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Abstract

Our work o�ers both a solution to the problem of �nding functional dependencies

that are distorted by noise and to the open problem of e�ciently �nding strong (i.e.,

highly compressive) partial determinations per se. Briey, we introduce a restricted

form of search for partial determinations which is based on functional dependen-

cies. Focusing attention on solely partial determinations derivable from over�tting

functional dependencies enables e�cient search for strong partial determinations.

Furthermore, we generalize the compression-based measure for evaluating partial de-

terminations to n-valued attributes.

Applications to real-world data suggest that the restricted search indeed retrieves

a subset of strong partial determinations in much shorter runtimes, thus showing the

feasibility and usefulness of our approach.

1 Introduction

Functional dependencies [Mannila & R�aih�a, 1994] are a fundamental form of knowledge

to be discovered in databases. In real-world databases, however, we have to face the

e�ects of noise on functional dependencies: dependencies among attributes that would have

been functional without noise are likely to have exceptions. Consequently, algorithms for

inferring functional dependencies would not return those dependencies which are distorted

by noise. More precisely and in machine learning terms, they would over�t the data,

meaning that these algorithms would �nd too speci�c functional dependencies instead of

the ones we would like to �nd.

In contrast to functional dependencies, partial determinations ([Russell, 1989],

[Pfahringer & Kramer, 1995]) or approximate functional dependencies allow for excep-

tions. Partial determinations may reect probabilistic dependencies among attributes,

but they may also be \impure" functional dependencies, i.e. functional dependencies

which are distorted by noise and have only a few exceptions. In this paper, as in

[Pfahringer & Kramer, 1995], we deal with those partial determinations which help to

compress a given database as much as possible. These highly compressive partial de-

terminations will be called strong partial determinations.

In the next section we de�ne and compare functional dependencies and partial deter-

minations. In the third section we summarize the ideas from [Pfahringer & Kramer, 1995].

Subsequently, we de�ne and explain a new compression-based measure for partial determi-

nations ranging over n-valued attributes. Then we describe an e�cient method to search

for strong partial determinations. In section 6, we report on experimental results of our

method in several \real-world" databases.

1



2 Functional Dependencies and Partial Determina-

tions

Formally, functional dependencies ([Mannila & R�aih�a, 1994] and partial determinations

([Pfahringer & Kramer, 1995]) are de�ned as follows:

Given a relation schema (i.e. a set of attributes) R, a functional dependency over R is

an expression X ! Y , where X;Y � R. To de�ne the semantics of such expressions, let r

be a relation (a table) over R, i.e. a set of tuples over R. We write Dom(A) for the domain

of an attribute A 2 R and Dom(X) for the domain of a set of attributes X � R. The

projection of a tuple t on a set of attributes X, denoted t[X], is de�ned as the restriction of

t on X (here X � R). Now X ! Y holds in r, denoted r j= X ! Y , if all tuples u; v 2 r

with u[X] = v[X] also satisfy u[Y ] = v[Y ].

Partial determinations are generalizations of functional dependencies. They are ex-

pressions of the form X !

d

Y . The index d is a number. The set of attributes X will be

referred to as LHS, the left-hand side of the partial determination, and Y will be referred to

as RHS, the right-hand side. In the following, we will restrict ourselves to RHSs consisting

of single attributes.

Semantically, X !

d

Y holds in r, denoted r j= X !

d

Y , if d is the determination

factor d(X;Y ) as de�ned by [Russell, 1989]. The determination factor is the probability

that two randomly chosen tuples have the same values of Y , provided they have the same

values of X. Note that d(X;Y ) is de�ned without regard to a particular mapping from

Dom(X) to Dom(Y ).

Corresponding to an expression X !

d

Y , we de�ne a mapping pd

X!

d

Y

in the following

way. The domain of the mapping is de�ned by the LHS and the range is de�ned by the

RHS of the partial determination. The tuples in r determine the mapping itself: for all

tuples u that are equal under the projection X, we call the most frequently occurring

u[Y ] the majority tuple. pd

X!

d

Y

maps tuples of Dom(X) to their respective majority

tuples in Dom(Y ). A tuple u 2 r is called an exception to the mapping pd

X!

d

Y

, if

u[Y ] 6= pd

X!

d

Y

(u[X]). Depending on the number of exceptions, the partial determination

is more or less \functional".

In the following, the notion of a partial determination is used for both the statement

X !

d

Y and the corresponding function pd

X!

d

Y

. This is not problematic, since there is a

correspondence between the referents.

