is modeled

as the linear combination of random signals. However, when viewing the

linear combination as a discrete �lter of the noise signal, the MA[q] model

can be viewed as thus: A noise process usually has a frequency spectrum

containing all or a large number of frequencies (\white" noise). A �lter {

like the MA[q] model { can thus cut out any desired frequency spectrum

(within the bounds of linearity), leading to a speci�c, non-random time

series.

A combination of AR and MA components is given in the so-called

ARMA[p,q] model:

x(t) =

p

X

i=1

�

i

x(t� i)�

q

X

i=1

�

i

�(t� i) + �(t) (16)

= F

L

(x(t� 1); : : : ; x(t� p); �(t� 1); : : : ; �(t� q)) + �(t) (17)

MA[q] and ARMA[p,q] models, like AR[p] models, are again rather limited

given their linearity, and also their requirement of stationarity. Thus, an

extension to the non-linear case using neural networks seems appropriate

here, as well. [12] introduce such a possibility. The most important question

to answer is this: What values of �

i

should be taken? A common approach

in MA modeling is to use the di�erence between actual and estimated (fore-

cast) value as an estimate of the noise term at time t. This is justi�ed by

the following observation. Assume that the model is already near-optimal in

terms of forecasting. Then the di�erence between forecast and actual value

will be close to the residual error { the noise term in equation 6. Thus, this

di�erence can be used as an estimate �̂ for the noise term � in equation 16.

�̂(t) = x(t)� x̂(t) (18)

Figure 4 depicts a neural network realizing this assumption for the univari-

ate case [12]. The output of the network, which is identical to the estimate

of x̂(t+ 1), is fed back to an additional input layer, each unit of which also

receives a negative version of the corresponding actual value x(t+1) (avail-

able at the subsequent time step) to form the desired di�erence. If a time

window (or time delay at the input layer) is introduced, as well, the network

forms an arbitrarily non-linear ARMA[p,q] model of the time series:



x
^
(t)

x(t� 1)

x
^
(t� 1)–

FNN(x(t� 1), ...)

copy

Figure 4: A neural network with output layer feedback, realizing a non-

linear ARMA model.

x(t) = F

NN

(x(t� 1); : : : ; x(t� p); �̂(t� 1); : : : ; �̂(t� q)) + �(t) (19)

Simliar observations as with respect to the non-linear AR[p] model in section

11 must be made. As a non-linear model, the network is potentially more

powerful than traditional ARMA models. However, this must again be

considered with care, due to the large numbers of degrees-of-freedom and

the potential limitations of the learning algorithms. A further complication

comes from the fact that at the beginning of the sequence, no estimates x̂

are available. One possible way to overcome this problem is to start with 0

values and update the network until su�cient estimates are computed. This

requires a certain number of cycles before the learning algorithm can be

applied, \wasting" a number of sequence elements which cannot be used for

training. This is especially important when one wants to randomize learning

by always choosing an arbitrary window from the time series, instead of

stepping thorugh the series sequentially.

The network in �gure 4 can be considered a special case of the recurrent

network type in �gure 5, usually called Jordan network after [26]. It consists

of a multilayer perceptron with one hidden layer and a feedback loop from

the output layer to an additional input (or context) layer. In addition, [26]

introduced self-recurrent loops on each unit in the context layer, i.e. each

unit in the context layer is connected with itself, with a weight v

i

smaller

than 1. Without such self-recurrent loops, the network forms a non-linear

function of p past sequence elements and q past estimates:

x̂(t) = F

NN

(x(t� 1); : : : ; x(t� p); x̂(t� 1); : : : ; x̂(t� q)) (20)

The non-linear ARMA[p,q] model discussed above can be said to be implic-

itly contained in this network by reformulating equation 20 (with the help

of equation 9 and ~p = (x(t� 1); : : : ; x(t� p); x̂(t� 1); : : : ; x̂(t� q)) as
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Figure 5: The \Jordan" network.
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l = 1 (22)

provided, p = q (a similar derivation can be made for q < p). However,

conventional learning algorithms for MLPs cannot trivially recogize di�er-

ences between input values (in terms of them being the relevant invariances).

Therefore, the explicit calculation of the di�erences in �gure 4 can be viewed

as the inclusion of essential pre-knowledge and thus the above network seems

to be more well-suited for the implementation of a clean non-linear ARMA

model. Nevertheless, the Jordan network can also be used for time series

processing, extending the ARMA family of models by one realizing a func-

tional dependency between sequence elements and estimates one one hand,

and the to-be-forecast value on the other. Examples of applications with

\Jordan" networks are [16, 31].

