
MACHINE LEARNING IN COMPUTER CHESS:

THE NEXT GENERATION

Johannes F�urnkranz

�

1 INTRODUCTION

Ten years ago the ICCA Journal published an overview of machine learning approaches to com-

puter chess (Skiena 1986). The author's results were rather pessimistic. In particular he concludes

that

\: : :with the exception of rote learning in the opening book few results have trickled

into competitive programs."

and that

\There appear no research projects on the horizon which o�er reason for optimism."

In this paper we will update Skiena's work with research that has been conducted in this area

since the publication of his paper. By doing so we hope to show that at least Skiena's second

conclusion is no longer valid.

2 SUMMARY OF (Skiena 1986)

Skiena starts his overview by giving a motivation for machine learning research in the area of com-

puter chess. Psychological studies, most notably (deGroot 1965), have shown that the di�erences

in playing strengths between experts and novices are not so much due to di�erences in the ability

to calculate long move sequences, but to which moves they start to calculate. For this preselection

of moves chess players make use of chess patterns and accompanying promising moves and plans.

Simon and Gilmartin (1973) estimate the number of a chess expert's patterns to be of the order of

10,000 to 100,000. Although the best programs nowadays can play on a grandmaster level, their

architecture has nothing in common with the way humans play chess. It is still a long way until

pattern-based computer chess programs will be competitive with brute-force programs (if they

ever will), but their investigation may at least shed more light on the human cognitive processes

that underly expert chess play.

Skiena then starts his tour through machine learning research in computer chess with rote

learning approaches, in particular the use of opening books. Contrary to a quotation by Thompson

and Condon implying that the opening book does not have a signi�cant e�ect on improving

playing strength it is nowadays undisputed that the opening preparation is at least as important

for competitive programs as it is for human experts. As another application of rote learning

Skiena mentions the research on the construction of perfect endgame databases which was still

in its infancy at that time. The success of Ken Thompson's impressive work on 5-men endgame

databases, which are now publicly available on 3 CD-ROMs, has shown both, the enormous

magnitude of the task and its importance for chess. The latter point is illustrated by John Nunn's

work on using these databases for a better understanding of endgames (Nunn 1994a) which resulted

�

Austrian Research Institute for Arti�cial Intelligence, Schottengasse 3, A-1010 Wien, Austria, E-mail:

juffi@ai.univie.ac.at, WWW: http://www.ai.univie.ac.at/ juffi



in two widely acknowledged endgame books (Nunn 1992; Nunn 1994b). However, it is questionable

whether the construction of opening books and endgame databases can be considered as learning.

We will not further discuss research in these areas.

Next, Skiena (1986) discusses work on advice taking chess programs. Here again the borderline

between learning and programming is not so clear. His only example was the program of Zobrist

and Carlson (1973) which was tutored by a chess master. However, the process of tutoring rather

resembled programming in a high-level chess programming language than autonomous learning.

Although an e�ort for developing a highly-
exible programming language for chess is highly desir-

able, we do not consider it as an endeavor in machine learning. A short bibliography of more recent

approaches to advice taking chess programs can be found in (Michie and Bratko 1991). Most of

them are con�ned to the endgame, the most notable exception being (George and Schae�er 1990).

A signi�cant body of research has gone into the task of learning to classify positions from a given

chess endgame as wins or no-wins. Michalski and Negri (1977) and Shapiro and Niblett (1982)

started research in this area by trying to learn correct classi�cation rules for the KPK endgame.

Since then, endgame databases for KPK, KPa7KR, or KRKN have become standard benchmark

problems for induction algorithms. Research in this area is also important for computer chess,

because if endgame positions could be correctly classi�ed with a few rules, this would save many

resources compared to the alternative of storing all positions of a variety of endgames. Besides,

many of the endgame databases that are now available are not thoroughly understood by human

experts. The most famous example are the attempts of grandmasters to defeat a perfect KQKR

database. We will discuss further research in this area in section 3.

In section 4 we will discuss the use of explanation-based learning for computer chess. This

technique was still in its infancy in 1986, which presumably is the reason why Skiena did not

mention any research in this area in his overview.

In the area of learning by analogy Skiena reports no signi�cant research. Since then this �eld

of research has more or less been subsumed by case-based reasoning, which prospered in the second

half of the 80s. We will discuss some attempts to apply these techniques to computer chess in

section 5.

Learning algorithms for the automatic tuning of evaluation functions were only mentioned in

one paragraph in (Skiena 1986). Nitsche (1982) describes how a least squares �tting technique can

be used to determine appropriate weights for a given set of features using a collection of master

games, by playing an opponent, or by self-play. Similar approaches will be discussed in section 6.

3 INDUCTION OF ENDGAME CLASSIFIERS

The induction of chess concepts is probably the task in computer chess that has been most in-

tensively studied in machine learning research. Typically positions from a certain chess endgame

are preclassi�ed into the categories won or not-won. An inductive learning algorithm uses these

positions to infer classi�cation rules that are able to rederive the original classi�cation of the po-

sitions. Thus only the rules have to be stored, which usually takes signi�cantly less space than

storing the entire look-up table for all positions. Besides the learned rules may also yield insight

into poorly understood endgames and thus increase our knowledge of the game.

Very often only a subset of the positions | the so-called training set | is used for inducing

the classi�cation rules. The rest of the available positions (the test set) is then classi�ed with the

learned rules and for each of them the predicted result is compared with the true classi�cation.

The average accuracy of the rules for predicting the true result of the positions in the test set can

be used as an estimate for the quality of the rules.

A major problem in this line of research, however, is to �nd a representation for the chess

positions that allows the learner to induce meaningful rules. Typical inductive machine learning

algorithms need a so-called attribute-value representation for the training instances. Each training

example is speci�ed with exactly one value for a �xed set of pre-de�ned attributes. The learned

concept description is limited to tests for certain values of the given attributes. Thus if the

positions are only represented with obvious attributes like the location of the pieces and the

2



right to move, the programs are not capable of making useful generalizations. Usually potentially

useful information like the distance of certain pieces and useful patterns on the board (like kings'

opposition) also have to be provided as attributes that can be used by the learning system.

