
Pruning Algorithms for Rule Learning

Johannes F�urnkranz

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

E-mail: juffi@ai.univie.ac.at

OEFAI-TR-96-07

Abstract

Pre-Pruning and Post-Pruning are two standard methods of dealing with noise in decision

tree learning. Pre-Pruning methods deal with noise during learning, while post-pruning

methods try to address this problem after an over�tting theory has been learned. This

paper shows how pre- and post-pruning algorithms can be used for separate-and-conquer

rule learning algorithms. We discuss some fundamental problems and show how to solve

them with two new algorithms that combine and integrate pre- and post-pruning.

Keywords: Pruning, Noise Handling, Inductive Rule Learning, Inductive Logic

Programming

1 Introduction

Separate-and-conquer rule-learning systems have gained in popularity through the recent

success of the Inductive Logic Programming algorithm Foil (Quinlan 1990). We will analyze

di�erent pruning methods for this type of inductive rule learning algorithm and discuss some

of their problems. The main contribution of this paper are two new algorithms: Top-Down

Pruning (TDP), an approach that combines pre- and post-pruning, and Incremental Reduced

Error Pruning (I-REP), a very e�cient integration of pre-and post-pruning.

... Pre-Pruning Decisions

Combining Pre- and Post-Pruning Integrating Pre- and Post-Pruning

Post-PruningPre-Pruning

... Literals ... Post-Pruning Decisions

Figure 1: Pruning methods for separate-and-conquer rule learning algorithms.

Pruning is the common framework for avoiding the problem of over�tting noisy data. The

basic idea is to incorporate a bias towards more general and simpler theories in order to avoid

overly speci�c theories that try to �nd explanations for noisy examples.

Pre-pruning methods deal with noise during learning. Instead of trying to �nd a theory

that is complete and consistent with the given training data, heuristics | so-called stopping

criteria | are used to relax this constraint by stopping the learning process although some

positive examples may not yet be explained and some of the negative examples may still be

covered by the current theory. The �nal theory is learned in one pass (see �gure 1). Most

separate-and-conquer rule learners, like CN2 (Clark and Niblett 1989), Foil (Quinlan 1990),

and Fossil (F�urnkranz 1994), use this form of noise handling.

Another family of algorithms deals with noise after learning. These post-pruning algo-

rithms typically �rst induce a theory that is complete and consistent with the training data.

Then this theory is examined and those rules and conditions are discarded that seem to

1

explain only characteristics of the particular training set and thus do not reect true regular-

ities of the domain. Figure 1 shows a schematic depiction of this process. The quality of the

found rules and conditions is commonly evaluated on a separate set of training examples that

have not been seen during learning. Post-pruning algorithms include Reduced Error Pruning

(REP) (Brunk and Pazzani 1991) and Grow (Cohen 1993). Both have been shown to be

very e�ective in noise-handling. However, they are also ine�cient, because they waste time

by learning an over�tting concept description and subsequently pruning a signi�cant portion

of its rules and conditions.

One remedy for this problem is to combine pre- and post-pruning. For this purpose pre-

pruning heuristics are used to reduce (not entirely prevent) the amount of over�tting, so that

learning and pruning will be more e�cient as sketched in the third part of �gure 1. Our

particular implementation of this approach, Top-Down Pruning (TDP) (F�urnkranz 1994),

uses a simple algorithm to generate a set of theories pruned to di�erent degrees in a top-

down, general-to-speci�c order. The accuracies of the theories are evaluated on a separate

set of data and the most speci�c theory with an accuracy comparable to the accuracy of the

best theory so far will be submitted to a subsequent post-pruning phase. Experiments show

that this initial top-down search for a better starting theory can be more e�cient than the

over�tting phase of classical post-pruning algorithms. As this search will typically return a

theory that is closer to the �nal theory, the post-pruning phase will also be sped up, because

less pruning operations are needed to get to the �nal theory.

Motivated by the success of this method, we have developed a more rigorous approach that

tightly integrates pre- and post-pruning. Instead of learning an entire theory and pruning

it thereafter, Incremental Reduced Error Pruning (I-REP) (F�urnkranz and Widmer 1994)

prunes single clauses right after they have been learned. This new algorithm entirely avoids

the learning of an over�tting theory by using post-pruning methods as a pre-pruning stopping

criterion as shown in �gure 1. With this method a signi�cant speedup can be achieved in noisy

domains. As it avoids some problems with other approaches that incorporate post-pruning,

I-REP also learns more accurate theories.

2 Separate-and-Conquer Rule Learning Algorithms

Many rule learning algorithms try to construct rules with the so-called separate-and-conquer

strategy. This method has its roots in the early days of Machine Learning in the covering

algorithm of the famous AQ family (Michalski 1980; Michalski, Mozeti�c, Hong, and Lavra�c

1986). CN2 (Clark and Niblett 1989; Clark and Boswell 1991) combined AQ's covering strat-

egy with the greedy information-based test selection of ID3 (Quinlan 1983), which yielded a

powerful rule learning algorithm. The term separate-and-conquer has been coined in (Pagallo

and Haussler 1990) in the context of learning decision lists. Finally, separate-and-conquer

learning is the basic control structure in the Foil algorithm for e�ciently inducing logic pro-

grams (Quinlan 1990), which pioneered signi�cant research in the �eld of relational learning

and Inductive Logic Programming.

Figure 2 shows the basic SeparateAndConquer rule learning algorithm. The input to

the algorithm is a set of positive and negative examples of the target concept. The output

is a set of rules that are able to prove the given positive examples, but none of the negative

examples. We will represent rules in the form of PROLOG clauses as in the most general

separate-and-conquer learning algorithm, Foil.

2

procedure SeparateAndConquer(Examples)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

Cover = Examples

while Negative(Cover) 6= ;

Clause = Clause [FindLiteral(Clause;Cover)

Cover = Cover(Clause,Cover)

Examples = Examples � Cover

Theory = Theory [Clause

return(Theory)

Figure 2: A Separate-and-Conquer Rule Learning Algorithm

Concept :- Literal1, Literal2, : : :, LiteralN.

In propositional learning (as in CN2) the conditions can only be tests for the values of certain

attributes of the concept, while in relational learning (as in Foil) one can also specify rela-

tions between these attributes, so that the head and the conditions of a rule can be general

PROLOG literals. We will consider a set of rules as a PROLOG program, i.e. the rules will

be checked in order until one of them \�res". The example that ful�lled the conditions of the

rule will consequently be classi�ed as an instance of the learned concept. If no rules \�res",

the instance will not be considered as a member of the concept.

SeparateAndConquer constructs rules by successively adding conditions to the right-

hand side of the current rule. This process is repeated until enough conditions have been

found to rule out all of the negative examples. All positive examples covered by this rule

are then separated from the training set and the next rule is learned from the remaining

examples (hence the name separate-and-conquer). Rules are learned in this way until no

positive examples are left. This method guarantees that each positive example is covered by

at least one rule (completeness) and that no rule covers a negative example (consistency).

The simple SeparateAndConquer algorithm of �gure 2 has a severe drawback: real-

world data may be noisy. Noisy data are a problem for many learning algorithms, because

it is hard to distinguish between rare exceptions and erroneous examples. The fundamental

algorithm of �gure 2 forms a complete and consistent theory, i. e., it tries to explain all of the

positive examples and none of the negative examples. In the presence of noise it will therefore

attempt to �nd explanations for negative examples that have erroneously been classi�ed as

positive and try to exclude positive examples that have a negative classi�cation in the training

set. Explanations for noisy examples typically are very complicated and exhibit low predictive

accuracy on classifying unseen examples. This problem is known as over�tting the noise.

One remedy for this problem is to try to increase the predictive accuracy by considering

not only complete and consistent theories, but also simple theories that may be over-general on

the training examples. The �nal theory will be allowed to deliberately cover some negative

training examples and leave some positive training examples uncovered in order to learn

simpler and more predictive theories. This is usually achieved via pruning heuristics.

