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Abstract

Real-time systems for monitoring and therapy planning, which receive their data

from on-line monitoring equipment and computer-based patient records, require re-

liable data. Data validation has to utilize and combine a set of fast methods to

detect, eliminate, and repair faulty data, which may lead to life-threatening conclu-

sions. The strength of data validation results from the combination of numerical and

knowledge-based methods applied to both continuously-assessed high-frequency data

and discontinuously-assessed data.

Dealing with high-frequency data, examining single measurements is not su�cient.

It is essential to take into account the behavior of parameters over time. We present

time-point-, time-interval-, and trend-based methods for validation and repair. These

are complemented by time-independent methods for determining an overall reliability

of measurements. The data validation bene�ts from the temporal data-abstraction

process, which provides automatically derived qualitative values and patterns. The

temporal abstraction is oriented on a context-sensitive and expectation-guided princi-

ple. Additional knowledge derived from domain experts forms an essential part for all

of these methods.

The methods are applied in the �eld of arti�cial ventilation of newborn infants.

Examples from the real-time monitoring and therapy-planning system VIE-VENT il-

lustrate the usefulness and e�ectiveness of the methods.

Keywords: data validation, temporal reasoning, high-frequency domains, real-time

systems in medicine
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1 Introduction

Intensive care units (ICUs) are well equipped with most modern devices for patient monitoring.

On-line recording of patient data and storage in computer-based patient records (CPR) and patient

data management systems (PDMS) become a regular activity in today`s ICUs. Even in the early

years of ICU's data acquisition it was quite clear that patient data must be as complete as possible

and that stored data should be free of artifact [Gardner et al. 82]. Today, monitors have builtin

alerts, but the result is a vast volume of false alarms. Alarming systems based on simple range

checks are obviously too simple to be useful in a complex medical setting.

In the last years, several sophisticated knowledge-based monitoring and therapy-planning sys-

tems have been introduced [Uckun 94]. These systems concentrated on optimizing data analyses

and interpretation based on temporal abstraction mechanisms, on applying di�erent kinds of ac-

cessible knowledge and information to enrich the reasoning process, and on minimizing manual

data input as a result of the improvement of technical equipment at modern clinics and of ac-

cess to computer-based patient records. Their usefulness will increase extremely when used as

intelligent real-time control systems integrating the results of many sensor readings coming at

various rates from a patient and presenting a whole picture [Musliner et al. 95]. Nevertheless,

such monitoring and therapy-planning system to become e�ective and e�cient requires reliable

data [Carlson et al. 95]. Data received from monitors are more faulty than is often realized. Ten

years after his request for artifact-free data, [Gardner et al. 92] still reports about inspired oxygen

fraction (FiO

2

) recordings being correct only about 50% of the time. The importance of data val-

idation has been neglected in the past. Real-time systems in medicine will not become operational

without intensive e�orts to detect artifacts. This requires combining all information available,

cross-validating data sources, inspecting and reasoning about data points, and looking at trends

to get a complete and consistent picture of the situation of the patient.

In the following sections we will discuss the need for e�ective data validation, show the approach

taken in our monitoring and therapy-planning system VIE-VENT, and present the methods used

for data abstraction and data validation.

2 The Need for E�ective Data Validation

We evaluated on-line data sets obtained from newborn infants with various respiratory illnesses.

The data (mostly transcutaneous blood gas measurements and oxygen saturation) were collected

from the monitoring system of a neonatal intensive care unit (NICU) once per second (between

16{28 hours continuous data recording for each newborn infant). The data sets consist of mea-

surements of the transcutaneous partial pressure of oxygen (P

tc

O

2

) and carbon dioxide (P

tc

CO

2

),

the heart rate (HR) given from ECG, the oxygen saturation (S

a

O

2

), and the pulse frequency

(PULS) given from pulsoximetry. We combined these data sets with additional o�-line data ac-

quired from the CPR. O�-line data include ventilator settings (PIP , PEEP , F

i

O

2

, frequency f ,

etc.), results of invasive blood gas analyses (pH, P

a

O

2

, P

a

CO

2

, where a denotes a measurement

from arterial blood|we have venous and capillary measurements too), and clinical parameters

(e.g., spontaneous breathing e�ort).

Visualization and analysis of these data sets enabled a closer insight into the validity and the

quality of the observed data, as well as the importance of secure and trustable data for future

reasoning. First, small movements of the infant resulted in an unexpectedly high volume of data

oscillation. This is speci�cally a problem of pulsoximetry. For example, small movements of the

neonate result in sequences of unusable of oxygen saturation (S

a

O

2

) measurements. Second, the

measurements were frequently invalid caused by external events, which have to be performed regu-

larly (e.g., calibration of transcutaneous sensors every three to four hours, scheduled endotracheal

suctioning). Third, continuously and discontinuously{assessed measurements, which should re-
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ect the same clinical context, frequently deviated from each other as a result of the individual

situation of the patient or of variations in the environmental conditions under which the sensors

operate. Fourth, additional invalid measurements were caused by on-line transmission problems

or were unexplainable.