3 Compression-Based Evaluation of Partial Deter-

minations

The basic decision is which partial determinations to search for in databases. If we are

interested only in accuracy, we are likely to get overly complex partial determinations

in the presence of noise: we will �nd partial determinations �tting the noise instead

of the underlying dependencies. To avoid this, we also have to take into account how
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Figure 1: Transmission metaphor.

complex partial determinations are. Therefore, [Pfahringer & Kramer, 1995] proposes a

compression-based measure based on the so-called Minimum Description Length (MDL)

principle [Rissanen, 1978]. The MDL principle tries to measure both the simplicity and

the accuracy of a particular theory (in our setting: a partial determination) in a common

currency, namely in terms of the number of bits needed for encoding both a theory and

the data given that theory. The theory with the minimal total message length (the most

compressive partial determination) is also the most probable theory explaining the data

[Rissanen, 1978].

To illustrate the key idea of the measure for partial determinations proposed in

[Pfahringer & Kramer, 1995], we consider the hypothetical task of transmitting a given

database as e�ciently as possible (see �g. 1). If we can �nd a good partial determination

X !

d

Y for a given attribute Y , transmitting the partial determination instead of the

raw data may improve e�ciency considerably: we just have to transmit the mapping (the

model) and transmit the information to correct the values of Y for the exceptions to the

mapping pd

X!

d

Y

of X !

d

Y . Thus, we have to identify the exceptions (the \grey tuples"

in �gure 1) and transmit the corrections (the black box in �gure 1). The values of Y need

not be transmitted anymore. Thus we achieve some compression of the data, the degree

of which is estimated by our measure based on the MDL principle.

The work reported in [Pfahringer & Kramer, 1995] has several limitations and prob-

lems: the paper only deals with partial determinations ranging over boolean attributes.

Secondly, the problem of e�ciently �nding compressive partial determinations has not been

solved. The paper compared three search methods: hill-climbing, exhaustive search up to a

certain depth, and stochastic search. Implicitly, all these search methods restrict the scope

of the search somehow, but the restrictions are not well-motivated. Thirdly, the method

has not yet been applied to real-world databases. In the following sections, we propose

extensions of our work that overcome these problems and limitations.
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c(PD) = c(Mapping) + (1)

c(Exceptions)

c(Mapping) = c

choose

(jUsedAttrsj; jAllAttrsj) + (2)

c

string

(RHS V alues Mapping)

c(Exceptions) = c

choose

(jExceptionsj; jAllExamplesj)+ (3)

c

string

(Corrections)

c

choose

(E;N) = N � entropy(fE;N � Eg) (4)

c

string

(String) = length(String) � entropy(char frequencies(String)) (5)

+c

max value order

(String)

entropy(fF

1

; : : : ; F

M

g) = �(

M

X

i=1

plog(F

i

=N));where N =

M

X

i=1

F

i

(6)

c

max value order

(String) =

j�1

X

i=0

log(M � i); (7)

where M is the cardinality of the alphabet,

and j is the number of di�erent chars in String.

plog(P ) =

(

0 if P=0

P � log

2

(P ) otherwise

(8)

Figure 2: The de�nition of the coding length c of a partial determination.

4 A New Compression-Based Measure for Multi-

Valued Partial Determinations

In �gure 2, we de�ne the new compression-based measure for partial determinations ranging

over multi-valued attributes. The total coding length (1) is the sum of the coding length

of the mapping and the coding length of the corrections to be made. The coding length

for a mapping (2) is the sum of the coding length for specifying the LHS-attributes and

of the coding length for the string of values for the RHS-attribute. The alphabet for this

string is the domain of the RHS-attribute.

Exceptions to the mapping are encoded by (3). Whereas identifying the exceptions

is enough for binary attributes, we also have to transmit the corrections for M -valued

attributes, since we cannot conclude which of the remaining possible values is the correct

one. Therefore, in addition to identifying the exceptions, we also have to encode a string

of corrections for the identi�ed exceptions to the mapping, where again the alphabet of

this correction string is the domain of the RHS-attribute.

For estimating the cost c

choose

of encoding the selection of E elements out of N

possible elements (4) we just use the theoretical entropy-based bound provided by
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[Shannon & Weaver, 1949].

Encoding a string over a multi-valued alphabet (5) is a straightforward generalization

of (4). It can be thought of as a repeated binary selection encoding of what is the value

occurring most frequently and which positions in the string are exceptions, i.e. have a

di�erent value. The resulting formula can be simpli�ed to the de�nition (5) for c

string

,

which is just the sum of the entropy of the distribution of values in the string (6) and of

an encoding of the values' identities sorted according to their frequencies (7).