Quinlan (1983) describes several experiments for learning rules for the KRKN endgame. More

speci�cally he used his decision tree learning algorithm ID3 to discover recognition rules for po-

sitions of the KRKN endgame that are lost-in-2-ply and lost-in-3-ply respectively. From

less than 10% of the possible KRKN positions ID3 was able to derive a tree that committed only

2 errors on a test set of 10,000 randomly chosen positions. However, Quinlan notes that this

achievement was only possible through the right choice of the attributes that were used to repre-

sent the positions. Finding the right set of attributes for the lost-in-2-ply task required three

weeks. Adapting this set to the slightly di�erent task of learning lost-in-3-ply positions took

almost two months. Thus for the lost-in-4-ply task, which he intended to tackle next, Quinlan

experimented with methods for automating the discovery of new useful attributes. However, no

results from this endeavor have been published.

A severe problemwith this and similar experiments was that although the derived decision trees

were shown to be correct and faster in classi�cation than extensive search algorithms, they were

also incomprehensible to chess experts. Shapiro and Niblett (1982) tried to alleviate this problem

by decomposing it into a hierarchy of smaller sub-problems that could be tackled independently. A

set of rules was induced for each of the sub-problems which together yielded a more understandable

result. This process of structured induction has been employed to learn correct classi�cation

procedures for the KPK and the KPa7KR endgames (Shapiro 1987). An endgame expert helped

to design the relevant attributes and to structure the search space. The rules for the KPa7KR

endgames were generated without using a database as an oracle. The rules were interactively

re�ned by the expert by specifying new examples and suggesting new attributes if the available

attributes were not able to discriminate between some of the positionsd. This rule-debugging

process was aided by a self-commenting facility that displayed traces of the classi�cation rules

in plain English (Shapiro and Michie 1986). A similar semi-autonomous process for re�ning the

attribute set was used by Weill (1994) to generate decision trees for the KQKQ endgame.

However, the problem of decomposing the search space into easily manageable subproblems

again is a task that requires extensive collaboration with a human expert. Thus there have

been several attempts to automate this process. Paterson (1983) tried to automatically structure

the KPK endgame using a clustering algorithm. The results have been negative, as the found

hierarchy had no meaning to human experts. Muggleton (1990) has applied DUCE, a machine

learning algorithm that is able to autonomously suggest high-level concepts to the user, to the

KPa7KR task studied by Shapiro (1987). DUCE looks for common patterns in the rule base

(which initially consists of a set of rules each describing one example board position) and tries to

reduce the size of the rule base by replacing the found patterns with new concepts. In machine

learning the autonomous introduction of new concepts during the learning phase is commonly

known as constructive induction (Matheus 1989). Using constructive induction DUCE reduces

the role of the chess expert to a mere evaluator of the suggested concepts instead of an inventor

of new concepts. DUCE structured the KPa7KR task into a hierarchy of 13 concepts de�ned

by a total of 553 rules. Shapiro's solution, however, consisted of 9 concepts with only 225 rules.

Nevertheless DUCE's solution was found to be meaningful for a chess expert.

Muggleton (1988) has also proposed a system that uses sequence induction to learn strategies

that enable it to play a part of the di�cult KBBKN endgame. Learning a playing strategy is

a harder task than learning a classi�er, because the latter does not incorporate the notion of

progress. A program that uses a classi�er to play a KRK endgame will perform random moves as

long as the resulting position is still won, i.e. as long as the opponent is not stalemated or can

capture the rook. A program that has access to a winning strategy knows that it has to force

the opponent's king towards the edge of board and will proceed to do so. Muggleton's program

has induced a set of strategies for freeing a cornered bishop in the KBBKN endgame using an

algorithm for inducing regular grammars.

PAL (Morales 1991) is a system for inducing chess patterns in a �rst-order logic representation.

It di�ers in many aspects from the other approaches described in this section. First of all its

3



domain is not the induction of endgame classi�cation procedures, but the learning of general

patterns like threat, fork, pin, skewer etc. from simple example positions. Second it is the only

system that is able to use the full power of a �rst-order logic representation formalism. Thus it

is part of the rapidly growing �eld inductive logic programming (ILP) (Muggleton 1992), which

is | roughly speaking | concerned with the induction of PROLOG programs. The ability to

use background knowledge in the form of PROLOG clauses allows PAL to formulate rules with

complex predicates. The rules may even employ a limited look-ahead by including conditions like

make_move(Side,Piece,From,To,Pos,NewPos) and looking for discriminating patterns in the

new position after the speci�ed move has been performed. PAL requires a human tutor to provide

a few training examples for the concepts to learn, but it assists the user by generating additional

examples with a perturbation algorithm. This algorithm takes the current concept description and

generates new positions by changing certain aspects like the side to move, the piece to move etc.

These examples have to be evaluated by the user before they are used for re�ning the learned

concepts. PAL's architecture is quite similar to Shapiro's learning programs, but it is able to

induce concepts in a more powerful description language. In (Morales 1994) this 
exibility was

demonstrated by using PAL to learn a playing strategy for the KRK endgame. For this task it

was trained by a chess expert that provided examples for a set of useful intermediate concepts.

A di�erent problem was tackled by (Bain 1994; Bain and Srinivasan 1995) also using methods

from inductive logic programming. An ILP algorithm learned rules for predicting the number

of plies to a win by optimal play on both sides in the KRK endgame and found a fairly simple

and understandable set of rules that covered the whole example space. We believe that due to

its ability to incorporate relational background knowledge inductive logic programming is a very

promising line of research for machine learning in chess domains.

4 EXPLANATION-BASED LEARNING

Explanation-based learning (Mitchell et al. 1986) has been devised as a procedure that is able

to learn in domains with a rich domain theory. The basic idea is that the domain theory can be

used to �nd an explanation for a given example which can then be generalized. This generalized

explanation yields a rule with which similar examples can be classi�ed, i.e. examples that share

those features that are necessary for the applicability of this particular explanation. Research

in explanation-based learning 
ourished at the end of the eighties. As it seemed to be perfectly

applicable to chess (we have a well-de�ned domain theory, the rules of the game) several authors

tried to apply these algorithms to learn useful chunks of knowledge. However, this approach

can only be applied to learning simple combinations, which can be explained by looking at the

move tree. Interesting patterns, like appropriate pawn moves in certain pawn moves, cannot be

explained by the available domain theory and therefore cannot be learned.

A very early explanation-based learning approach to chess has been demonstrated by Jacques

Pitrat (Pitrat 1976a; Pitrat 1976b). His program is able to learn de�nitions for simple concepts like

skewer or fork. The concepts are represented as generalized move trees, so-called procedures. For

understanding a move the program tries to construct a move tree using already learned procedures.