3

procedure PrePruning(Examples)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

Cover = Examples

while Negative(Cover) 6= ;

NewClause = Clause [FindLiteral(Clause;Cover)

if StoppingCriterion(Theory,NewClause,Cover)

exit while

Clause = NewClause

Cover = Cover(Clause,Cover)

if Clause = ;

exit while

Examples = Examples � Cover

Theory = Theory [Clause

return(Theory)

Figure 3: A Rule Learning Algorithm Using Pre-Pruning

3 Pre-Pruning

Figure 3 shows an adaptation of the simple SeparateAndConquer algorithm in order

to address noisy data with a pre-pruning heuristic. The algorithm is identical to the one of

�gure 2 except that the inner while loop contains a call to the subroutine StoppingCrite-

rion. The stopping criterion is a heuristic which determines when to stop adding conditions

to a rule, and when to stop adding rules to the concept description. If the current rule with

the new condition added ful�lls the stopping criterion the inner while loop will terminate

and the incomplete clause will be added to the concept description. If this clause contains no

literal it is assumed that no further clause can be found that explains the remaining positive

examples and the theory without this clause is returned. The remaining positive examples

are thus considered to be noisy and will be classi�ed as negative by the returned theory.

Most separate-and-conquer algorithms employ stopping criteria for noise handling. The

most commonly used among them are

� Encoding Length Restriction: This heuristic used in the Inductive Logic Programming

algorithm Foil (Quinlan 1990) is based on the Minimum Description Length principle

(Rissanen 1978). It tries to avoid learning complicated rules that cover only a few

examples by making sure that the number of bits that are needed to encode the current

clause is less than the number of bits needed to encode the instances covered by it.

1

� Signi�cance Testing was �rst used in the propositional CN2 induction algorithm (Clark

and Niblett 1989) and later on in the relational learner mFoil (D�zeroski and Bratko

1992). It tests for signi�cant di�erences between the distribution of positive and negative

1

The number of bits needed to encode the training instances is log

2

(n)+log

2

(

�

n

p

�

) where n is the number

of training instances and p positive instances are covered by the current clause. Literals can be encoded by

specifying the relation (log

2

(# relations) bits), the variables (log

2

(# variabilizations) bits) and whether it is

negated or not (1 bit). The sum of these terms for all literals has to be reduced by log

2

(n!) since the ordering

of these literals within the clause is in general irrelevant.

4

examples covered by a rule and the overall distribution of positive and negative examples

by comparing the likelihood ratio statistic

2

to a �

2

distribution with 1 degree of freedom

at the desired signi�cance level. Insigni�cant rules are rejected.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Cutoff

C
om

pl
ex

ity

Complexity

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Cutoff

A
cc

ur
ac

y

Accuracy

Figure 4: Accuracy and Complexity vs. Cuto�

� The Cuto� Stopping Criterion has been used in the separate-and-conquer learning sys-

tem Fossil (F�urnkranz 1994). Fossil uses a search heuristic based on statistical corre-

lation, which enables it to judge the relevance of all literals on the same uniform scale

from 0 to 1. Thus the user can require that conditions considered for clause construction

have a certain minimum correlation value | the cuto� parameter . This property can be

used as a simple, but robust criterion for �ltering out noise, as it can be expected that tu-

ples originating from noise in the data will only have a low correlation with predicates in

the background knowledge. Di�erent settings of the values will cause di�erent amounts

of pre-pruning. A setting of Cuto� = 0:0 results in learning a theory that is complete

and consistent for the current training set, because every literal has a correlation > 0:0.

On the other hand, at Cuto� = 1:0 in general an empty theory will be learned, because

only trivial learning problems have background literals with a correlation � 1:0.

Figure 4 shows a typical plot of accuracy and rule complexity vs. di�erent values of the

cuto� parameter for the commonly used KRK endgame classi�cation task with 10% noise

added

3

. The most accurate rules are found for cuto� values between approximately 0:25

and 0:35. Higher cuto� values result in over-general theories, while lower settings of the

cuto� obviously result in over�tting of the data. Thus Fossil's cuto� parameter may

be viewed as a means for directly controlling the Over�tting Avoidance Bias (Scha�er

2

LRS = 2� (p log

�

p

p+n

P

P+N

�

+ n log

�

n

p+n

N

P+N

�

)

3

A short description of the KRK domain along with the experimental setup can be found at the beginning

of section 7.1.

5

procedure PostPruning(Examples, SplitRatio)

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Theory = SeparateAndConquer(GrowingSet)

loop

NewTheory = PruneTheory(Theory,PruningSet)

if Accuracy(NewTheory,PruningSet) <

Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory

return(Theory)

Figure 5: A Post-Pruning algorithm

1993; Wolpert 1993). A setting of Cuto� = 0:3 is a good general heuristic which seems

to be independent of the noise level in the data (F�urnkranz 1994).

4 Post-Pruning

While pre-pruning approaches try to avoid over�tting during rule generation, post-pruning

approaches at �rst ignore the problem of over�tting the noise and learn a complete and con-

sistent concept description. The resulting theory is subsequently analyzed and (if necessary)

simpli�ed and generalized in order to increase its predictive accuracy on unseen data.

Post-pruning approaches have been commonly used in the decision tree learning algorithms

CART (Breiman, Friedman, Olshen, and Stone 1984), ID3 (Quinlan 1987) and ASSISTANT

(Niblett and Bratko 1986). An overview and comparison of various approaches can be found

in (Mingers 1989) and (Esposito, Malerba, and Semeraro 1993).

4.1 Reduced Error Pruning

The most common among these methods is Reduced Error Pruning (REP). This simple al-

gorithm has been adapted from decision tree learning (Quinlan 1987) to the separate-and-

conquer rule learning framework by (Pagallo and Haussler 1990) and (Brunk and Pazzani

1991). At the beginning the training data are split into two subsets: a growing set (usually

2/3) and a pruning set (1/3). In the �rst phase no attention is paid to the noise in the data

and a concept description that explains all of the positive and none of the negative examples

is learned from the growing set. The resulting theory is then simpli�ed by greedily deleting

conditions and rules from the theory until any further deletion would result in a decrease of

predictive accuracy as measured on the pruning set. A pseudo-code version of this algorithm

is shown in �gure 5.

The subroutine PruneTheory simpli�es the current theory by deleting conditions and

rules, usually one at a time. From the resulting set of theories it then selects the one with the

highest accuracy on the pruning set and continues to prune this theory. This is repeated until

the accuracy of the best pruned theory is below that of its predecessor. REP has been shown

to learn more accurate theories than the pre-pruning algorithm Foil in the KRK domain at

several levels of noise (Brunk and Pazzani 1991).

6

4.2 Problems with Reduced Error Pruning

Although REP is quite e�ective in raising predictive accuracy in noisy domains (Brunk and

Pazzani 1991), it has several shortcomings, which we will discuss in this section. In particular

we will suggest that post-pruning is incompatible with the separate-and-conquer learning

strategy.

E�ciency

In (Cohen 1993) it was shown that the worst-case time complexity of REP is as bad as
(n

4

)

on random data (n is the number of examples). The growing of the initial concept, on the

other hand, is only
(n

2

logn). Therefore in the long run the costs of pruning will by far

outweigh the costs of generating the initial concept description, which already are higher than

the costs of using a pre-pruning algorithm that entirely avoids over�tting.

Bottom-Up Hill-Climbing

REP employs a greedy hill-climbing strategy: Literals and clauses will be deleted from the

concept de�nition so that predictive accuracy on the pruning set is greedily maximized. When

each possible operator leads to a decrease in predictive accuracy, the search process stops at

this local maximum.

However, in noisy domains the theory that has been generated in the growing phase will

be much too speci�c (see �gure 4). REP will have to prune a signi�cant portion of this

theory and has ample opportunity to err on its way. Therefore we can also expect REP's

speci�c-to-general search not only to be slow, but also inaccurate on noisy data.

Separate-and-Conquer Strategy

Post-pruning algorithms originate from research in decision tree learning where usually the

well-known divide-and-conquer learning strategy is used. At each node the current training

set is divided into disjoint sets according to the outcome of the chosen test. After this, the

algorithm is recursively applied to each of these sets independently.

Although the separate-and-conquer approach shares many similarities with the divide-

and-conquer strategy, there is one important di�erence: Pruning of branches in a decision

tree will never a�ect the neighbouring branches, whereas pruning of literals of a rule will a�ect

all subsequent rules. Figure 6 (a) illustrates how post-pruning in decision tree learning works.

The right half of the initially grown tree covers the sets C and D of the training instances.