5 E�cient Search for Strong Partial Determinations

Based on the view of partial determinations as functional dependencies which are distorted

by noise, we propose an e�cient search strategy to �nd strong partial determinations.

Starting with over�tting functional dependencies, we propose to search for the best subset

of left-hand side attributes according to our MDL-measure which avoids �tting the noise. In

machine learning terminology again, we propose to prune the left-hand sides of over�tting

functional dependencies. Pruning is achieved by a complete A*-like search over all subsets

of LHS-attributes of the original functional dependency. In the following, we will refer to

this two-level approach as restricted search. Limiting our attention to this highly interesting

subset of partial determinations enables e�cient search.

Even though both searching for functional dependencies and for partial determinations

is exponential in the worst case, on average functional dependencies can be searched for

much more e�ciently due to much stronger pruning criteria. Additionally the evaluation

function is much simpler: just counting the number of tuples in a projection vs. creating

a mapping and computing its coding length for a projection. So in restricted search the

expensive part has only to deal with a small number of attributes, namely those occurring

in the left-hand side of the respective functional dependency. Furthermore, as a functional

dependency is a partial determination with no exception, it also supplies an upper-bound

on the coding length of possibly better partial determinations in the restricted search.

The next section will empirically show the e�ectiveness of restricted search in compari-

son to full search. Full search is implemented as an iterative-deepening best-�rst search for

partial determinations. For pragmatic reasons, if the number of attributes is larger than

20, both search approaches must be limited to left-hand sides of a prespeci�ed maximum

length, which is usually 10 in our experiments.

6 Empirical Results

For a preliminary empirical comparison of both search strategies we have done exper-

iments using various small to medium-sized \real-world" databases. Breast cancer,

Lymphography, and Mushroom are taken from the UCI-repository. Peace, Conflicts, and

Attempts are databases capturing mediation attempts in international conicts and crises.

Table 1 gives the sizes (number of attributes and number of tuples) of these databases and
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Domain # A. # T. # PDs Compression Compression # Add. PDs Compression

Found Restr. Full Found Full

Restr. Search Search Full Search

Search (�) (�) Search Add. PDs (�)

Br. Cancer 11 699 6 1.49 (0.78) 1.64 (0.73) 5 1.20 (0.07)

Lymph. 19 148 14 1.13 (0.09) 1.13 (0.09) 5 1.01 (0.01)

Mushroom 23 8124 7 95.16 (26.84) 100.03 (23.25) 15 5.49 (6.32)

Peace 50 1753 33 4.47 (2.76) 4.63 (2.70) 16 2.11 (0.85)

Conicts 33 268 24 1.38 (0.47) 1.38 (0.47) 4 1.37 (0.24)

Attempts 17 1753 10 2.23 (1.00) 2.26 (0.99) 7 1.65 (0.48)

Table 1: Results in real-world domains: the meaning of columns is explained in section 6.

summarizes the search results. For the restricted search approach (pruning of over�tting

functional dependencies) we list the number of attributes, for which a partial determi-

nation was found and the determinations' average compression factor. This compression

factor for a given attribute is de�ned as the ratio between the coding length of the raw

data and the coding length of the respective partial determination. Next we list the av-

erage compression factor achieved by a full search for partial determinations for the same

RHS-attributes as those for which the restricted search found compressive partial determi-

nations. Additionally we list the number of attributes for which only the full search was

able to �nd compressive partial determinations, and again include their average compres-

sion factor. We can summarize as follows: for a subset of all attributes restricted search

seems to �nd partial determinations which are on average almost as strong or compressive

as those found by full search. Partial determinations missed by restricted search are on

average signi�cantly weaker (with the exception of the Conflicts database). We have not

yet performed detailed runtime measurements, but even for the smallest database Breast

Cancer the di�erence is already of two orders of magnitude (80 seconds vs. 1 hour). For

the other domains the di�erences in the runtimes were even more drastic. Summing up,

the restricted search indeed retrieves a subset of strong partial determinations in much

shorter runtimes.