This tree is then simpli�ed (unnecessary moves are removed) and generalized (squares and pieces

are replaced with variables according to some prede�ned rules) in order to yield a new procedure

that is applicable to a variety of similar situations. Pitrat's program successfully discovered a

variety of useful tactical patterns. However, it turned out that the size of the move trees grow too

fast once the program has learned a signi�cant number of patterns of varying degrees of utility.

This utility problem is a widely acknowledged di�culty for explanation-based learning algorithms

(Minton 1990). Interestingly, it has lead Pitrat to the conclusion that the learning module works

well, but a more sophisticated method for dealing with the many procedures discovered during

learning is needed (Pitrat 1977).

Minton (1984) reports the same problem of learning too many too specialized rules with

explanation-based learning in several game domains including chess. Minton's program performs

a backward analysis after the opponent has achieved one of its goals (check-mate, winning a piece

4



etc.). It then identi�es the pattern that has triggered the rule which has established that the

opponent has achieved a goal. From this pattern all features that have been added through the

opponent's last move are removed and all conditions that have been necessary to enable the op-

ponent's last move are added. Thus the program derives a pattern that allows to recognize the

danger before the opponent has made the devastating move. If the program's own last move has

been forced, the pattern is again changed by deleting the e�ects of this move and adding the pre-

requisites for this move. This process of pattern regression is continued until one of the program's

moves has not been forced. The remaining pattern will then form the condition part of a rule that

recognizes the danger before the forced sequence of moves that has achieved the opponent's goal.

However, the limitation to tactical combinations where each of the opponent's moves is forced

is too restrictive for the domain of chess. Minton's program could only discover patterns for forced

mating sequences. Puget (1987) tried to generalize this work in the following way: All opponent's

moves are considered to be optimal, because the opponent has reached one of his goals by this

move sequence. When the program tries to regress the pattern of one of its own moves it �rst picks

the move that has actually been played in the game and regresses the pattern over this move. If the

move has been forced, this is no di�erent from the method used in (Minton 1984). If, however, the

move has not been forced, the program �rst removes all moves that would not change the regressed

pattern. For all remaining moves, i.e. for moves that would refute the following combination, it is

checked whether another pattern that has already been learned guarantees the achievement of the

same or a better goal in the current position. If so, this pattern is also regressed over the move that

lead to it. The union of all regressed patterns forms the new pattern that has to be regressed over

the opponent's previous move. Although this approach has been successfully applied to the game

of Go-Moku it is doubtful that it would have been equally successful in the more complicated

domain of chess.

Puget (1987) states explicitly that the rules derived by his program need not be su�cient for

deriving the target concept (as it is usually the case in explanation-based learning). In other

words the learned patterns suggest good moves, but do not guarantee the successful outcome

of the combination in slightly di�erent situations. Tadepalli (1989) has also acknowledged this

problem and proposed a di�erent solution. The philosophy of Lazy Explanation-Based Learning is

to attack this problem by paying no attention to the possible refutations of a move. The program

learns a set of over-general, optimistic plans called o-plans. All moves in the plan contribute

to the achievement of either the goal itself or one of its preconditions. During actual play a

planning module combines all previously learned o-plans that seem to be relevant for the current

board situation into so-called c-plans which are used for determining the program's next move.

Whenever the current c-plan fails because of an unexpected move of the opponent, a new o-plan is

learned that incorporates this counter-strategy. Thus, over-general plans are continuously re�ned

by learning new o-plans that will be indexed as counter plans to the original plans. Tadepalli

calls this simplifying assumption Omniscience Assumption: The planner assumes that it knows

all the o-plans necessary to identify the relevant moves for both sides. With an increasing library

of o-plans the planner should approximate towards true \omniscience".

Flann (1989) has applied EBL to the acquisition of recognition rules for abstractions. His pro-

gram, Place is able to recognize many typical, abstract concepts (e.g. my-king-in-check) and

associate plans and goals with them. The goals are completely instantiated and highly specialized,

thus constraining the search during the problem-solving phase. Place does not have to consider

all moves in a position, but reasons with abstract operators (e.g. move-my-king-out-of-check).

Place looks for operators that maintain, destroy or achieve a goal and generalizes the found

explanations into operational recognition rules. Complex expressions for the achievement of mul-

tiple goals are analyzed and compiled by doing an exhaustive case analysis (Flann 1990). This

analysis is able to generate geometrical constraints that can be used as a recognition pattern for

the abstract concept.

Flann and Dietterich (1989) demonstrate methods for augmenting EBL with a similarity-based

induction module that is able to inductively learn concepts from multiple explanations for several

examples. In a �rst step, the common subtree of the explanations for each of the examples

is computed and generalized with EBL. In a second phase this general concept is inductively

5



specialized by replacing some variables with constants that are common in all examples. While

pure EBL is only able to learn the fairly general concept check-with-bad-exchange (because

it is the only generalization within its search space), IOE (Induction over Explanations) is in

addition able to learn descriptions for three of its special cases, namely skewer, knight-fork, and

sliding-fork.

5 CASE-BASED REASONING

Case-Based Reasoning (CBR) (Kolodner 1992) has been originally developed as a cognitive model

of reasoning (Riesbeck and Schank 1989). The basic idea behind CBR is simple: In order to solve

a new problem a CBR system tries to remember similar problems that it has previously solved

and adapts the solutions of these problems to the new situation. By storing the found solutions in

a case base so that they will be available for help in solving future problems the system constantly

improves its problem solving skills and thus can be said to \learn". In some way CBR can be

viewed as a generalization of \Learning by Analogy", which has already been shortly discussed in

(Skiena 1986). However, at that time there was no signi�cant chess application in this area. The

author only mentions that the famous PARADISE system (Wilkins 1980) in some way reasons by

analogy, but does not incorporate learning.

An early application of case-based reasoning to the domain of chess can be found in (Spohrer

1985). Maple (Mistakes As Plan Learning Experiences) learns simple plans for the game of chess.

Learning is invoked whenever a disaster occurs, i.e. whenever Maple can only choose moves that

will result in a loss of material. Then a data compression algorithm brings the crucial moves of the

situation into a concise form, using existence and for-all operators. A very simple causal traceback

is used to determine the reason for the loss in terms of attacking, skewer and block relations. The

result is then abstracted by replacing the location of the pieces with variables and stored as a

new plan. The program uses a 2-ply look-ahead for play. When a plan suggests a move, this

move is played (move selection). When a plan for the opponent prohibits a move, this move is not

made (move rejection). The way Maple generalizes plans is explanation-based and shares many

similarities with research that we have discussed in section 4, in particular with (Minton 1984).

