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This paper reports about ongoing research on a connectionist model of the learning

of single words and their meaning, grounded in perception. Similar to (Plunkett,

Sinha, Moller, & Strandsby, 1993) it consists of a minimum of two sensory-based

components with an adaptable link between them. Both components perform cat-

egorization of sensory stimuli plus current internal states using a version of \soft"

competitive learning employing mechanisms known from adaptive resonance the-

ory (Grossberg, 1987). Through repeated learning categorization gradually leads

to distinct attractors (compressed activation states). The temporal co-occurence

of such categories in both system components can elicit the building of strongly

weighted connections between them via a specialized component designed to ap-

proximate the arbitrariness and discreteness of the function of words (their prop-

erties as symbols in the semiotic sense), to be robust against noise, and to reect

important psycholinguistic phenomena.

Introduction

One of the fundamental questions in language acquisition is: How come words to mean

something, and how is a consistent mapping between meaning and sound achieved? This

paper introduces a connectionist model trying to address this question. After a brief

look at previous models for simple word acquisition we introduce a novel model which

distinguishes itself from the other ones in many important respects. The speci�c aspects

of word learning we want to account for, and which previously have either been neglected

or not included in a satisfactory way, are the following:

� Words in principle are of a speci�c nature which is called being \arbitrary" in

semiotics, in the sense that their form does not by itself reect any aspect of

their meaning (compare (Plunkett et al., 1993), who speak about \the emergence

of symbols" in the context of word learning). Through this nature, the learning

of words runs counter the otherwise more \natural" way of learning based on

similarities among stimuli.

� The mapping between words and their meaning is learnt under extremely noisy

conditions. In other words, this mapping does not simply consist in �nding out

which word stimulus (e.g. sound) is paired with which meaning (e.g. visual cat-

egory), but must be a learning algorithm robust against extreme distortions of
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these pairings (for instance, against the fact that, say, in 60 % of the cases a visual

category is not paired with the actually correct word).

� Word learning is strongly connected to the organization of conceptual knowledge

and thus reects many of the phenomena known about human categorization (con-

cept formation), such as prototype and basic level phenomena (Rosch, 1978), the

inuence of language on the learning of taxonomic categories (Nelson, 1988), etc.

To model such aspects, several simplifying assumptions must be made, by which

many otherwise important aspects of language are left out:

� Words and their recognition does not involve any sophisticated phonology or mor-

phology but are simple physical entitites, being input to the system as stimulus

pattern without sequential structure.

� Aspects of meaning that go beyond simple words and their references (such as the

relationship between syntax and semantics) are neglected.

� The basic way to acquire meaning is to categorize sensory stimuli (e.g. visual

patterns) and to map them onto a category of stimuli recognized as words. In

this context, only content words, and among them only (or mainly) nouns are

considered for the time being. Also, categories which are not entirely induced by

sensory patterns (more \abstract" concepts, so-to-speak) are not considered for

the moment. However, it will be hinted upon how both important aspects can be

accounted for in extensions of our basic model.

Nevertheless, in spite of its apparent simplicity, the models discussed here permit the

inclusion of many non-trivial aspects of word acquisition, such as the ones listed above. It

should be noted here that the purpose of modeling (in this work, connectionist modeling)

cannot (and should not) be to focus on all aspects of language at once, but to pinpoint a

selected set of phenomena in need for an explanation or theory. Only if models (epecially

the ones which can be implemented on a computer) are to be turned into systems that

actually perform language understanding (such as has been the goal of Natural Language

Understanding as part of Arti�cial Intelligence) they must necessarily encompass a broad

variety of language aspects. Connectionist models, in principle, can be seen as the basis

of novel systems performing language understanding. For the purpose of this work,

however, this perspective is not focused upon. Instead, the purpose of modeling to

provide a basis (a \vocabulary", so to speak) for forming theories (explanations) is at

the center of research.

Previous models

Several connectionist models for aspects of word learning and language acquisition have

been proposed in the literature. (Cottrell, Bartell, & Haupt, 1990), for instance, propose

a model consisting of two separate multilayer perceptrons, each auto-associating a visual

(image) and a locally encoded name pattern with each other, respectively, so as to form

internal distributed representations of those patterns in the hidden layers. These hidden
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Figure 1: An outline of the model by Chauvin and Plunkett et al. consisting of a

multilayer perceptrons with two separate and one common hidden layer

layers are then viewed as input and output to a third multilayer perceptron, learning to

associate them with each other. After learning, a word pattern can be input and the

corresponding image activated, and vice versa. Although no extensive psycholinguistic

analysis is made, it is hinted that this kind of model can be seen as a �rst step toward

a connectionist theory of meaning (\grounding meaning to perception").