When the pruning algorithm decides to prune these two leaves, their ancestor node becomes a

leaf that now covers the examples C[D. The left branch of the decision tree is not inuenced

by this operation.

On the other hand, pruning a literal from a clause means that the clause is generalized,

i.e. it will cover more positive instances along with some negative instances. Consequently

those additional positive and negative instances should be removed from the training set so

that they cannot inuence the learning of subsequent clauses. In the example of �gure 6 (b)

the �rst of three rules is simpli�ed and now covers not only the examples its original version

has covered, but also all of the examples that the third rule has covered and several of the

examples that the second rule has covered. While the third rule could easily be removed by

a post-pruning algorithm, this is not necessarily the case. For example there is no guarantee

7

Pruning

Training
ExamplesA B C D A B C D

(a)

Pruning

Training
Examples

Training
Examples

A

B

C

C
AB1

B2

(b)

Figure 6: Post-Pruning in (a) Divide-and-Conquer and (b) Separate-and-Conquer learning

algorithms.

that the second rule or one of its pruned versions are good explanations for the remaining

set of examples B2, because B2 is a subset of the original set B and pruning operators can

only generalize the concept, i.e. increase the set of covered examples. It might well be that

a good explanation for B2 needs a totally di�erent set of literals than an explanation for its

superset B. Thus the learner may be lead down a garden path, because the unpruned clauses

at the beginning of the theory may change the evaluation of candidate literals for subsequent

clauses. A wrong choice of a literal cannot be undone by pruning.

4.3 The Grow Algorithm

To solve some of the problems of section 4.2, in particular e�ciency, a top-down post-pruning

algorithm based on a technique used in (Pagallo and Haussler 1990) has been proposed in

(Cohen 1993). Like REP, the Grow algorithm �rst �nds a theory that over�ts the data. But

instead of pruning the intermediate theory until any further deletion results in a decrease

in accuracy on the pruning set, in a �rst step the intermediate theory is augmented with

generalizations of all its clauses. In a second step, clauses from this expanded theory are

iteratively selected to form the �nal concept description until no further clause that improves

predictive accuracy on the pruning set can be found. The generalizations of the clauses of

8

the intermediate theory are formed by repeatedly deleting a �nal sequence of conditions from

the clause so that the error on the growing set goes up the least.

Thus Grow improves upon REP by replacing the bottom-up hill-climbing search of REP

with a a top-down approach. Instead of removing the most useless clause or literal from

the speci�c theory it adds the most promising generalization of a rule to an initially empty

theory. This results in a signi�cant gain in e�ciency, along with a slight gain in accuracy

as the experiments in (Cohen 1993) show. However, the asymptotic time complexity of the

Grow post-pruning method is still above the complexity of the initial rule growing phase as

has recently been shown in (Cameron-Jones 1994).

The explanation for the speedup that can be gained with the top-down strategy is that

it starts from the empty theory, which in many noisy domains is much closer to the �nal

theory than the over�tting theory. This can also been seen from �gure 4 when we look at the

complexities of the most speci�c theory (Cuto� = 0:0) and the complexities of the optimal

theories (Cuto� between 0.25 and 0.35).

Thus it is not surprising that Grow has been shown to outperform REP on a variety of

datasets (Cohen 1993). However, it still su�ers from the ine�ciency caused by the need of

generating an overly speci�c theory in a �rst pass.

5 Combining Pre- and Post-Pruning

In section 4 we have seen that the intermediate theory resulting from the initial over�tting

phase can be much more complex than the �nal theory. Post-pruning is very ine�cient in

this case, because most of the work performed in the learning phase has to be undone in the

pruning phase.

A natural solution to this problem would be to start the pruning phase with a simpler

theory. This idea has �rst been investigated in (Cohen 1993), where the e�cient post-pruning

algorithm Grow (see section 4.3) has been combined with some weak pre-pruning heuristics

that speed up the learning phase. The goal of pre-pruning in this context is not to entirely

prevent over�tting, but to reduce its amount. Thus a subsequent post-pruning phase has to

do less work and is less likely to go wrong.

However, there is always the danger that a prede�ned stopping criterion will over-generalize

the theory. In this section we will therefore discuss an alternative approach that searches for

an appropriate starting point for the post-pruning phase.

5.1 Top-Down Pruning

One advantage of Fossil's simple and e�cient cuto� stopping criterion (F�urnkranz 1994)

is its closeness to the search heuristic. Fossil needs to do a mere comparison between the

heuristic value of the best candidate literal and the cuto� value in order to decide whether to

add the candidate literal to the clause at hand or not. This property can be used to generate

all theories that could be learned by Fossil with any setting of the cuto� parameter (see

�gure 7).

The basic idea behind this algorithm is the following: Assume that Fossil is trying to

learn a theory with a cuto� of 1.0. Unless there is one literal in the background knowledge

that perfectly discriminates between positive and negative examples (which will only be the

case in trivial examples such as parent(A,B) :- child(B,A).), we will not �nd a literal

with a correlation of 1.0 and thus learn an empty theory.

9

procedure AllTheories(Examples)

Cuto� = 1:0

Theories = ;

while (Cuto� > 0:0) do

Theory = Fossil(Examples,Cuto�)

Cuto� = MaximumPrunedCorrelation(Theory)

Theories = Theories [Theory

return(Theories)

Figure 7: Algorithm to generate all theories learnable by Fossil

However, we can remember the literal that had the maximum correlation and use this

information in the following way: If we make another call to Fossil with the cuto� set

to exactly this maximum correlation value, at least one literal (the one that produced this

maximum correlation) will be added to the theory, typically followed by several other literals

that have a correlation value higher than the new cuto�. The result is a new theory, which

usually is a little more speci�c than its predecessor. Again the maximum correlation of the

literals that have been cut o� will be remembered. Obviously, for all values between the old

cuto� and the new maximum, the same theory would have been learned. Thus we can choose

this value as the cuto� for the next run. It can also be expected that the new theory will

be more speci�c than the previous one. This process is repeated until at a certain setting

of the Cuto� no further literal is pruned (MaximumPrunedCorrelation = 0:0) and thus

the most speci�c theory has been reached.

Figure 8 shows a complete series of theories generated by Fossil from 1000 noise-free

examples in the domain of distinguishing legal from illegal positions in a king-rook-king

(KRK) chess endgame. Any setting of the cuto� parameter would yield one of these six

theories (on the same training set). It can be seen that the theories are generated in a more

or less general to speci�c order (top-down). As simpler theories can be expected to be more

accurate in noisy domains, the best theories will be learned after a few iterations. Therefore

it may be possible to stop the generation of theories as soon as a reasonably good theory

has been found in order to avoid expensive learning of many overly-speci�c theories. This

may save a lot of work, as �gure 4 indicates. Besides, it is also possible to reuse parts of the

previous theory | up to the point where the highest cuto� has occurred | so that the total

cost of generating a complete series of concept descriptions may not be much higher than the

cost of generating merely the most speci�c theory (at least in cases where the cuto� occurs

near the end of the learned theory, which is frequently the case).

Based on the above ideas, we have conceived the algorithm shown in �gure 9. It uses

the basic algorithm of �gure 7 not to �nd the best theory, but | in order to avoid over-

generalization | tries to �nd the most speci�c among all reasonably good theories that can

be learned by Fossil and uses this theory as a starting point for Reduced Error Pruning . More

precisely it generates theories in a general-to-speci�c order, evaluates them on a designated

test set of the data (usually 1=3) and stops when the measured accuracy of one of the theories

falls below the measured accuracy of the best theory so far minus one Standard Error for

classi�cation

4

. The last theory within the 1-SE margin, which hopefully is a little too speci�c,

4

This is based on an idea in CART (Breiman, Friedman, Olshen, and Stone 1984), where the most general

10

C = 1.0

illegal(A,B,C,D,E,F) :- fail.

67.04 % correct (0 % positive, 100 % negative)

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not X < A.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- C = E, A < Y, not B < F.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not Z < A.