Castle (Krulwich 1993) also relies heavily on previous research in explanation-based learning,

but the framework in which Castle andMaple operate is that of case-based planning (Hammond

1989), in which plans that have been generalized from past experiences are used and, whenever

they fail, continuously debugged.

1

Castle consists of several modules (Krulwich et al. 1995).

The threat detection component is a set of condition-action rules, each rule being specialized for

recognizing a particular type of threat in the current focus of attention that is determined with

another rule-based component. A counterplanning module analyzes the discovered threats and

attempts to �nd countermeasures. Castle invokes learning whenever it encounters an explanation

failure, e.g. when it turns out that the threat detection and the counterplanning components have

failed to detect or prevent a threat. In such a case Castle uses a self-model to analyze which of

its components is responsible for the failure, tries to �nd an explanation for the failure and then

employs explanation-based learning to generalize this explanation (Collins et al. 1993). Castle

has demonstrated that it can successfully learn plans for interposition, discovered attacks, forks,

pins and other short-term tactical threats. From the point of view of learning this approach does

not go beyond the capabilities of the explanation-based learning techniques that we have discussed

in section 4, but the main focus of the project was to discuss a variety of issues that have to be

dealt with in multi-component planning systems.

Kerner (1995) is developing a case-based reasoning program that eventually shall be able to

strategically analyze chess positions and suggest possible plans to the user. The system is designed

as an educational tool and thus does not need to incorporate search. The basic knowledge consists

of a hierarchy of strategic chess concepts (like backward pawns etc.) that has been compiled by

an expert. Indexed with each concept is an Explanation Pattern (XP) (Schank 1986), roughly

speaking a variabilized plan that can be instantiated with the parameters of the current position.

1

Tadepalli's Lazy EBL (see section 4) could also be cast into this framework.

6



When the system encounters a new position it retrieves XPs that involve the same concept and

adapts the plan for the previous case to the new position using generalization, specialization,

replacement, insertion and deletion operators. If the resulting XP is approved by a chess expert

it will be stored in the case base. Research on this system is still in progress and currently

concentrates on the learning of multiple explanation patterns, i.e. the integration of several XPs

into the analysis process.

Scherzer et al. (1990) describe an addition to the Bebe chess program that allows it to avoid

the repetition of previous mistakes with a technique that uses the program's transposition tables

(see also (Slate 1987)). Bebe stores all positions it has encountered during play along with the

played move, the search depth, and the move's evaluation. At the beginning of the search the

program's transposition table is initialized with the stored positions. Whenever one of them is

encountered during tree search the program will utilize the stored evaluation which results from a

deeper search. Thus the program will be able to search deeper whenever it is at or near positions

that have occurred in prior games. It has been experimentally con�rmed that Bebe's learning in

fact improves its score considerably when playing 100-200 games against the same opponent.

Flinter and Keane (1995) present Tal, a recent program that uses a case-based approach for

reducing the number of moves that are considered during tree search. Tal has access to a library

of 4,533 base chunks (i.e. meaningful groups of pieces) that it has generated using 350 chess games

of ex-world-champion Mikhail Tal. These chunks will subsequently be used to construct a case

base of chess positions that can be used by a playing module to retrieve positions with a similar

chunk structure and limit the number of considered moves in a new position to adaptations of the

moves that have been played in the positions that correspond to the retrieved cases. However, the

playing module has not yet been implemented which makes it hard to evaluate the feasibility of

this approach. Tal's architecture was motivated by psychological research on human chess playing

(for an overview see (Holding 1985)) and the implementation of the chunking algorithm seems to

produce plausible results. Technically the approach is quite similar to (Schae�er 1988), where

positions in the game graph are represented with a feature vector that encodes important aspects

of each position, like material balance, pawn structure etc. When a new position is analyzed, the

program computes its feature vector and retrieves all positions with identical or almost identical

feature vectors from the game tree. This ensures that the most important features of the retrieved

positions match the current position. The moves played in the most similar (80% of the pieces

have to be on identical squares) of the retrieved positions will get a bonus of a quarter pawn

during regular tree search. Both approaches learn from the experience of other players by using a

database of games as an aid in the move selection process.

Chump (Gobet and Jansen 1994) is another very interesting approach to build a playing chess

program based on psychological results on human chess playing. Chump uses an eye-movement

simulator (Simon and Barenfeld 1969) to scan the board into a �xed number (20) of meaningful

chunks. New chunks will be added into a discrimination net (Simon and Gilmartin 1973) based

on the EPAM model of memory and perception (Feigenbaum 1961). During the learning phase

the move that has been played in the position is added into a di�erent discrimination net and is

linked to the chunk that contains the moved piece at its original location. In the playing phase

the retrieved patterns are checked for associated moves (note that only about 10% of the chunks

have associated moves). The move that is suggested by the most chunks will be played. In one

experiment Chump was trained on 300 games of ex-world championMikhail Tal. Tests on seen and

unseen positions show continuous improvement during learning. After learning from all positions

from 300 games in 28.7% of unseen positions the correct move is in the set of retrieved moves.

However, in only 4 of the 143 test positions from two complete games Chump's favorite move has

actually been played. In a test on the 24 Bratko-Kopec positions (Kopec and Bratko 1982) Chump

achieved a rating of below 1500, but its performance on the lever positions (where positional chunks

can be very helpful) was much better than its performance on the tactical positions (where it is

severely handicapped because it doesn't use any search). In a second experiment Chump was

trained on several games in the KQKR endgame. The moves played in master games were almost

always among the moves retrieved byChump, when tested on the same positions that it has learned

from. This percentage decreases considerably when testing on unseen games. One of the major

7



de�ciencies of Chump seems to be that the number of learned chunks increases almost linearly

with the number of seen positions and that the number of chunks that have an associated move

remains constant over time. In our opinion this suggests that Chump always learns new patterns,

i.e. that its capabilities for reusing already learned patterns are limited. However, Chump is the

�rst chess program based on a model of human chess memory and perception that is able to play

a complete game.

A similar approach to a chess playing program based on the use of psychologically motivated

chunks is the Inductive Adversary Modeler (IAM) (Walczak 1991; Walczak and Dankel 1991).