(Chauvin, 1989) and, in an extension, (Plunkett et al., 1993) also use two separate

input in an autoassociative mode, but unite the two components into one multilayer per-

ceptron, trained with backpropagation (Rumelhart, Hinton, & Williams, 1986). They

do this by introducing another common hidden layer, via which the autoassociations of

both inputs onto themselves are learned (�g. 1). By this they suggest that learning of

both patterns not only achieves a cross-association between them (permitting, similarly

to (Cottrell et al., 1990), the activation of one pattern given the other), but also inuence

each other in an intricate, distributed way. 32 classes of binary visual patterns, with

5 random distortions each, were used as input on the visual side (preprocessed by pro-

jecting them onto a simple \retina"). Like in (Cottrell et al., 1990) orthogonal patterns

(local representations) are used as label input. Their model exhibits many interesting ef-

fects, such as a vocabulary spurt (the rapid increase of learnt association between labels

and visual patterns after a relativly slow progress), the temporal precedence of compre-

hension over production, and a prototype e�ect in the sense that several instances of

a pattern category can lead to the generalization onto their prototype, although it had

never been presented during training.

Another interesting model is that by (Schyns, 1991), who uses selforganizing feature

maps to perform explicit categorization of sensory patterns. He suggests a separation of

categorization and subsequent naming, reected in separate components to achieve the

two mechanisms.

Our model

The model we want to propose here is based on several previous similar models (Dor�ner,

1992b, 1992a), extended by several aspects to eliminate weaknesses of earlier versions.



It is in the same spirit as most of the models discussed in the previous section, in that

it consists of two separate modules learning on visual and (\acoustic") word patterns,

respectively, which are then mapped onto each other. Two main components can be

distinguished: Categorization and a mapping between categories.

A categorization model The model we propose rests upon the assumption that

a major aspect of word learning is concept formation based on stimuli (and internal

activation patterns), and that the basic aspect of concept formation is a process of cate-

gorization. Like the model by (Schyns, 1991), but unlike the models by (Chauvin, 1989;

Plunkett et al., 1993), we assume a component that models categorization explicitly

in a variation of competitive learning (compare (Grossberg, 1982; Rumelhart & Zipser,

1985)).

The main process of categorization in terms of connectionist activation patterns is

the orthogonalization of responses. In other words, starting from intially disrtibuted

responses to input stimuli, categorization means to achive patterns that are approxi-

mately orthogonal to each other when viewed as vectors. Forming a category, and thus

the foundation of what we call a concept in the model, is thus a process of abstracting

from similarities in the stimulus, making responses as dissimilar as possible.

As opposed to other competitive learning models, categorization here is seen as a

process that is developed gradually during learning. In other words, instead of applying

a strict winner-take-all (WTA) process (which sets the most active unit to maximum ac-

tivation, and all others to zero), competition is achieved through inhibitive connections

and a \rich-get-richer" e�ect. Through learning the ability of the winner to suppress

the other units' activations is enhanced. This is a mechanism very similar to the ones

implemented in the ART 3 model (Carpenter & Grossberg, 1990). Compared to ART3,

in our model the mechanisms are greatly simpli�ed, mainly due to the reason that we

do not pay much attention to biological plausibility. The update rule used is known as

shunting equation (Grossberg, 1982) or interactive activation (McClelland & Rumelhart,

1981). Clear categories are developed only after repeated presentation of stimuli, having

a major consequence for word learning. It is assumed that the mapping of words to

their meaning is learnt only after the category that constitues the meaning is distin-

guished su�ciently from other categories. A major side-e�ect of this approach is the

easy accounting for protoype e�ects during word learning (Rosch, 1978). The degree to

which a category is distinguishable from others (reected through the introduction of

a \goodness-of-�t" value de�ned below) is built into the learning rule adapting weights

between the categories and their respective names (the words they are to be associated

with). By doing this, patterns closer to the class prototype { which itself evolves during

learning based on presentations of several instances of the category { will be mapped

to words much more quickly than patterns farther away from the prototype (this is a

di�erent kind of prototype e�ect than in (Plunkett et al., 1993), reported by, among

others, (Rosch, 1978)).

Goodness-of-�t is de�ned as a combination of two aspects:

1. a value expressing how close the pattern is to the class prototype, similar to the

comparison in adaptive resonance theory (ART, (Grossberg, 1987)). This value is



simply the net input to the winner unit, which is computed as the dot product

between the input pattern and the winner's weight vector (which evolves into

representing a prototype of the category).

2. a value expressing the extent by which the winner can suppress the other units.

This value is basically the activation of the winner minus the average activation

of all the other units.

These two parts are weighted, giving more emphasis to the �rst aspect at the be-

ginning of the learning process, while the second aspect becomes stronger after learning

has proceeded for a while. This goodness-of-�t value is used in two respects:

1. At ever update of the categorization layer it is used to decide whether the input

pattern is close enough to the prototype, very similar to the comparison in ART.