88.42 % correct (65.53 % positive, 99.67 % negative)

97.60 % correct (93.39 % positive, 99.67 % negative)
99.36 % correct (98.48 % positive, 99.79 % negative)

99.32 % correct (98.60 % positive, 99.67 % negative)

97.42 % correct (92.60 % positive, 99.79 % negative)

C = 0.5101

C = 0.4995

C = 0.3871

C = 0.3927

C = 0.3607

C = 0.0

Figure 8: Generating a series of theories in the KRK domain

11

procedure TDP(Examples, SplitRatio)

Cuto� = 1:0

BestTheory = ;

BestAccuracy= 0:0

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

repeat

NewTheory = Fossil(GrowingSet,Cuto�)

NewAccuracy = Accuracy(NewTheory,PruningSet)

if NewAccuracy > BestAccuracy

BestTheory = NewTheory

BestAccuracy= NewAccuracy

LowerBound = BestAccuracy � StandardError(BestAccuracy,PruningSet)

Cuto� = MaximumPrunedCorrelation(NewTheory)

until (NewAccuracy < LowerBound) or (Cuto� = 0:0)

loop

NewTheory = PruneTheory(Theory,PruningSet)

if Accuracy(NewTheory,PruningSet) < Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory

return(Theory)

Figure 9: Combining Pre- and Post-Pruning with Top-Down Pruning .

but not too general, will subsequently be generalized using Reduced Error Pruning . Because of

the initial general-to-speci�c search for a good theory, we have named the method Top-Down

Pruning (TDP).

If this algorithm succeeds in �nding a starting theory that is close to the �nal theory, we

can expect our algorithm to be faster than basic REP, because the initial search for a good

starting theory will

� speed up the growing phase, because the most expensive theories will not be generated,

5

� speed up the pruning phase, because pruning starts from a simpler theory and thus the

number of possible pruning operations is smaller.

In preliminary experiments it turned out that sometimes a cuto� happens at a point where

only a small fraction of the available positive examples are covered. Clearly such theories are

useless. Therefore we added the constraint that only theories that cover more than 50% of

the positive examples in the growing set will be evaluated on the pruning set. If a theory

does not ful�ll this criterion, it will be improved by adding more clauses. This is achieved by

lowering the cuto� to the value that would be needed to start a new clause.

6

pruned decision tree within one SE of the best will be selected. The standard classi�cation error can be

computed with SE =

q

p�(1�p)

N

where p is the probability of mis-classi�cation (estimated on the pruning set)

and N is the number of examples in the pruning set.

5

This argument, of course, only apply to noisy domains. In non-noisy domains the most speci�c theory will

in general be the most precise and thus our algorithm will be slower, because it has to generate all theories

down to a cuto� of 0.0.

6

Note that this method may yield a theory that is not learnable by the original Fossil as the value of the

cuto� parameter is changed during the generation of the theory.

12

5.2 Experimental Results

We compared Top-Down Pruning (TDP) to Reduced Error Pruning (REP) in terms of accu-

racy and run-time on the KRK endgame domain with 10% arti�cial noise added. The setup

of the experiments will be described in more detail at the beginning of section 7.1. Both algo-

rithms split the supplied data sets into the same growing (ca. 2=3) and pruning sets (ca. 1=3).

Both algorithms used Reduced Error Pruning as described in (Brunk and Pazzani 1991) for

their post-pruning phase. In order to exclude possible inuences from the underlying learning

algorithm, we ran REP using Fossil with Cuto� = 0:0 as its basic learning module.

7

Average Accuracy (10 runs) 100 250 500 750

REP Before Pruning 84.84 86.88 87.11 89.21

After Pruning 94.67 96.72 97.80 98.51

TDP Before Pruning 89.15 91.02 95.89 95.85

After Pruning 95.14 95.93 98.29 98.70

Table 1: Accuracy in the KRK domain with 10% noise.

Table 1 shows that TDP is not worse than REP in terms of predictive accuracy. REP

was only better at a training set size of 250, where TDP heavily over-pruned in one of the

10 cases: TDP started o� with a theory that was 98.42% correct, but unfortunately one of

the literals had no support in the pruning set and consequently was pruned, thus yielding a

theory with a mere 81:34%. This did not happen to REP because it got caught in a 91:36%

correct theory, and did not even get to the 98:42% theory. With increasing training set sizes

TDP seems to be slightly superior to REP, although the di�erences are probably too small

to be statistically signi�cant.

Comparing the accuracies of the intermediate theories shows that TDP starts with signi�-

cantly better theories than REP (see the �rst line of table 1). Obviously the top-down search

for better starting theories is successful. In particular at higher training set sizes, REP some-

times gets stuck in a local optimum and returns bad theories. However, we have seen above

that REP may pro�t from this in some rare cases. TDP is less likely to get stuck in a local

optimum during pruning because it starts with an initial theory that is already quite close to

the �nal theory. The problem of local optima with greedy hill-climbing is also not likely to

appear in TDP's top-down search for a starting theory, because (at least in this domain) the

intermediate theories usually appear after only a few iterations of TDP's top-level loop.

Comparing the run-times of REP and TDP (table 2), con�rms that TDP is signi�cantly

faster than REP. In fact it is even faster than REP's initial phase of over�tting alone. TDP

only has to �nd a few fairly general theories, while REP generates huge theories that �t all the

noisy examples. Expectedly, with increasing training set sizes, the costs of REP are dominated

by the pruning process. TDP on the other hand, even manages to decrease pruning time with

growing training set sizes (250 to 500). The signi�cant run-time increase from 500 to 750

examples is mainly due to one of the 10 sets, where a much too speci�c theory was learned

in 855.94 CPU secs. growing and 1399.35 CPU secs. pruning time. For the remaining 9 sets

the average run-time was 116.74 CPU secs. for growing and 12.88 CPU secs. for pruning.

7

The version of REP using Fossil did better than the version using Foil. In section 7.1 we show the results

obtained by using an implementation of Foil to generate the initial theory for REP.

13

Average Run-time (10 runs) 100 250 500 750

REP Growing 6.66 75.22 397.17 845.76

Pruning 2.93 91.46 1248.48 2922.66

Total 9.59 166.68 1645.65 3768.42

TDP Growing 7.23 51.37 80.17 190.66

Pruning 1.24 22.49 16.39 151.52

Total 8.47 73.86 96.56 342.18

Table 2: Run-time in the KRK domain with 10% noise.

These results con�rm that TDP exhibits a fast convergence towards good theories and

is faster than REP in both, learning and pruning. The starting theories learned by Fossil

become increasingly more accurate as the training set grows, which means that not only

learning will be faster, but also less and less pruning has to be done.

6 Integrating Pre- and Post-Pruning

The algorithm that we will present in this section was motivated by the observation that post-

pruning is incompatible with the separate-and-conquer learning strategy as we have discussed

in section 4.2. The problem we attempted to solve is that post-pruning approaches do not

take into account that pruning a clause will generalize it so that it eventually covers more

examples of the training set, which may inuence the evaluation of candidate literals for

subsequent clauses.

6.1 Incremental Reduced Error Pruning

The basic idea of Incremental Reduced Error Pruning (I-REP) is that instead of �rst growing

a complete concept description and pruning it thereafter, each individual clause will be pruned

right after it has been generated. This ensures that the algorithm can remove the training

examples that are covered by the pruned clause before subsequent clauses are learned. Thus

it can be avoided that these examples inuence the learning of the following clauses.

Figure 10 shows a pseudo-code version of the algorithm. As usual the current set of train-

ing examples is split into a growing (usually 2/3) and a pruning set (usually 1/3). However,

not an entire theory, but only one clause is learned from the growing set. Then literals are

deleted from this clause in a greedy fashion until any further deletion would decrease the ac-

curacy of this clause on the pruning set. The resulting rule is added to the concept description

and all covered positive and negative examples are removed from the training | growing and

pruning | set. The remaining training instances are then redistributed into a new growing

and a new pruning set to ensure that each of the two sets contains the prede�ned percentage

of the remaining examples. From these sets the next clause is learned. When the predictive

accuracy of the pruned clause is below the predictive accuracy of the empty clause (i.e. the

clause with the body fail), the clause is not added to the concept description and I-REP

returns the learned clauses. Thus the accuracy of the pruned clauses on the pruning set also

serves as a stopping criterion. Post-pruning methods are used as pre-pruning heuristics.