IAM's goal is to acquire a set of patterns that re
ect the opponent's typical play. Thus it can be

regarded as part of the growing research in opponent modeling (see e.g. (Iida et al. 1995)). When

it is IAM's turn to move it looks for nearly completed chunks, i.e. chunks that can be completed

by one of the opponent's moves, and predicts that the opponent will play this move. Multiple

move predictions are resolved heuristically with preference being given to bigger and more reliable

chunks. Using this method IAM was able to correctly predict more than 10% of the moves in

games of several grandmasters including Botwinnik, Karpov, and Kasparov.

2

6 EVALUATION FUNCTION LEARNING

The tuning of evaluation functions of conventional chess programs has become one of the most

promising directions for the application of machine learning methods in computer chess. Since the

days of the famous learning checker playing program by Samuel (1959) the idea of using games

from human experts, against human opponents, or collected by self-play to optimize the feature

weights of an evaluation function has been present in computer game playing. Nitsche (1982) has

suggested a way for minimizing the least squares error of the evaluation function over a collection

of games. The proposed algorithm was to choose the weights for the evaluation function in such

a way that the sum over all moves of the squared di�erences of the move's heuristic value and a

selection function is minimized. The selection function is de�ned to be 1 if this move has been

selected by the opponent and 0 otherwise. The feasibility of this approach has been demonstrated

with a simple endgame example.

Marsland (1985) extends this work by suggesting that the ordering of the moves by the eval-

uation function should be included into the learning process as well. He proposes cost functions

that give a higher penalty if the chosen move has a low ranking than if it is considered as one

of the best moves. He also favorizes a cost function that makes sure that changing the rank of a

move near the top has a bigger e�ect than changing the rank of a move near the bottom.

Similarly, van der Meulen (1989) criticizes Nitsche's approach because of the use of a discrete

selection function. Instead he proposes to calculate the weights for the evaluation functions using a

set of inequalities that de�ne the region in parameter space in which the evaluation function would

choose the same move as a grandmaster did in a certain position. These regions are simpli�ed

to hyperrectangles. The intersection of several such hyperrectangles de�nes a region where the

evaluation function �nds the correct move for several test positions. Van der Meulen's algorithm

greedily identi�es several such regions and constructs a suitable evaluation function for each of

them. New positions are then evaluated by �rstly identifying an appropriate region and then

using the associated evaluation function. However, this algorithm has not been tested, and it is

an open question whether the number of optimal regions can be kept low enough for an e�cient

application in practice.

Hsu et al. (1990a) used an automatic tuning approach for their world champion programDeep

Thought, because they were convinced that it is infeasible to correctly re
ect the interactions

between the more than 100 weights of the evaluation functions. Like Nitsche (1982) they chose to

compute the weights by minimizing the squared error between the program's and a grandmaster's

choice of moves. They implemented an e�cient algorithm that compares the dominant position

(i.e. the leaf position that was responsible for the evaluation of the root) of the subtree starting

2

IAM does not always predict a move; thus the percentageof correctly predictedmoveswhen it made a prediction

is even higher.

8



with the grandmaster's move to the dominant position of any alternative move at a shallow 5 to

6 ply search. If an alternative move's dominant position gets a higher evaluation an appropriate

adjustment direction is computed in the parameter space and the weight vector is adjusted a little

into that direction. The authors had also experimented with a simple hill-climbing algorithm

using an approximation of the true value of the evaluation function that was obtained by a deeper

search. Although this approach turned out to be too ine�cient to be used for tuning the weights, it

proved to be useful in evaluating the implemented tuning algorithm. The authors were convinced

that their automatically tuned evaluation function is no worse than the hand-tuned functions of

their academic competitors. However, they also remarked that the evaluation functions of top

commercial chess programs are still beyond them, but hoped to close the gap soon (Hsu et al.

1990b).

Tunstall-Pedoe (1991) has tried to optimize the weights of an evaluation function with genetic

algorithms. A genetic algorithm (Goldberg 1989) is a robust optimization method that avoids to

get stuck in local optima. The algorithm maintains a set of weight vectors called a generation.

The next generation is computed by randomly changing some weights (mutation) of a member

of the last generation or by exchanging some weights between two members (cross-over). The

probability that members of a generation are selected for these operations (and that they will

survive in the next generation) is proportional to their �tness. The �tness of a certain parameter

set was estimated with the percentage of test positions for which the evaluation function chose the

same move

3

as the grandmaster at a random sample of 500 positions chosen from 389 grandmaster

games. The program acquired a set of weights that performed no worse than the values that

have been manually set by the author of the used chess program, but surprisingly showed little

correlation with the author's estimates.

The price that has to be paid for the avoidance of local optima with the use of a genetic

algorithm is its ine�ciency. (van Tiggelen and van den Herik 1991) have concluded from a study

in the KNNKP(h) endgame that genetic learning is too ine�cient to scale up to a middle-game

application with a reasonable number of test positions and a reasonable search depth for move

evaluation. (van Tiggelen 1991) therefore looked for a more e�cient approach and tried to optimize

evaluation functions with a neural network. The network was trained to predict the performance

of the weights on a set of test positions as in (Tunstall-Pedoe 1991), but the positions were

evaluated under tournament conditions (i.e. � 3 minutes per position) as in (van Tiggelen and

van den Herik 1991). From his description it is not entirely clear how the author used this

network, but we presume he used the weights in the evaluation function for which the network

predicted a high performance. His conclusions were that his neural-net optimization method is

not only more e�cient than the use of genetic algorithm, but also yields much better results in

the KNNKP(h) test domain. Schmidt (1993) has performed a variety of experiments, in which he

tried neural networks to learn an evaluation function for middle-game chess positions, but with

rather disappointing results. His conclusion was to switch to temporal di�erence learning (Schmidt

1994).

The formulation of the temporal di�erence learning paradigm (Sutton 1988) was a major

advance for machine learning in strategic game playing. Although the basic idea of TD learning has

already been employed in Samuel's famous checkers player (Samuel 1959), it has been forgotten in

computer game playing research until the success of Tesauro's master-level backgammon program

TD-Gammon (Tesauro 1992; Tesauro 1994). This achievement naturally lead to attempts to

apply temporal di�erence learning to computer chess.

TD learning attempts to solve the hard problem of obtaining correct evaluations for middle-

game positions that can be used for training a supervised learning algorithm. As in chess the

outcome of the game can only be determined at its end, it is hard to identify the moves that have

contributed the most to this outcome. This is also known as the credit assignment problem. The

proposed solution is that instead of learning from a set of preselected and preevaluated training

positions, the algorithm tries to minimize the di�erence between successive position evaluations.