Also very similar to ART, if a pre-set threshold is not reached, then the current

winner is reset and the update repeated, allowing another unit to become the

winner. If that unit has never been the winner before (thus does not represent a

category yet) this can be considered as the recuritment of a new unit to represent

a new class of patterns. This mechanism, as in ART, permits rather stable but yet

exible learning.

2. When adapting the weights between the category layer and the component map-

ping the category to a word (see below), the goodness-of-�t is used as a multiplica-

tive factor. This is basically done to prevent the mapping of words to spurious

patterns, expressing the underlying assumption that the mapping between a word

and its sensory category (meaning) can only proceed if categorization in that par-

ticular case has evolved into su�ciently distinct responses.

Learning for categorization is done the following way. Every unit can store the

information that it has served as the winner in categorization before (using a separate

parameter). With this parameter, the unit can distinguish whether it is a newly recruited

unit (new category) or represents a previously established category. In the former case,

the weights are set identical to the input pattern. In the latter case a instar learning

rule (Grossberg, 1982) is applied to the weights between the input and the category

layer, pulling the weight vector closer toward the input vector. In both cases, the

inhibitive intra-layer weights of the category layer are adapted as well, using a Hebbian

rule increasing inhibition on each weight leading from an active unit to a more weakly

activated unit.

Before each pattern presentation and after each learning step, both input patterns

and corresponding weight vectors are normalized to unit length.

Mapping words to meanings As already hinted above, a category formed based on

sensory stimuli is viewed as the potential internal substrate for the meaning associated

to a word. In addition { contrary to most previous models { the identi�cation of words is

also seen as a categorization process, where words are physical entities causing patterns
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Figure 2: The model proposed in this paper, consisting of two inputs, two categorization

layers and a layer linking two category representations

on a sensory input, which must be categorized. This more closely corresponds to the real-

world situation than simply assuming orthogonal representations of words to be given

(as is done in (Plunkett et al., 1993)). It can lead to a model that can account for e�ects

rooted in the physical nature of words, and can avoid artefacts like assymetries caused

by the fact that the categorization process of words would otherwise be side-stepped.

The entire model therefore consists of two categorization modules and an additional

layer (or array of layers), called a \(referential) link layer", to connect two categorization

layers, one from each side (see �g. 2). For the sake of describing the model, we call one

side (the one that categorizes words) the \acoustic" side (assuming words are presented

acoustically) and the other one the \visual" side.

The purpose of the link layer is to develop links between word categories and visual

categories that obey the properties of word meanings, most importantly the words'

arbitrariness. In other words, similarities among words as physical entities must not

generally be allowed to inuence the corresponding visual categories (see discussion

below). To achieve this the following mechanisms were introduced:

� Each time the link layer is updated to form a link between category layers, a

winner-take-all process is initiated, meaning that only one unit in the link layer is

kept active (at maximum level), and all others are made inactive.

� A learning rule applied to connections between the link layer and the category

layers is introduced that results in strong weights only between the winners in the

link layer and the corresponding category layers. In other words, without explicit

knowledge about the categories and their winners, the link layer learns to activate

exactly one category unit. Thus, in spite of the permission of co-active units in

the category layer, the weights are strengthened such that after learning only the

winner (the unit representing the corresponding category) will be activated, erasing

the inuences of similarities to other category responses.

Weights in the other direction (from the category to the link layer) are adapted by

simple outstar rules (Grossberg, 1982).



Data and Results

Similar to (Plunkett et al., 1993), for the simulations the following data was used:

� 5 distortions each of 32 pattern prototypes, such as to permit 10 % overlap between

members of di�erent classes, at the visual input. The patterns are binary and

contain 10 active bits on an overall number of 169 units.

� 32 di�erent binary patterns (4 active bits of 32 units each), also permitting about

10 % overlap between patterns, for the acoustic input.

Note that the acoustic patterns indeed show similarities with each other, the inuence

of which must be diminished during learning. Each class of visual patterns was arbitrarily

assigned one of the 32 labels as the \correct" one. Each learning step consisted of

randomly picking one visual pattern and the corresponding acoustic word pattern. Both

patterns are presented, categorization is initiated, as well as the learning algorithm for

the connections between category and link layers. Although learning of categories and

learning the mapping between them need not be separated, for the sake of simplicity,

two phases were distinguished for the reported simulations:

� A categorization phase, where each side is independently trained to form catgeories

with su�cient goodness-of-�t. In all cases, the 32 categories were perfectly learned.

� A mapping phase, where the weights between inputs and categorization layers were

kept �xed, and only the learning algorithm for adapting weights between category

and link layers was applied.