Inspecting the retrieved determinations for useful knowledge also provided a few in-

sights. For instance the Peace database includes both a few raw numerical attributes and

their respective discretizations. Clearly a discretization should be functionally dependent

on the raw data, which was not the case in the actual database. But all those depen-

dencies were rediscovered as partial determinations. So our method helped us discover

several erroneously discretized values present in the database. Other �ndings included,

amongst others, implicit database design conventions, and redundancies due to the at

table representation of what was actually structured knowledge. We discovered strong

partial determinations that indeed reect the implicit and hidden structure of the dataset.
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7 Related Work

Functional dependencies [Mannila & R�aih�a, 1994] are essentially relational and do

not allow for the possibility of exceptions. On the contrary, association rules

[Agrawal & Srikant, 1994] not only allow for the possibility of exceptions, but are essen-

tially probabilistic. Partial determinations ([Russell, 1989], [Pfahringer & Kramer, 1995])

can be viewed as generalizations of both functional dependencies and association rules,

in that they are relational in nature and may have exceptions. As we have shown in

[Pfahringer & Kramer, 1995], extending the measures used for evaluating association rules,

namely support and con�dence, to partial determinations leads to several problems.

The term \partial determination" has been introduced by Russell ([Russell, 1989]). He

also described a method for evaluating partial determinations with respect to given facts.

Briey, Russell uses sampling to estimate the proportion of tuples in the database for which

the determination holds. In other words, he estimates nothing else but the accuracy, and

thus the over�tting argument applies.

[Shen, 1991] describes an algorithm that searches for three kinds of regularities in a

large knowledge base. One of those regularities are determinations, but they are restricted

to those having only a single attribute in the left-hand side. Since Shen is not looking for

more complex dependencies, there is no need to avoid over�tting the data. Furthermore,

the determinations of interest are like association rules in that they have binary attributes.

The algorithm generates such simple determinations and returns them if the support is

bigger than the counter-support and if a statistical test suggests their signi�cance.

[Schlimmer, 1993] proposes an algorithm that returns every \reliable" partial determi-

nation with a complexity lower than a user-de�ned threshold. The reliability measure is

supposed to measure the \functional degree" of the map given subsequent data. As we

have argued in [Pfahringer & Kramer, 1995], this measure does not avoid over�tting the

data, since it does not have a penalty for overly complex dependencies.

[Bell & Brockhausen, 1995] hint at a simplemodi�cation of their functional dependency

search algorithm to cope with noise. But their modi�cation can only take into account the

number of \errors" in the projection, whereas a reliable estimate would need to assess the

global number of \errors".

[Kivinen & Mannila, 1995] contains a thorough theoretical analysis of approximate in-

ference of data dependencies. The paper discusses three di�erent measures of approximate

functional dependencies which can be used in a sampling framework. These three func-

tions are related to accuracy, and therefore using them in a search framework would cause

over�tting.

8 Conclusion and Further Work

Our contribution is twofold: �rstly, we o�er a solution to the problem of �nding functional

dependencies that are distorted by noise. Secondly, we tackled the problem of e�ciently

�nding strong (i.e., highly compressive) partial determinations, which has not been solved

7



in [Pfahringer & Kramer, 1995]. Focusing attention on a highly interesting subset of partial

determinations (those which could be functional dependencies distorted by noise) enables

e�cient search for strong partial determinations.

Note that basically any algorithm for inferring functional dependencies could be used

in the �rst step of our method. It is also important to note that this approach is based on

assumptions about real-world data, namely that there are strict functional dependencies

which are distorted by noise.

In this paper we also generalize the compression-based measure proposed in

[Pfahringer & Kramer, 1995] to partial determinations ranging over n-valued attributes.

Applications to real-world data suggest the usefulness of our approach.

Our approach to searching for partial determinations has several limitations: clearly, we

cannot �nd all partial determinations, but only a subset. However, experiments indicate

that those partial determinations which are distorted functional dependencies are among

the most compressive dependencies to be found. The second problem is that if the noise

level is too high, no functional dependency might exist at all. So the pruning approach

would not �nd partial determinations in these situations.

We plan to extend our work along the following lines: our method could be ap-

plied to inductive data engineering in the context of deductive databases, similar to IN-

DEX [Flach, 1993]. The returned partial determinations could be used to restructure the

database in order to minimize the required memory. Another application of the measure

would be to evaluate and compare functional dependencies. Since usually a large num-

ber of functional dependencies are returned, our measure provides a means to distinguish

between reliable functional dependencies and those which are due to chance. Another

challenge would be a tight integration of the search for functional dependencies and the

search for partial determinations. Finally, it would be interesting to compare and com-

bine our approach with sampling techniques as proposed in [Kivinen & Mannila, 1993] and

[Kivinen & Mannila, 1995].
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