The self-recurrent loops in the Jordan network are another deviation of

the standard ARMA-type of models. With their help, past estimates are

superimposed onto each other in the following way:

a

C

i

(t) = f(a

C

i

(t� 1) + v

i

x̂

i

(t� 1)) (23)

where f is the activation function, typically a sigmoid. This means that

the activations a

C

i

of the units in the context layer are recursively com-

puted based on all past estimates x̂. In other words, each such activation

is a function of all past estimates and thus contains information about a

potentially unlimited previous history. This property has often given rise

to the argument that recurrent networks can exploit information beyond a

limited time window (p or q past values). However, in practice this cannot

really be exploited. If v

i

is close to 1, the unit (if it uses a sigmoid transfer



function) quickly saturates to maximum activation, where additional inputs

have little e�ect. If v

i

<< 1, the in
uence of past estimates quickly goes to 0

through several applications of equation 23. So, in fact, context layers with

self-recurrent loops are also rather limited in representing past information.

In addition, 
exibility in including past information is paid by the loss of

explicitness of that information, since past estimates are accumulated into

one activation value.

Another way of employing self-recurrent loops will be discussed below.

6 Elman networks and state space models

Another common method for time series processing are so-called (linear)

state space models [11]. The assumption is that a time series can be de-

scribed as a linear transformation of a time-dependent state { given through

a state vector ~s:

~x(t) = C~s(t) + ~�(t) (24)

where C is a transformation matrix. The time-dependent state vector is

usually also desribed by a linear model:

~s(t) = A~s(t� 1) +B~�(t) (25)

where A and B are matrices, and ~�(t) is a noise process, just like ~�(t) above.

The model for the state change, in this version, is basically an ARMA[1,1]

process. The basic assumption underlying this model is the so-calledMarkov

assumption, meaning that the next sequence element can be predicted by

the state a system producing a time series is in, no matter how the state was

reached. In other words, all the history of the series necessary for producing

a sequence element can be expressed by one state vector. Since this vector

(~s) is continuous-valued, all possible state vectors form a Euclidean vector

space in R

n

. This model [11] can be viewed as a time series modeled in

terms of another one (related to the mapping between time series discussed

in section 2.2).

If we further assume that the states are also dependent on the past

sequence vector (an assumption, which is common, for instance, in signal

processing { see [24]), and neglect the moving average term B~�(t):

~s(t) = A~s(t� 1) +D~x(t� 1) (26)

then we basically obtain an equation describing a recurrent neural network

type, known as Elman network (after [19]), depicted in �gure 6. The Elman

network is an MLP with an additional input layer, called the state layer,

receiving as feedback a copy of the activations from the hidden layer at

the previous time step. If we use this network type for forecasting, and
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Figure 6: The \Elman" network as an instantiation of the state-space model.

equate the activation vector of the hidden layer with ~s, the only di�erence

to equation 26 is the fact that in an MLP a sigmoid activation function is

applied to the input of each hidden unit:

~s(t) = �(A~s(t� 1) +D~x(t� 1)) (27)

where �(~a) refers to the application of the sigmoid (or logistic) function

1=(1+exp(�a

i

)) to each element a

i

of ~a. In other words, the transformation

is not linear but the application of a logistic regressor to the input vectors.

This leads to a restriction of the state vectors to vectors within a unit cube,

with non-linear distortions towards the edges of the cube. Note, however,

that this is a very restricted non-linear transformation function and does

not represent the general form of non-linear state space models (see below).

The Elman network can be trained with any learning algorithm for

MLPs, such as backpropagation or conjugent gradient. Like the Jordan net-

work, it belongs to the class of so-called simple recurrent networks (SRN)[23].

Even though it contains feedback connections, it is not viewed as a dynam-

ical system in which activations can spread inde�nitly. Instead, activations

for each layer are computed only once at each time step (each presentation

of one sequence vector).

Like above, the strong relationship to classical time series processing can

be exploited to introduce \new" learning algorithms. For instance, in [56]

the Kalman �lter algorithm, developed for the original state space model is

applied to general recurrent neural networks.