14

procedure I-REP (Examples, SplitRatio)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Cover = GrowingSet

while Negative(Cover) 6= ;

Clause = Clause [FindLiteral(Clause;Cover)

Cover = Cover(Clause,Cover)

loop

NewClause = SimplifyClause(Clause,PruningSet)

if Accuracy(NewClause,PruningSet) < Accuracy(Clause,PruningSet)

exit loop

Clause = NewClause

if Accuracy(Clause,PruningSet) � Accuracy(fail,PruningSet)

exit while

Examples = Examples � Cover

Theory = Theory [Clause

return(Theory)

Figure 10: Integrating Pre- and Post Pruning with Incremental Reduced Error Pruning

As this algorithm does not prune on the entire set of clauses, but prunes each one of them

successively, we have named it Incremental Reduced Error Pruning (I-REP). We can expect

I-REP to improve upon post-pruning algorithms, because it is aimed at solving the problems

we discussed in section 4.2:

E�ciency: I-REP's asymptotic complexity is of the order
(n log

2

n), n being the size of

the training set. This is signi�cantly lower than the complexity of growing an over�tting

theory which has been shown to be
(n

2

logn) under the same assumptions (Cohen

1993). As in REP, growing one clause from purely random data costs n logn (each of

the approximately log(n) literals has to be tested against n examples). I-REP considers

every literal in the clause for pruning, i.e. each of the log n literals has to be evaluated

on n examples until the �nal clause has been found, i.e. at most log n times. Thus the

costs of pruning one clause are n log

2

n. Assuming that the size of the �nal theory is

constant, the overall costs are also
(n log

2

n).

Bottom-Up Hill-Climbing: Similarly to Grow, I-REP uses a top-down approach instead

of REP's bottom-up search: Final programs are not found by removing unnecessary

clauses and literals from an overly speci�c theory, but by repeatedly adding clauses to

an initially empty theory. However, Grow still has to generate an intermediate, overly

speci�c concept description, while I-REP directly constructs the �nal theory.

Separate-and-Conquer Strategy: I-REP learns the clauses in the order in which they

will be used by a PROLOG interpreter. Before subsequent rules will be learned, each

clause is completed (learned and pruned) and all covered examples are removed. For

this reason this problem of the incompatibility of the learning strategy with the pruning

strategy cannot appear in I-REP.

15

6.2 Experimental Results

Table 3 shows a comparison of the run-times of post-pruning algorithms and I-REP in the

KRK domain with 10% arti�cial noise added. All algorithms used Foil's information gain

criterion as a search heuristic. The column Initial Rule Growth refers to the initial growing

phase that REP and Grow have in common, while the columns REP and Grow give the

results for the pruning phases only. The total run-time of REP (Grow) is the run-time of

Initial Rule Growth plus the run-time of REP (Grow). In I-REP both phases are tightly

integrated so that only the total value of the run-time can be given.

Domain

Initial

Rule Growth REP Grow I-REP

KRK-100 (10%) 8.36 2.44 1.66 4.20

KRK-250 (10%) 91.31 104.98 19.81 17.30

KRK-500 (10%) 456.56 1578.16 100.81 46.32

KRK-750 (10%) 1142.78 7308.84 361.41 83.64

KRK-1000 (10%) 2129.89 23125.34 806.89 115.35

Table 3: Average Run-Time

It is obvious that I-REP is signi�cantly faster than the post-pruning algorithms. In fact, it

is always faster than REP's and Grow's initial growing phase alone, because I-REP avoids to

learn an intermediate over�tting theory. It can also be seen that Grow's pruning algorithm

is much faster than REP's, which con�rms the results of (Cohen 1993).

In order to get an idea on the asymptotic complexity of the various algorithms we have

performed a log-log analysis as in (Cameron-Jones 1994). We estimate the asymptotic com-

plexity by dividing the di�erences between the logarithms of two run-times by the di�erences

of the logarithms of the corresponding training set sizes and thus estimating the slope of a

log-log-plot. We have tabulated the slopes for adjacent training set sizes in table 4.

Domain

Initial

Rule Growth REP Grow I-REP

100-250 2.61 4.11 2.71 1.54

250-500 2.32 3.91 2.35 1.42

500-750 2.26 3.78 3.15 1.46

750-1000 2.16 4.00 2.79 1.12

Table 4: Log-log analysis of the run-times on noisy KRK data.

In fact, the table suggests that I-REP has a sub-quadratic time complexity. This is

consistent with our conjecture that I-REP's time complexity is
(n log

2

n). In general the

results we get are consistent with the analysis performed in (Cameron-Jones 1994) for random

data, which is not surprising when we view the noise-level as the degree of randomness in the

data. In particular the evidence supports that result that REP has a complexity of
(n

4

)

and that the initial rule growing phase is O(n

2

logn) as shown in (Cohen 1993). It also

16

con�rms the main result of (Cameron-Jones 1994), namely that the asymptotic complexity of

Grow is not below the asymptotic complexity of the initial rule growing phase as has been

originally suggested in (Cohen 1993). However, in all our experiments the absolute values

for the run-time of Grow's pruning phase were negligible compared to the initial over-�tting

phase.

REP often gets caught in local maxima and is not able to generalize to the right level.

Interestingly we have observed that, despite its top-down search strategy, Grow also oc-

casionally over�ts the noise in the data, a phenomenon that has also been predicted in

(Cameron-Jones 1994). I-REP, on the other hand, will stop generating clauses whenever

it has found a clause that has no support in the pruning set. Therefore I-REP can be ex-

pected to have very fast run-times on purely random data (where REP and Grow are most

expensive), because there is a high chance that the �rst clause will not �t any of the examples

in the pruning set. This will stop the algorithm immediately without accepting a single clause

and thus e�ectively avoid over�tting.

Domain

Initial

Rule Growth REP Grow I-REP

KRK-100 (10%) 85.29 91.77 91.60 84.55

KRK-250 (10%) 83.79 96.29 95.91 98.34

KRK-500 (10%) 84.29 97.62 98.17 98.48

KRK-750 (10%) 85.17 97.47 98.31 98.86

KRK-1000 (10%) 85.65 98.01 98.30 99.55

Table 5: Average Accuracy

In terms of accuracy (table 5) I-REP also is superior to the post-pruning algorithms,

although it seems to be more sensitive to small training set sizes. The reason for this is that

a bad distribution of growing and pruning examples may cause I-REP's stopping criterion

to prematurely stop learning. Redistributing the examples into new growing and pruning

sets before learning a new clause cannot help here, as there is little redundancy in the data

because of the small sample size. However, at larger example set sizes I-REP outperforms

the other algorithms.

7 Experimental Evaluation

We have tested the algorithms presented in this paper in a variety of domains. All algorithms

were implemented in SICStus PROLOG and had major parts of their implementations in

common. In particular they shared the same interface to the data and used the same pro-

cedures for splitting the training sets. Mode, type and symmetry information about the

background relations was used to restrict the search space wherever applicable. Information

gain was used as a search heuristic for REP, Grow and I-REP, and Fossil's correlation

heuristic was used in Fossil and TDP. Run-times were measured in CPU seconds for SUN

SPARCstations ELC.

17

7.1 Summary of the Experiments in the KRK Domain

First we will summarize the experiments in the domain of recognizing illegal chess positions

in the KRK endgame (Muggleton, Bain, Hayes-Michie, and Michie 1989). This domain has

become a standard benchmark problem for relational learning systems, as it cannot be solved

in a trivial way by propositional learning algorithms, because the background knowledge has

to contain relations like X = Y, X < Y, and adjacent(X,Y).

The signs of 10% of the training instances were deliberately reversed to generate arti�cial

noise in the data. The learned concepts were evaluated on test sets with 5000 noise-free ex-

amples. We used the state-of-the-art relational learner Foil(Quinlan 1990) as a benchmark.

8

Foil 6.1, which is implemented in C, was used with its default settings except that the -V 0

option was set to avoid the introduction of new variables, which is not necessary for this task.

All the other algorithms had their argument modes declared as input, which has the same

e�ect. to prevent recursion. All algorithms were trained on identical sets of sizes from 100 to

1000 examples. All reported results were averaged over 10 runs, except for the training set

size 1000, where only 6 runs were performed, because of the complexity of this task for some

algorithms.

Figure 11 shows curves for accuracy and run-times over 5 di�erent training set sizes.