For example if the program constantly thinks it has an equal position and suddenly discovers that

3

At an e�cient 1 ply + quiescence search.

9



it will loose a piece, something must have gone wrong with the evaluations of the previous positions

and the weights should be adjusted to re
ect this fact. The TD(�) learning framework takes this

into account by adjusting the weights of the evaluation function by an amount that depends on

the di�erence between the most recent position evaluation and the preceding estimates. In order

to decrease the in
uence of positions that have occurred longer ago, the in
uence of each position

is weighted by �

n

where n is the number of moves that have been played since this position and

� is a user-settable parameter (0 � � � 1). If � is set to 1, all positions in the game are weighted

equally, while with � = 0 (Q-learning) only the current position evaluation is used for adjustment.

In that case the evaluation function is trained with its own value one move later in the game.

Gherrity (1993) has integrated Q-learning with consistency search (Beal 1980) in the SAL

(\Search and Learning") system. A neural network evaluation function

4

is trained with self play,

where the evaluation function of the next board position is used as the target value for the

evaluation value of the current position. SAL played several thousand games against GNUChess

and was eventually able to achieve 8 draws by perpetual check. A more detailed evaluation

nevertheless showed that SAL was able to learn, as the average length of the game and the

average number of captured pieces increased.

A far better performance was achieved by NeuroChess (Thrun 1995), which uses an interest-

ing approach to combine explanation-based and neural network learning in a temporal di�erence

learning framework. Domain-speci�c chess knowledge is represented with the help of a neural

network version of explanation-based learning (Thrun and Mitchell 1993). This network is trained

to predict the board position two plies after the current position using 120,000 expert games. A

separate network is used for learning the evaluation function which is trained with its own esti-

mates for the predicted positions using a TD(0) algorithm. NeuroChess learned from playing

against GNUChess. It scored only 6 points in the �rst 200 games (3%), but steadily increased

this ratio. After 2000 games is was able to score 25% in the last 400 games.

Morph (Levinson and Snyder 1991; Gould and Levinson 1994) is arguably the most advanced

(not necessarily the strongest) temporal di�erence learning system in the chess domain. Its major

achievement is that instead of only optimizing the weights of a set of prede�ned positional features

it also automatically constructs the features during learning. The basic representational entity of

Morph are pattern-weight pairs (pws). Patterns are represented as conceptual position graphs,

the nodes being pieces and important squares and the edges being attack relationships. These

patterns are created by choosing a random size n and adding the best n nodes to the graph

according to some prede�ned ordering heuristic. Patterns can subsequently be generalized by

extracting the common subtree of two patterns with similar weights or specialized by adding

nodes and edges to the graph whenever a weight must be updated by a large amount, which

indicates inaccuracy. Di�erent patterns can be tied together by reverse engineering , so that

they result in a chain of actions. This process is quite similar to explanation-based learning.

Genetic cross-over and mutation operators are also planned to be included in the near future.

Pattern weights are modi�ed by a general TD(�) algorithm, where the �nal result of the game is

propagated down to all patterns that occurred in the positions of the game. A major di�erence

to common approaches is that each pattern has its own learning rate which is adjusted with a

simulated annealing scheme (i.e. the more frequently a pattern is updated, the slower becomes

its learning rate). Morph evaluates a move by combining the weights of all matched patterns

into a single evaluation function value and selecting the move with the best value, i.e. it performs

only a 1-ply look-ahead. The system has been tested against GNUChess and was able to beat

it occasionally. The special patterns that Morph has learned for the estimation of di�erences

in material proved to be consistent with common chess knowledge. Morph soon started to play

reasonable opening moves, although no information about development or center control has been

added to the system. However, a major problem of Morph is that although it is able to delete

useless patterns, it will still be swamped by too many patterns, a problem that is common to all

pattern-learning systems.

4

Actually SAL uses two evaluation functions, one for each side.

10



7 CONCLUSION

Let us now reevaluate Skiena's conclusions of 1986. We have seen that several competitive pro-

grams have experimented with learning techniques. DeepThought's evaluation function has been

automatically tuned on a database of grandmaster games and Bebe used a learning algorithm to

avoid the repetition of mistakes in a match. Although the use of machine learning methods still

is not common in competitive computer chess programs, the situation has improved in the last

decade.

However, we hope to have convinced the reader that Skiena's second conclusion can be rejected

in the light of the research of the last decade. Due to their ability to incorporate relations into

the learning process, inductive logic programming algorithms are particularly suitable for learning

in game playing domains. The application of temporal-di�erence learning to computer chess is

still in its infancy, but its success in Tesauro's backgammon program gives reason for optimism.

We also have seen that research in pattern-based computer chess programs has recently gained

interest. In particular in educational tools the use of patterns and plans will be crucial as will

the use of machine learning techniques to acquire these patterns. A major problem that has to

be addressed here is the abundance of possible patterns that has to be met with clever evaluation

techniques. Research in psychologically motivated chess programs has also regained popularity

after it has stagnated in the early 70's. We consider research in this direction as a particularly

promising endeavor which eventually may be able to shed light on some aspects of human cognition

as well as produce chess programs that overcome some of the strategical weaknesses of brute-force

approaches.

Acknowledgements

An overview of this sort can never be complete. I have tried to include every signi�cant research project in this area

which I am aware of and which I had access to. I have put a more complete list of references in the area ofMachine

Learning in Strategic Game Playing on the WWW at http://www.ai.univie.ac.at/~juffi/lig/lig.html (with

links to many on-line papers, a search facility, and a bib-�le). I would like to thank all people who have con-

tributed to this collection, in particular Jay Scott who maintains an excellent WWW-site for this research �eld at

http://forum.swarthmore.edu/~jay/learn-game/. I would also like to thank Bernhard Pfahringer for comments

on an earlier version of this paper. This research is sponsored by the Austrian Fonds zur F�orderung der Wis-

senschaftlichen Forschung (FWF). Financial support for the Austrian Research Institute for Arti�cial Intelligence

is provided by the Austrian Federal Ministry of Science and Research.

References

Bain, M. and A. Srinivasan (1995). Inductive logic programmingwith large-scale unstructured data. In D. Michie,

K. Furukawa, and S. Muggleton (Eds.), Machine Intelligence 14. Oxford University Press.

Bain, M. E. (1994). Learning Logical Exceptions in Chess. Ph. D. thesis, Department of Statistics and Modelling

Science, University of Strathclyde, Scotland.