Similar observations can be made about the Elman recurrent network as

with respect to the Jordan net: Here, too, a number of time steps is needed

until { after starting with 0 activations { suitable activations are available

in the state layer, before learning can begin. Standard learning algorithms

like backpropagation, although easy to apply, can cause problems or lead to

non-optimal solutions. Finally, this type of recurrent net also cannot really

deal with an arbitrarily long history, for similar reasons as above (see, for

instance, [2], cited in [3], or [33]). Examples of applications with \Elman"

networks are [21, 15, 17].
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MLP or RBFN

MLP or RBFN

Figure 7: An extension of the \Elman" network as realization of a non-linear

state-space model

As hinted upon above, a general non-linear version of the state space

model is conceivable, as well. By replacing the linear transformation in

equations 24 and 25 by an arbitrary non-linear function, one obtains

~x(t) = F

1

(~s(t)) + ~�(t) (28)

~s(t) = F

2

(~s(t� 1)) + ~�(t) (29)

Like in the previous sections on non-linear ARMA models, these non-linear

functions F

1

and F

2

could be modeled by an MLP or RBFN, as well. The

resulting network is depicted in �gure 7. An example of the application of

such a network is [27].

6.1 Multi-recurrent networks

[46], and [47], has given an extensive overview of additional types of recur-

rencies, time-windows and time delays in neural networks. By combining

several types of feedback and delay one obtains the general multirecurrent

network (MRN), depicted in �gure 8. First, feedback from hidden and out-

put layers are permitted. From the discussions in sections 4, 5 and 6 it

becomes clear that his can be viewed as a state space model, where the

state transition is modeled as a kind of ARMA[1,1] process, reintroducing

the B~�(t) term in equation 25. This view is not entirely correct, though.

Using the estimates

^

~x as additional inputs implicitly introduces estimates

for the noise process �(t) in equation 24, and not for �(t) in equation 25.

Secondly, all input layers (the actual input, the state and the context

layer) are permitted to be extended by time-delays, such as to introduce time

windows over past instances of the corresponding vectors. This essentially

means that the involved processes are AR[p] and ARMA[p,q], respectively,

with p and q larger than 1.
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Figure 8: The multi-recurrent network from Ulbricht (1995).

Thirdly, like in the Jordan network, self-recurrent loops in the state

layer can be introduced. The weights of these loops, and the weights of

the feedback copies resulting from the recurrent one-to-one connections,

are chosen such as to scale the theoretically maximum input to each unit

in the state layer to 1, and to give more or less weight to the feedback

connections or self-recurrent loops, respectively. If, for instance, 75 % of

the total activation of a unit in the state layer comes from the hidden layer

feedback, and 25 % comes from self-recurrency, the state vector will tend

to change considerably at each time step. If, on the other hand, only 25

% come from the hidden layer feedback, and 75 % from the self-recurrent

loops the state vector will tend to remain similar to the one at the previous

time step. [47] speaks of 
exible and sluggish state spaces, respectively. By

introducing several state layers with di�erent such weighting schemes, the

network can exploit both the information of rather recent time steps and a

kind of average of several past time steps, i.e. a longer, averaged history.

It is clear that a full-
etched version of the MRN contains a very large

number of degrees-of-freedom (weights) and requires even more care than

the other models discussed above. Several empirical studies [46, 48] have

shown, however, that for real-world applications, some versions of the MRN

can signi�cantly outperform most other, more simple, forecasting methods.

The actual choice of feedback, delays and weightings still depends largely

on empirical evaluations, but similar iterative estimation algorithms as were

suggested by [7] (for obtaining appropriate parameter values for ARMA

models) appear applicable here, too.

Another advantage of self-recurrent loops becomes evident in applica-

tions where patterns in the time series can vary in time scale. This phe-

nomenon is called time warping, and is especially known in speech recog-

nition, where di�erent speech patterns can vary in length and relationships

between segments dependent on speaking speed and intonation [32]. In au-

toregressive models with �xed time windows, such distorted patterns lead

to vectors that do not share su�cient similarities to be classi�ed correctly.

This is sometimes called the temporal invariance problem { the problem of



Figure 9: A simple network with a time-dependent weight matrix, produced

by a second neural net.

recognizing temporal patterns independent of their duration and temporal

distortion. In a state space model, implemeted as a recurrent network with

self-recurrent loops such invariances can be dealt with, especially when slug-

gish state spaces are employed. If states in the state space model are forced

to be similar at subsequent time steps, events can be treated equally (or

similarly) even when the are shifted along the temporal dimension. This

property is discussed extensively in [47].