I-REP | after a bad start with only 84.55% accuracy on 100 examples | achieves the highest

accuracy. In predictive accuracy, Foil did poorly. Its stopping criterion (encoding length)

is dependent on the training set size and thus too weak to e�ectively prevent over�tting

the noise. From 1000 examples Foil learns concepts that have more than 20 rules and

are incomprehensible (F�urnkranz 1994). I-REP, on the other hand, consistently produces

a 99.57% correct, understandable 4-rule approximation of the correct concept description.

This theory correctly identi�es all illegal positions, except the ones where the white king is

between the black king and the white rook and thus blocks a check that would make the

position illegal, because white is to move. The post-pruning approaches REP and Grow are

about equal, and TDP does not lose accuracy compared to them. All three, however, only

rarely �nd the 4th rule that speci�es that the white king and the white rook must not be on

the same square. It can also be seen that the pre-pruning approach taken by Fossil needs

many examples in order to make its heuristic pruning decisions more reliable.

Fossil, on the other hand, is the fastest algorithm. Foil, although implemented in C,

is slower, because with increasing training set sizes it learns more clauses than Fossil (see

also (F�urnkranz 1994)). REP proves that its pruning method is very ine�cient. Grow has

an e�cient pruning algorithm, but still su�ers from the expensive over�tting phase. TDP

is faster than REP and Grow, because it is able to start post-pruning with a much better

theory than REP or Grow. I-REP, however, learns a much better theory and is faster than

both the growing and the pruning phase of TDP.

In fact, I-REP, where post-pruning is integrated into a pre-pruning criterion, is only a little

slower than Fossil, but much more accurate. Thus it can be said that it truly combines the

merits of post-pruning (accuracy) and pre-pruning (e�ciency). This becomes also apparent

in �gure 12, where accuracy (with the standard deviations observed in the di�erent runs) is

plotted against the logarithm of the run-time.

8

The current version of Foil is available by anonymous ftp from ftp.cs.su.oz.au or 129.78.8.1 �le name

pub/foilN.sh for some integer N. The experiments were performed with version 6.1.

18

90

92

94

96

98

100

100 200 300 400 500 600 700 800 900 1000

A
c
c
u
r
a
c
y

Training Set Size

KRK(10%): Accuracy vs. Training Set Size

I-REP
REP
Grow
TDP

FOSSIL
FOIL 6.1

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

R
u
n

T
i
m
e

(
C
P
U

s
e
c
s
.
)

Training Set Size

KRK(10%): Run-time vs. Training Set Size

I-REP
REP
Grow
TDP

FOSSIL
FOIL 6.1

Figure 11: KRK domain (10% noise), di�erent training set sizes

19

93

94

95

96

97

98

99

100

10 100 1000 10000 100000

A
c
c
u
r
a
c
y

Run-time (CPU secs.)

KRK(10%): Accuracy vs. Log(Runtime)

I-REP
REP
Grow
TDP

FOSSIL
FOIL 6.1

Figure 12: KRK domain (10% noise), 1000 examples

7.2 The Mesh Domain

We have also tested our algorithms on the �nite element mesh design problem �rst studied

and described in detail in (Dol�sak and Muggleton 1992). The problem of mesh design is

to break complex objects into a number of �nite elements in order to be able to compute

pressure and deformations when a force is applied to the object. The basic problem during

manual mesh design is the selection of an optimal number of �nite elements on the edges of the

structure. Several authors have tried ILP methods on this problem (Dol�sak and Muggleton

1992; D�zeroski and Bratko 1992; Quinlan 1994). The available background knowledge consists

of an attribute-based description of the edges and of topological relations between the edges.

The setup of our experiments was the same as in (Quinlan 1994), i.e. we learned rules from

four of the �ve objects in the data set and tested the learned concept on the �fth object. The

learned theories were tested as in (Quinlan 1994), which is a little di�erent from the setup

used in (D�zeroski and Bratko 1992): Instead of actually predicting a value for the number of

�nite elements on an edge, we merely checked for all possible values whether this value could

be derived from the learned rules or not. The basic di�erence is that we tested on ground

instances, whereas (D�zeroski and Bratko 1992) tested the target predicate with an unbound

value for the number of �nite elements for positive examples. In our setting we also had to

test the learned theories on negative examples to make sure that they are not over-general.

In table 6 two numbers are given for each of the �ve sets: the �rst number is the accuracy

on the positive examples only, while the second number shows the accuracy when testing on

the negative examples as well. The given run-times are the total run-times (learning and

pruning).

I-REP again is clearly faster than all post-pruning algorithms without losing predictive

accuracy. TDP �nds a more accurate starting theory than REP in a shorter time span.

Consequently, its pruning time is much shorter than REP's and the learned theory is a little

more accurate. However, TDP is not faster than Grow, although it starts the pruning phase

20

Algorithm Accuracy Only + Run-time

Fossil 90.97 0.00 15.99

Initial Theory (REP & Grow) 87.42 31.47 6355.69

REP 88.74 26.86 28263.80

Grow 89.27 23.75 9880.32

Initial Theory (TDP) 88.99 28.89 3762.94

TDP 89.12 23.89 10111.27

I-REP 90.14 12.81 471.25

Table 6: Experiments in the mesh domain

with a simpler theory. The reason for this is that our implementation of TDP uses REP to

prune the theory that results from the initial search for a good starting theory. It might be

worthwhile to further improve TDP by using the Grow algorithm for its post-pruning phase.

But this also indicates that in this domain TDP's initial top-down search was not as e�ective

as in the KRK domain, because more work was left for the post-pruning phase.

The only algorithm faster and more accurate than I-REP is Fossil with a cuto� of 0.3.

However, Fossil couldn't discover any signi�cant regularities in the data and thus consistently

learned empty theories (all literals in the background knowledge had a correlation below 0.3).

Nevertheless it is still the best algorithm in terms of accuracy which shows how poorly all

algorithms do in this domain. We hope to be able to improve our results in this domain by

trying the faster algorithms on the new data set (Dol�sak, Bratko, and Jezernik 1994) which

contains a total of 10 objects (and thus hopefully provides more redundancy). However, for

this comparative study the new data set was too big.

An interesting phenomenon is that although pruning literals generalizes the clauses so that

more positive examples will be covered, the pruned theories as a whole cover fewer positive

examples. Obviously for many learned rules generalization did not improve accuracy as much

as removing the entire rule did. Therefore the overall accuracy of the theory was primarily

optimized by deleting many rules that cover a few positive examples, but also an equal or

greater number of negative examples. This can also be taken as evidence that most regularities

detected by the basic separate-and-conquer induction module were not very reliable.

7.3 Propositional Data Sets

We have also experimented with data sets from the UCI repository of Machine Learning

databases that have previously been used to compare propositional learning algorithms. The

appendix of (Holte 1993) gives a summary of the results achieved by various algorithms on

some of the most commonly used data sets of the UCI repository and a short description

of these sets. We selected 9 of them for our experiments. The remaining sets were not

used because either the description of the data sets was unclear or they had more than two

classes, which could not be handled by the implementation of the learning algorithms. In

the Lymphography data set we removed the 6 examples for the classes \normal �nd" and

\�brosis" in order to get a 2-class problem. All other data were used as described in (Holte

1993). For all data sets the task was to learn a de�nition for the minority class.

In all datasets the background knowledge consisted of < and = relations with one variable

21

Breast Cancer Accuracy Stnd. Dev. Range Time

C4.5 71.96 4.36 | |

Fossil 73.33 4.56 17.66 19.68

No Pruning 65.39 4.21 13.27 169.70

REP 69.97 3.80 12.16 257.29

Grow 68.46 4.72 15.39 183.67

No Pruning (TDP) 67.98 5.56 20.62 154.05

TDP 71.74 3.79 12.43 173.31

I-REP 70.89 5.23 19.58 28.97

Hepatitis Accuracy Stnd. Dev. Range Time

C4.5 81.23 5.12 | |

Fossil 76.07 5.77 23.43 217.40

No Pruning 73.66 4.99 17.12 101.66

REP 76.96 3.93 10.80 102.28

Grow 76.45 4.24 11.14 102.39

No Pruning (TDP) 76.33 3.40 10.92 115.41

TDP 79.42 3.88 11.87 116.24

I-REP 78.66 2.80 7.34 60.40

Sick Euthyroid Accuracy Stnd. Dev. Range Time

C4.5 97.69 0.40 | |

Fossil 97.58 0.40 1.35 891.40

No Pruning 96.25 0.51 1.70 4554.65

REP 97.55 0.32 1.06 5040.23

Grow 97.52 0.47 1.64 4635.26

No Pruning (TDP) 97.37 0.51 1.78 2965.51

TDP 97.49 0.43 1.21 3010.97

I-REP 97.48 0.50 1.70 970.70

Table 7: Results in the Breast Cancer, Hepatitis, and Sick Euthyroid domains.

and one constant argument. Wherever appropriate, comparisons between two di�erent vari-

ables of the same data type were allowed as well. In all experiments the value of Fossil's

cuto� parameter was set to 0:3. Run-times for all datasets were measured in CPU seconds for

SUN SPARCstations ELC except for the Mushroom and KRKPa7 datasets which are quite

big and thus had to be run on a considerably faster SPARCstation S10. All experiments

followed the setup used in (Holte 1993), i.e. the algorithms were trained on 2=3 of the data

and tested on the remaining 1=3. However, only 10 runs were performed for each algorithm

on each data set.