Beal, D. F. (1980). Advances in Computer Chess 2, Chapter An Analysis of Minimax, pp. 103{109. Edinburgh

University Press. Editor: M. R. B. Clarke.

Collins, G., L. Birnbaum, B. Krulwich, and M. Freed (1993). The role of self-models in learning to plan. In

Foundations of Knowledge Acquisition: Machine Learning, pp. 83{116. Kluwer.

deGroot, A. D. (1965). Thought and Choice in Chess. The Hague: Mouton.

Feigenbaum,E. (1961). The simulationof verbal learningbehavior. InProceedings of the Western Joint Computer

Conference, pp. 121{132. Reprinted in J.W. Shavlik & T.G. Dietterich (eds.), Readings in Machine Learning,

Morgan Kaufmann 1990.

Flann, N. S. (1989). Learning appropriate abstractions for planning in formation problems. In A. M. Segre (Ed.),

Proceedings of the Sixth International Workshop on Machine Learning, pp. 235{239. Morgan Kaufmann.

Flann, N. S. (1990). Applying abstraction and simpli�cation to learn in intractable domains. In B. W. Porter

and R. Mooney (Eds.), Proceedings of the 7th International Conference on Machine Learning, pp. 277{285.

Morgan Kaufmann.

Flann, N. S. and T. G. Dietterich (1989). A study of explanation-basedmethods for inductive learning.Machine

Learning 4, 187{226.

Flinter, S. and M. T. Keane (1995). Using chunking for the automatic generation of cases in chess. In M. Veloso

and A. Aamodt (Eds.), Proceedings of the 1st International Confernece on Case Based Reasoning (ICCBR-

95). Springer Verlag.

11



George, M. and J. Schae�er (1990). Chunking for experience. ICCA Journal 13(3), 123{132.

Gherrity, M. (1993). A Game-Learning Machine. Ph. D. thesis, University of California, San Diego, CA.

Gobet, F. and P. Jansen (1994). Towards a chess program based on a model of human memory. In H. J. van den

Herik, I. S. Herschberg, and J. W. H. M. Uiterwijk (Eds.), Advances in Computer Chess 7, pp. 35{60.

University of Limburg.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA:

Addison-Wesley.

Gould, J. and R. Levinson (1994). Experience-based adaptive search. In R. Michalski and G. Tecuci (Eds.),

Machine Learning: A Multi-Strategy Approach, pp. 579{604. Morgan Kaufmann.

Hammond, K. J. (1989). Case-Based Planning: Viewing Planning as a Memory Task. Boston, MA: Academic

Press.

Holding, D. H. (1985). The Psychology of Chess Skill. Lawrence Erlbaum Associates.

Hsu, F., T. S. Anantharaman, M. S. Campbell, and A. Nowatzyk (1990a). Deep thought. In T. A. Marsland and

J. Schae�er (Eds.), Computers, Chess, and Cognition, Chapter 5, pp. 55{78. Springer-Verlag.

Hsu, F., T. S. Anantharaman,M. S. Campbell, and A. Nowatzyk (1990b, October). A grandmaster chess machine.

Scienti�c American 263(4), 44{50.

Iida, H., J. Uiterwijk, H. van den Herik, and I. Herschberg (1995). Thoughts on the application of opponent-model

search. In H. van den Herik and J. Uiterwijk (Eds.), Advances in Computer Chess 7, pp. 61{78. Maastricht,

Holland: Rijksuniversiteit Limburg.

Kerner, Y. (1995). Learning strategies for explanation patterns: Basic game patterns with application to chess. In

M. Keane, J. Haton, and M. Manago (Eds.), Proceedings of the 1st International Conference on Case-Based

Reasoning (ICCBR-95), Lecture Notes in Arti�cial Intelligence, Berlin. Springer-Verlag.

Kolodner, J. L. (1992). Case-Based Reasoning. Morgan Kaufmann.

Kopec, D. and I. Bratko (1982). The Bratko-Kopec experiment: A comparison of human and computer perfor-

mance in chess. In M. Clarke (Ed.), Advances in Computer Chess 3, pp. 57{72. Oxford: Pergamon.

Krulwich, B., L. Birnbaum, and G. Collins (1995). Determiningwhat to learn through component-taskmodeling.

In Proceedings of the 14th International Joint Conference on Arti�cial Intelligence, pp. 439{445.

Krulwich, B. T. (1993). Flexible Learning in a Multi-Component Planning System. Ph. D. thesis, The Institute

for the Learning Sciences, Northwestern University, Evanston, IL. Technical Report #46.

Levinson, R. A. and R. Snyder (1991). Adaptive pattern-oriented chess. In L. Birnbaum and G. Collins (Eds.),

Proceedings of the 8th International Workshop on Machine Learning, pp. 85{89. Morgan Kaufmann.

Marsland, T. A. (1985). Evaluation-function factors. ICCA Journal 8(2), 47{57.

Matheus, C. J. (1989). A constructive induction framework. In Proceedings of the 6th International Workshop

on Machine Learning, pp. 474{475.

Michalski, R. and P. Negri (1977). An experiment on inductive learning in chess endgames. In Elcock and

D. Michie (Eds.), Machine Intelligence 8, pp. 175{192. Edinburgh University Press.

Michie, D. and I. Bratko (1991, March). Comments to 'chunking for experience'. ICCA Journal 18(1), 18.

Minton, S. (1984). Constraint based generalization: Learning game playing plans from single examples. In

Proceedings of the 2nd National Conference on Arti�cial Intelligence, Austin, TX, pp. 251{254.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning. Arti�cial Intelli-

gence 42, 363{392.

Mitchell, T. M., R. M. Keller, and S. Kedar-Cabelli (1986). Explanation-based generalization: A unifying view.

Machine Learning 1(1), 47{80.

Morales, E. (1991). Learning features by experimentation in chess. In Proceedings of the 5th European Working

Session on Learning, pp. 494{511. Springer Verlag.

Morales, E. (1994). Learning patterns for playing strategies. ICCA Journal 17(1), 15{26.

Muggleton, S. (1988). Inductive acquisition of chess strategies. In J. E. Hayes, D. Michie, and J. Richards (Eds.),

Machine Intelligence 11, Chapter 17, pp. 375{387. Clarendon Press.

Muggleton, S. (1990). Inductive Acquisition of Expert Knowledge. Turing Institute Press. Addison-Wesley.

Muggleton, S. (Ed.) (1992). Inductive Logic Programming. London: Academic Press Ltd.