Fig. 3 shows learning curves of one typical training sweep. The basic characteristics

of these curves turned out to be robust over several runs with di�erent initial weight

initializations. Two performance measures are distinguished (Plunkett et al., 1993):

� Comprehension: For this, an acoustic pattern is input, the corresponding category

layer, the link layer, the visual category layer and the visual input layer are updated

(in that order), applying winner-take-all to the link layer. A response is counted as

being correct, if the input pattern (among the 5 times 32 patterns) which is closest

to the resulting pattern in the visual input (according to its Euclidean distance)

is in the \correct" category (the one that was associated with the word input).

� Production: For this, a visual pattern (one out of the 5 times 32 patterns) is input,

the corresponding category layer, the link layer, the acoustic category layer, and

the acoustic input are updated (in that order), applying winner-take-all to the link

layer. A response is counted as correct, if the input pattern (among the 32 possible

acoustic patterns) which is closest to the resulting pattern in the acoustic input

layer is the \correct" word.

Comprehension and production scores in �g.3 are percentages correct over all (5

times 32) visual and (32) acoustic patterns, respectively. The curves depcited show the



Figure 3: Learning curves for percentage correct naming (lower curve) and comprehen-

sion (upper curve) for netwoeks trained with 20 % (left curve) and 60 % noise (right

curve). The comprehension and naming curves are identical for the left network.

performance, when 20 % and 60 % noise, respectively, is introduced, meaning that in 20

(60) % of the cases, the word chosen to be input together with a given visual pattern

was picked randomly from the possible 32 word patterns. Only in the remaining 80 (40)

% of the cycles, the \correct" word was chosen consistently. This reects the real-world

situation that only in a minority of the cases when a child is faced with an object to be

named the appropriate word is uttered. In real life, of course, the words uttered in this

context are not entirely random, but include words on a di�erent level on taxonomic

hierarchy (such as `poodle' or `animal' instead of `dog' ) or semantic reference (such

as `brown' or `furry' instead of `dog'). But if a model can handle such highly noisy

conditions, it has good prerequisites to show robust learning behavior in truly real-life

situations. Several observations can be made:

� The model shows qualitatively realistic learning characteristics, including aspects

like a kind of \vocabulary spurt" (Plunkett et al., 1993; McShane, 1979), where

the number of correctly comprehended and produced words rises rather quickly.

However, this spurt is not preceded by a period of slow learning.

� The model shows extreme robustness against noise (as de�ned above). Only above

a level of 60 % noise, the performance would degrade considerably.

� The model also shows the typical temporal precedence of comprehension over pro-

duction, as discussed in (Plunkett et al., 1993) (see also (Clark, 1983), as cited

there), but only with considerable noise in learning.

The qualitative di�erences to models like (Plunkett et al., 1993) warrant a more

elaborate analysis, comparing the two di�erent approaches. This will be content of

future research.



Possible extensions

It was mentioned above that several simplifying assumptions are made in the model to

focus on some of the important aspects of word learning. The categorization and word

mapping model, however, was conceived with many extensions beyond those simpli�ca-

tions in mind. Examples are the following.

� In an elaborate version, the categorization module consists not only of a single layer

but of a pool of interconnected categorization layers. This permits the learning of

multiple categories corresponding to the same or similar stimuli.

� Through their interconnections, previously learned categories can be input to sub-

sequently learned ones. In addition, other components such as motor output or

additional sensory stimuli can be input to a particular categorization layer. As a

result, categories need not correspond to sensory stimuli alone, but can go beyond

sensory classes to include more \abstract" categories, as well.

� Through mulitple connections via pools of link layers, synonyms (multiple words

for one meaning) and homonyms (multiple meanings for one word) can be learnt.

Discussion and conclusion

This paper has introduced a connectionist model for many aspects of simple �rst word

learning. It distinguishes itself in many respects from previous connectionist approaches

to modeling similar phenomena. The main di�erences, among others, are

� an explicit account for categorization permitting the modeling of aspects like pro-

totype or basic level e�ects (in the sense that prototype patterns and basic level

categories can learned to be named more quickly than others),

� a mechanism permitting to model a word's arbitrariness in referring to categories

(as \true" symbols in the semiotic sense),

� the robustness against noise.

It was also briey discussed that the model, on �rst sight at least, is not able to fully

reproduce some phenomena that can be modeled by alternative approaches. This might

be rooted in the fact that more complex aspects of word learning need to be included

(e.g. articulation or more realistiv visual and acoustic perception) { something which,

in principle, should be possible to build into the model in more elaborate versions. It

might also point to the fact that this model and alternatives resting more on the e�ects

of backpropagation learning in multilayer perceptrons, will have to complement each

other in the future.

In summary, this model was designed in order to enhance discussions around connec-

tionist models in linguistics, and to point connectionists and linguists alike to strengths

and weaknesses of several modeling approaches within connectionism.
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