The results can be found in tables 7, 8, and 9. Each line shows the average accuracy

on the 10 sets, its standard deviation and range (di�erence between the maximum and the

minimum accuracy encountered), and the run-time of the algorithm. The results of C4.5, a

decision tree learning system with extensive noise-handling capabilities (Quinlan 1993), are

taken from the experiments performed in (Holte 1993) and are meant as an indicator of the

performance of state-of-the-art decision tree learning algorithms on these data sets.

A short look shows that the results vary in terms of accuracy, but are quite consistent in

22

Glass (G2) Accuracy Stnd. Dev. Range Time

C4.5 74.26 6.61 | |

Fossil 77.32 4.79 15.96 216.42

No Pruning 75.24 5.26 18.15 91.89

REP 77.76 4.31 14.73 93.31

Grow 75.63 4.69 16.97 93.11

No Pruning (TDP) 77.23 4.01 12.64 85.56

TDP 75.90 6.18 20.51 87.39

I-REP 76.31 4.89 15.95 63.01

Votes Accuracy Stnd. Dev. Range Time

C4.5 95.57 1.31 | |

Fossil 95.35 1.17 3.34 105.22

No Pruning 94.69 1.89 6.55 50.45

REP 95.84 1.39 3.92 57.41

Grow 95.63 1.36 3.92 53.84

No Pruning (TDP) 95.33 1.22 4.48 60.88

TDP 95.22 1.54 4.49 62.17

I-REP 94.75 1.75 6.95 22.43

Votes (VI) Accuracy Stnd. Dev. Range Time

C4.5 89.36 2.45 | |

Fossil 89.07 2.64 8.13 88.94

No Pruning 86.46 2.01 7.36 124.47

REP 86.72 3.46 10.78 163.26

Grow 87.49 3.35 10.93 137.49

No Pruning (TDP) 87.57 1.36 4.29 105.67

TDP 85.85 2.62 9.21 113.05

I-REP 87.25 3.27 10.75 38.78

Table 8: Results in the Glass and Votes domains.

run-times: I-REP is the fastest algorithm in 6 of the 9 test problems, while it is second-best

in 2 of the remaining 3. The tables also con�rm that Grow is usually faster than REP.

TDP's results are not consistent, but it is faster than REP and Grow in some cases, which

indicates that its initial top-down search for a good starting theory does not over�t the data

as much as the initial rule growing phase of REP and Grow does. Fossil's run-times are

very unstable. It is the fastest algorithm on some datasets, but by far the slowest on other

data sets.

Most di�erences in accuracies are not statistically signi�cant.

9

Signi�cant di�erences

can be found in the KRKPa7 chess endgame domain, where TDP and Fossil performed

signi�cantly (1%) worse than all other algorithms. Fossil was signi�cantly (5%) better than

TDP in the Votes (VI) domain and outperformed (5%, sometimes 1%) all other algorithms

9

We have used a range test which can be used to quickly determine signi�cant di�erences between medium

values for small (N < 20) sample sizes (Mittenecker 1977). For N = 10 the value of L =

�

1

��

2

R

1

+R

2

has to be

> 0:152 for a signi�cance level of 5% and > 0:210 for a signi�cance level of 1%. (�

i

are medium values and R

i

are ranges. Both can be found in tables 7 { 9.)

23

KRKPa7 Accuracy Stnd. Dev. Range Time

C4.5 99.19 0.27 | |

Fossil 95.17 2.66 8.63 2383.61

No Pruning 97.92 0.58 1.85 4063.80

REP 97.84 0.54 2.01 4243.08

Grow 97.48 0.41 1.06 4219.00

No Pruning (TDP) 96.26 1.85 4.74 2368.28

TDP 96.41 1.87 4.74 2376.28

I-REP 97.74 0.36 1.32 1785.50

Lymphography (2 classes) Accuracy Stnd. Dev. Range Time

C4.5 (on all 4 classes) 77.52 4.46 | |

Fossil 87.22 4.39 17.23 20.79

No Pruning 83.25 4.79 16.03 17.05

REP 81.85 4.86 16.83 18.81

Grow 82.10 5.28 17.53 18.42

No Pruning (TDP) 83.73 5.50 17.53 18.66

TDP 81.86 4.39 12.39 20.27

I-REP 79.17 4.42 15.30 10.14

Mushroom Accuracy Stnd. Dev. Range Time

C4.5 100.00 0.00 | |

Fossil 99.96 0.03 0.11 3538.19

No Pruning 100.00 0.01 0.04 1878.51

REP 99.97 0.05 0.15 1931.75

Grow 99.57 0.66 1.56 2088.81

No Pruning (TDP) 100.00 0.01 0.04 4595.23

TDP 99.97 0.05 0.15 4656.31

I-REP 99.97 0.04 0.11 2493.77

Table 9: Results in the Chess (KRKPa7), Lymphography, and Mushroom domains.

in the Lymphography domain. In general C4.5 seems to be a little superior to the other

algorithms (one cannot count the results on Lymphography where the rule learning algorithms

had a presumably easier 2-class task.). However, the rule learning algorithms seem to be

competitive.

To allow a more structured analysis we have grouped the 9 domains into 3 subclasses:

Table 7 contains all domains where over�tting seems to be harmful, i.e. where REP's post-

pruning phase signi�cantly (at least 5%) improves upon the concepts learned by the initial

over�tting phase.

10

Table 8 contains domains where pruning does not make a signi�cant

di�erence and �nally table 9 contains all domains where pruning cannot be recommended

as exempli�ed by the Mushroom data, where the over�tting phases learned 100% correct

concept descriptions that were signi�cantly better (5%) than those learned by all pruning

10

It might be (justi�ably) argued here that we should have used a separate run with no pruning on all of

the data for a comparison. Our main purpose, however, was to compare di�erent pruning approaches and not

evaluate the merits of pruning by itself. The results for the initial over�tting phases of REP, Grow and TDP

may nevertheless be an indicator for the latter (and they come at no additional cost).

24

algorithms. The Mushroom and KRKPa7 domains are known to be free of noise, while the

medical domains of table 7 are noisy. Therefore we assume that our grouping of the domain

corresponds to the amount of noise contained in the data.

8 Conclusion

In this paper we have discussed di�erent pruning techniques for separate-and-conquer rule

learning algorithms. Conventional pre-pruning methods are very e�cient, but not always

as accurate as post-pruning methods. The latter, however, tend to be very expensive, be-

cause they have to learn an over-specialized theory �rst. In addition to their ine�ciency we

have pointed out a fundamental incompatibility of post-pruning methods with separate-and-

conquer rule learning systems. As a solution we have investigated two methods for combining

and integrating pre- and post-pruning algorithms.

TDP performs an initial top-down search through the hypothesis space to �nd a theory

that is over�tting the training data, but is still fairly general. This theory is then used as a

starting theory for a subsequent post-pruning phase that tries to generalize this theory to an

appropriate level. A systematic algorithm for varying the cuto� parameter of the pre-pruning

algorithm Fossil provides an e�cient way of generating theories in a general-to-speci�c order

so that a good starting theory can often be found in considerably less time than would be

needed for generating the most speci�c theory that �ts all of the training examples. Of course,

the pruning phase for the simpler theory is also shorter than the pruning phase for the most

speci�c theory.