Nitsche, T. (1982). A learning chess program. In M. R. B. Clarke (Ed.), Advances in Computer Chess 3, pp.

113{120. Pergamon Press.

Nunn, J. (1992). Secrets of Rook Endings. Batsford.

Nunn, J. (1994a). Extracting information from endgame databases. In H. J. van den Herik, I. S. Herschberg, and

J. W. H. M. Uiterwijk (Eds.), Advances in Computer Chess 7, pp. 19{34. University of Limburg.

Nunn, J. (1994b). Secrets of Pawnless Endings. Batsford.

Paterson, A. (1983). An attempt to use CLUSTER to synthesise humanly intelligible subproblems for the KPK

chess endgame. Technical Report UIUCDCS-R-83-1156, University of Illinois, Urbana, IL.

Pitrat, J. (1976a). A program to learn to play chess. In Pattern Recognition and AI, pp. 399{419. Academic

Press.

12



Pitrat, J. (1976b). Realization of a program learning to �nd combinations at chess. In J. Simon (Ed.), Computer

Oriented Learning Processes. Noordho�.

Pitrat, J. (1977). A chess combination program which uses plans. Arti�cial Intelligence 8, 275{321.

Puget, J.-F. (1987). Goal regression with opponent. In Progress in Machine Learning, pp. 121{137. Sigma Press.

Quinlan, J. R. (1983). Learning e�cient classi�cation procedures. In R. S. Michalski, J. G. Carbonell, and T. M.

Mitchell (Eds.), Machine Learning: An Arti�cial Intelligence Approach, pp. 463{482. Palo Alto: Tioga.

Riesbeck, C. K. and R. C. Schank (1989). Inside Case-Based Reasoning. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research

and Development 3(3), 211{229.

Schae�er, J. (1988). Learning from (other's) experience. In Proceedings of the AAAI Spring Symposium on

Computer Game Playing, pp. 51{53.

Schank, R. C. (1986). Explanation Patterns: Understanding Mechanically and Creatively. Hillsdale, NJ:

Lawrence Erlbaum.

Scherzer, T., L. Scherzer, and D. Tjaden (1990). Learning in bebe. In T. A. Marsland and J. Schae�er (Eds.),

Computers, Chess, and Cognition, Chapter 12, pp. 197{216. Springer Verlag.

Schmidt, M. (1993). Neural networks and chess. Master's thesis, Computer Science Department, University of

Aarhus, Aarhus, Denmark.

Schmidt, M. (1994). Temporal-di�erence learning and chess. Technical report, Computer Science Department,

University of Aarhus, Aarhus, Denmark.

Shapiro, A. D. (1987). Structured Induction in Expert Systems. Turing Institute Press. Addison-Wesley.

Shapiro, A. D. and D. Michie (1986). A self commenting facility for inductively synthesized endgame expertise.

In D. F. Beal (Ed.), Advances in Computer Chess 4, pp. 147{165. Oxford: Pergamon.

Shapiro, A. D. and T. Niblett (1982). Automatic induction of classi�cation rules for a chess endgame. In M. R. B.

Clarke (Ed.), Advances in Computer Chess 3, pp. 73{92. Oxford: Pergamon.

Simon, H. A. andM. Barenfeld (1969). Information-processinganalysis of perceptualprocesses in problem solving.

Psychological Review 76(5), 473{483.

Simon, H. A. and K. Gilmartin (1973). A simulation of memory for chess positions. Cognitive Psychology 5,

29{46.

Skiena, S. S. (1986). An overview of machine learning in computer chess. ICCA Journal 9(1), 20{28.

Slate, D. J. (1987). A chess program that uses its transposition table to learn from experience. ICCA Jour-

nal 10(2), 59{71.

Spohrer, J. C. (1985). Learning plans through experience: A �rst pass in the chess domain. In D. P. Casasent

(Ed.), Intelligent Robots and Computer Vision, Volume 579 of Proceedings of the SPIE { The International

Society for Optical Engineering, pp. 518{527.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences.Machine Learning 3, 9{44.

Tadepalli, P. (1989). Lazy explanation-based learning: A solution to the intractable theory problem. In Proceed-

ings of the 11th International Joint Conference on AI, pp. 694{700. Morgan Kaufmann.

Tesauro, G. (1992). Temporal di�erence learning of backgammon strategy. Proceedings of the 9th International

Conference on Machine Learning 8, 451{457.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural

Computation 6(2), 215{219.

Thrun, S. (1995). Learning to play the game of chess. In G. Tesauro, D. Touretzky, and T. Leen (Eds.), Advances

in Neural Information Processing Systems 7.

Thrun, S. B. and T. M. Mitchell (1993). Integrating inductive neural network learning and explanation-based

learning. In R. Bajcsy (Ed.), Proceedings of the 13th International Joint Conference on Arti�cial Intelligence,

pp. 930{936. Morgan Kaufmann.

Tunstall-Pedoe, W. (1991). Genetic algorithms optimizing evaluation functions. ICCA Journal 14(3), 119{128.

van derMeulen, M. (1989).Weight assessment in evaluation functions. In D. F. Beal (Ed.), Advances in Computer

Chess 5, pp. 81{89. Amsterdam: Elsevier.

van Tiggelen, A. (1991). Neural networks as a guide to optimization. the chess middle game explored. ICCA

Journal 14(3), 115{118.

van Tiggelen, A. and H. J. van den Herik (1991). ALEXS: An optimizationapproach for the endgameKNNKP(h).

In D. F. Beal (Ed.), Advances in Computer Chess 6, pp. 161{177. Chichester: Ellis Horwood.

Walczak, S. (1991). Predicting actions from inductionon past performance. In L. BirnbaumandG. Collins (Eds.),

Proceedings of the 8th International Workshop on Machine Learning, pp. 275{279. Morgan Kaufmann.

Walczak, S. and D. D. Dankel (1991). Acquiring tactical and strategic knowledge with a generalized method for

chunking of game pieces. International Journal of Intelligent Systems .

Weill, J.-C. (1994). How hard is the correct coding of an easy endgame. In H. J. van den Herik, I. S. Herschberg,

and J. W. H. M. Uiterwijk (Eds.), Advances in Computer Chess 7, pp. 163{176. University of Limburg.

Wilkins, D. E. (1980). Using patterns and plans in chess. Arti�cial Intelligence 14(3), 165{203.

Zobrist, A. L. and F. R. Carlson (1973, June). An advice-taking chess computer. Scienti�c American, 93{105.

13