7 Neural nets producing weight matrices:

time-dependent state transitions

The original state space model approach (equations 24 and 25) left open

the possibility of making all matrices A through C time-dependent as well.

This allows for the modeling of non-stationary time series and series where

the variance of the noise process changes over time. In neural network terms

this would mean the introduction of time-varying weight matrices

4

.

[34] introduced a small neural network model that can be viewed in the

context of time-dependent transition matrices. It consist of two feedforward

networks { one mapping an input sequence onto an output, and another one

producing the weight matrix for the �rst network (�gure 9). Even though

not a state-space model but rather a AR[1] model of the input sequence,

it realizes a mapping with a variable matrix (the weight matrix of the �rst

network). This network was used to learn formal languages, such as parity

or others. A similar example can be found in [43].

In this context, other approaches to inducing �nite-state automata into

neural networks should be mentioned (e.g. [20]). A �nite state automaton

is another classical model to describe time series, although on a more ab-

stract level { the level of categories instead of continuous-valued input. If a

categorization process is assumed before the model is applied it can also be

used for time series as the ones discussed above. An automaton is de�ned

as a set of states (discrete and �nite, so there is no concept of state space

4

By `time-varying' I mean varying on the time-scale of the series. Weight changes due

to learning are not considered here.
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Figure 10: A �nite state automaton for modeling time series

in this model) with arcs between them corresponding to state transitions

taken dependent on the input. For instance, in �gure 10, if { starting from

the left-most state (node) { an `a' is encountered, the automaton would

jump to state 2, while if a `b' is encountered, it would remain in state 1.

Depending on what types of arcs emanate from a state, a prediction can

be made with respect to what input element must follow, provided that

the input is \grammatical", i.e. corresponds to the grammar the automaton

implements. This is especially useful for sequences in speech or language.

[20] have shown that a neural network can be set or trained such as

to implement such an automaton. While this concept cannot directly be

applied to real-world sequences like the ones above, it points to another

useful application of neural networks, especially when going from �nite,

discrete states to continuous state spaces. This is exactly what an Elman

network or the model by [34] realizes.

8 Other topics

The story does not end here. There are many more important topics con-

cerning time series processing and the use of neural networks in this �eld.

Some topics that could not be covered here, but are of equal importance as

the ones that were, are the following.

� many time series applications are tackled with fully recurrent net-

works, or networks with recurrent architectures di�erent from the ones

discussed (e.g. [39]). Special learning algorithms for arbitrary recur-

rent networks have been devised, such as backpropagation in time[42]

and real-time recurrent learning (RTRL)[55].

� many authors use a combination of neural networks with so-called

hidden Markov models (HMM) for time series and signal processing.

HMMs are related to �nite automata and describe probabilities for

changing from one state to the other. See, for instance, [6] or the

treatment in [3].



� unsupervised neural network learning algorithms, such as the self-

organizing feature map, can also be applied in time series processing,

both in forecasting [1] and classi�cation [40]. The latter application

constitutes an instance of so-called spatio-temporal clustering, i.e. the

unsupervised classi�cation of time series into clusters { in this case

the clustering of sleep-EEG into sleep stages.

� a number of authors have investigated the properties of neural net-

works viewed as dynamical systems, including chaotic attractor dy-

namics. Examples are [28] and [35].

The focus of this paper was to introduce the most widely used architectures

and their close relationships to more classical approaches to time series

processing. The approaches presented herein can be viewed as starting

points for future research, since the potential of neural networks { especially

with respect to dynamical systems { is by far not fully exploited yet.

9 Conclusion

As mentioned initially, this overview of neural networks for time series pro-

cessing could only scratch the surface of a very lively and important �eld.

The paper has attempted to introduce most of the basics of this domain,

and to stress the relationship between neural networks and more tradi-

tional statistical methodologies. It underlined one important contribution

of neural networks { namely their elegant ability to approximate arbitrary

non-linear functions. This property is of high value in time series processing

and promises more powerful applications, especially in the sub�eld of fore-

casting, in the near future. However, it was also emphasized that non-linear

models are not without problems, both with respect to their requirement

for large data bases and careful evaluation and with respect to limitations

of learning or estimation algorithms. Here, the relationship between neural

networks and traditional statistics will be essential, if the former is to live

up to the promises that are visible today.
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