I-REP integrates pre- and post-pruning into one algorithm. Instead of post-pruning entire

theories, each rule is pruned after right after it has been learned. Our experiments show that

this approach e�ectively combines the e�ciency of pre-pruning with the accuracy of post-

pruning in domains with high redundancy. As real-world databases typically are large and

noisy, and thus require learning algorithms that are both e�cient and noise-tolerant, I-REP

seems to be an appropriate choice for this purpose.

I-REP and TDP were deliberately designed to closely resemble the basic post-pruning

algorithm, REP. For instance we have already pointed out that TDP can be further improved

by using Grow instead of REP in TDP's post-pruning phase. In the case of I-REP we have

chosen accuracy on the pruning set as the basic pruning and stopping criterion, in order to get

a fair comparison to REP and to concentrate on the methodological di�erences between post-

pruning and I-REP's e�cient integration of pre- and post-pruning. An important advantage

of post-pruning methods is that the way of evaluating theories (or rules in I-REP's case) is

entirely independent from the basic learning algorithm. Other pruning and stopping criteria

can further improve the performance and eliminate weaknesses. For instance, it has been

pointed out in (Cohen 1995) that accuracy estimates for low-coverage rules will have a high

variance and therefore I-REP is likely to stop prematurely and to over-generalize in domains

that are susceptible to the Small Disjuncts Problem (Holte, Acker, and Porter 1989). (Cohen

1995) also points out some de�ciencies of the accuracy-based pruning criterion and shows how

a stopping criterion based on description length and a better pruning criterion can signi�cantly

improve I-REP's accuracy without a loss in e�ciency.

Another way for improving I-REP has been tried in (F�urnkranz 1995). Just as I-REP

tries to improve upon REP by pruning at the rule level instead of the theory level, we have

investigated a way of taking this further and tried to improve upon I-REP with an algorithm

25

that prunes at the literal level. The resulting algorithm | I

2

-REP | seemed to be a little

more stable at low training set sizes, but no signi�cant di�erences in run-time could be

observed (F�urnkranz 1995). Besides, I

2

-REP appeared to be a little slower than I-REP,

although asymptotically both algorithms are clearly subquadratic.

Currently we are investigating the merits of avoiding the loss of information that is caused

by the need of splitting the training set into separate growing and pruning sets. In particu-

lar techniques based on the well-known Minimal Description Length principle could provide

valuable alternatives.

Acknowledgments

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen For-

schung (FWF) under grant number P10489-MAT. Financial support for the Austrian Re-

search Institute for Arti�cial Intelligence is provided by the Austrian Federal Ministry of

Science and Research. I would like to thank Gerhard Widmer for patiently reading and

improving numerous versions of this paper.

References

Breiman, L., J. Friedman, R. Olshen, & C. Stone (1984). Classi�cation and Regres-

sion Trees. Paci�c Grove, CA: Wadsworth & Brooks.

Brunk, C. A. & M. J. Pazzani (1991). An investigation of noise-tolerant relational con-

cept learning algorithms. In Proceedings of the 8th International Workshop on Machine

Learning, Evanston, Illinois, pp. 389{393.

Cameron-Jones, R. (1994, May). The complexity of Cohen's grow method. Unpublished

draft for comments.

Clark, P. & R. Boswell (1991). Rule induction with CN2: Some recent improvements.

In Proceedings of the 5th European Working Session of Learning, Porto, Portugal, pp.

151{163.

Clark, P. & T. Niblett (1989). The CN2 induction algorithm. Machine Learning 3 (4),

261{283.

Cohen, W. W. (1993). E�cient pruning methods for separate-and-conquer rule learning

systems. In Proceedings of the 13th International Joint Conference on Arti�cial Intelli-

gence, Chambery, France, pp. 988{994.

Cohen, W. W. (1995). Fast e�ective rule induction. In Proceedings of the 12th Interna-

tional Conference on Machine Learning.

Dol

�

sak, B., I. Bratko, & A. Jezernik (1994). Finite element mesh design: An engi-

neering domain for ILP application. In Proceedings of the 4th International Workshop

on Inductive Logic Programming, Number 237 in GMD-Studien, Bad Honnef, Germany,

pp. 305{320.

Dol

�

sak, B. & S. Muggleton (1992). The application of Inductive Logic Programming

to �nite-element mesh design. In S. Muggleton (Ed.), Inductive Logic Programming, pp.

453{472. London: Academic Press Ltd.

26

D

�

zeroski, S. & I. Bratko (1992). Handling noise in Inductive Logic Programming. In

Proceedings of the International Workshop on Inductive Logic Programming, Tokyo,

Japan.

Esposito, F., D. Malerba, & G. Semeraro (1993). Decision tree pruning as a search

in the state space. In Proceedings of the European Conference on Machine Learning,

Vienna, Austria, pp. 165{184. Springer-Verlag.

F

�

urnkranz, J. (1994). Fossil: A robust relational learner. In Machine Learning: ECML-

94, pp. 122{137. Springer-Verlag.

F

�

urnkranz, J. (1994). Top-down pruning in relational learning. In Proceedings of the

11th European Conference on Arti�cial Intelligence, Amsterdam, The Netherlands, pp.

453{457.

F

�

urnkranz, J. (1995). A tight integration of pruning and learning. Technical Report

OEFAI-TR-95-03, Austrian Research Institute for Arti�cial Intelligence.

F

�

urnkranz, J. (1995). A tight integration of pruning and learning (extended abstract).

In N. Lavra�c and S. Wrobel (Eds.), Machine Learning: ECML-95, Lecture Notes in

Arti�cial Intelligence 912, pp. 291{294. Springer Verlag.

F

�

urnkranz, J. & G. Widmer (1994). Incremental Reduced Error Pruning. In Proceedings

of the 11th International Conference on Machine Learning, New Brunswick, NJ, pp. 70{

77.

Holte, R., L. Acker, & B. Porter (1989). Concept learning and the problem of

small disjuncts. In Proceedings of the 11th International Joint Conference on Arti�cial

Intelligence, Detroit, MI.

Holte, R. C. (1993). Very simple classi�cation rules perform well on most commonly used

datasets. Machine Learning 11, 63{91.

Michalski, R. S. (1980). Pattern recognition and rule-guided inference. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 2, 349{361.

Michalski, R. S., I. Mozeti

�

c, J. Hong, & N. Lavra

�

c (1986). The multi-purpose

incremental learning system AQ15 and its testing application to three medical domains.

In Proceedings of the 5th National Conference on Arti�cial Intelligence, Philadelphia,

PA, pp. 1041{1045.

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induc-

tion. Machine Learning 4, 227{243.

Mittenecker, E. (1977). Planung und statistische Auswertung von Experimenten (8th

ed.). Vienna, Austria: Verlag Franz Deuticke. In German.

Muggleton, S., M. Bain, J. Hayes-Michie, & D. Michie (1989). An experimen-

tal comparison of human and machine learning formalisms. In Proceedings of the 6th

International Workshop on Machine Learning, pp. 113{118.

Niblett, T. & I. Bratko (1986). Learning decision rules in noisy domains. In Proceedings

of Expert Systems 86. Cambridge University Press.

Pagallo, G. & D. Haussler (1990). Boolean feature discovery in empirical learning.

Machine Learning 5, 71{99.

Quinlan, J. R. (1983). Learning e�cient classi�cation procedures and their application

to chess end games. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.),

Machine Learning. An Arti�cial Intelligence Approach, pp. 463{482. Tioga Publishing

Co.

27

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine

Studies 27, 221{234.

Quinlan, J. R. (1990). Learning logical de�nitions from relations. Machine Learning 5,

239{266.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan

Kaufmann.

Quinlan, J. R. (1994). The minimum description length principle and categorical the-

ories. In Proceeding of the 11th International Conference on Machine Learning, New

Brunswick, NJ, pp. 233{241.

Rissanen, J. (1978). Modeling by shortest data description. Automatica 14, 465{471.

Schaffer, C. (1993). Over�tting avoidance as bias. Machine Learning 10, 153{178.

Wolpert, D. H. (1993). On over�tting avoidance as bias. Technical Report SFI TR 92-

03-5001, The Santa Fe Institute, Santa Fe, NM.

28