Up-to-now data validation concentrated on numerical methods. These methods are successful

for particular problem characteristics detecting values, which are not within certain ranges and

trend values, which are physiologically implausible. At least range checking facilities are standard

for today's monitors in ICUs. However, they result in numerous false alarms|or, if switched

o�|missing alarms. Most of these numerical methods do not allow to classify data as unreliable,

because a large portion of reliability checking is dependent on the correct interpretation of the

clinical context. Further, cross-checking of di�erent parameters needs a very high, abstract level of

reasoning. They give insight into the reliability of measured data, both on a speci�c data point and

on the trend over some selected time period. Avoidance of wrong alarms, reliable monitoring, and

e�ective therapy planning requires data validation procedures, which combine numerical methods

with validation methods operating on derived qualitative values and trend schemata.

3 Data Validation in VIE-VENT

VIE-VENT [Miksch et al. 93, 94, 95] is an open-loop, knowledge-based monitoring and therapy-

planning system for arti�cially-ventilated newborn infants. Our aim in developing VIE-VENT

was to incorporate alarming, monitoring, and therapy-planning tasks within one system in oder

to overcome the limitations of existing systems, like GUARDIAN [Hayes-Roth et al. 92], SIMON

[Uckun et al. 92, 93], and NeoGanesh [Dojat and Sayettat 94, 96]. VIE-VENT is especially de-

signed for practical use under real-time constraints at neonatal ICUs. Its various components are

built in analogy to the clinical reasoning process. The data-driven architecture of VIE-VENT

consists of several modules: data selection, data validation, data abstraction, data interpretation

and therapy planning. All these steps are involved in a single cycle of data collection from mon-

itors. The data selection module �lters out context-relevant data for further processing. Data

validation and data abstraction are discussed within this paper. Data interpretation classi�es the

state of the respiratory system of the newborn infant based on the uni�ed qualitative parameters

received from the data abstraction module. The therapy-planning module formulates therapeutic

actions based on the interpretation of monitoring data, prunes therapeutic actions, and veri�es

whether the actions are e�ective. VIE-VENT's system model represents the neonatal respiratory

function by two processes: ventilation (CO

2

elimination) and oxygenation (oxygen uptake). The

output of the system are mainly recommendations for changing respirator settings. Additionally,

VIE-VENT issues warnings in critical situations, as well as comments and explanations about the

state of the respiratory system of the newborn infant.

During three years of development and evaluation of VIE-VENT we have learned that high-

frequency data received from monitors in intensive care units are not that accurate one would

expect from modern equipment. Especially, non-invasive on-line acquired measurements result in

data, which are rather vague. These measurements depend on the correct placement of sensors, the

circulation of the neonate, body movements, and environmental conditions. Even regular sensor

application and calibration may cause deviations and errors. Thus, it becomes less interesting to

interpret the exact values but rather get reliable answers to three questions:

1. Is the reading valid?

2. How is the reading to be quali�ed, e.g., being normal or substantially deviated from the

normal range?

3. Are we able to qualify the trend, e.g., leading towards the normal range or dangerously

deviating from it?
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In order to answer question 2 a transformation of quantitative data points into qualitative

values is neededed. The derived qualitative values form the basis for transforming interval data

into qualitative trend descriptions, which should answer question 3.

To answer question 1 we performed a data-validation process based on various kinds of real

data (high and/or low frequency, continuously- and/or discontinuously{assessed, and quantitative

and/or qualitative data) and on di�erent temporal ontologies (time points, time intervals, and

trends): �rst, context-sensitive examination of the plausibility of input data and second, applying

repair and adjustment methods for correcting erroneous or ambiguous data. To classify the input

data we combined and enhanced established techniques (e.g., causal and functional dependencies)

with newer techniques, based on qualitative descriptions, during di�erent time periods.

Data abstraction is discussed prior to the presentation of the data-validation methods being a

prerequisite for doing data validation based on qualitative values. However, data abstraction and

data validation are two processes which are strongly intertwined. It is not possible to compute

qualitative trends without having reliable data for a majority of time points included in the trend.

On the other hand having evaluated a trend it may become clear that the last data-point value is

erroneous. The interaction of the methods is discussed in section 5.5.

4 Temporal Data Abstraction

The usage of qualitative descriptions for data validation requires a temporal data-abstraction pro-

cess, which derives qualitative values from the numerical data values received. The aim of the data

abstraction process is to arrive at uni�ed qualitative patterns for all parameters. The temporal

abstraction methods are context-sensitive and expectation-guided. They incorporate knowledge

about data points, time intervals and expected qualitative trend descriptions. In addition to its

usage for data validation, derived qualitative values constitute the essential basis for the data

interpretation and therapy-planning phase of VIE-VENT.

The transformation of data points is discussed in the next subsection, followed by a section

which presents the trend curve �tting schemata. Having derived qualitative data-point values and

qualitative trends we proceed with the data validation task.

4.1 An Uni�ed Scheme for Data-Point Transformation

The transformation of quantitative data into qualitative values is usually performed by dividing

the numerical range of a parameter into regions of interest. Each region represents a qualitative

value. The region de�nes the only common property of the numerical and qualitative values

within a particular context and at a speci�c time-stamp. It is comparable to the \point temporal

abstraction" task of [Shahar and Musen 93].

VIE-VENT uses context-sensitive schemata for data-point transformation of blood-gas mea-

surements. The result of the abstraction process is an uni�ed scheme for all blood gas measure-

ments:

Code Category

g3 extremely

g2 substantially below

g1 slightly

normal target range

s1 slightly

s2 substantially above

s3 extremely
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These seven regions of interest are not equal sized. The value range of an interval is smaller the

nearer the target range. This is an important feature representing dynamics related to the di�erent

degrees of parameters' abnormalities. It is extensively used in the schemata for trend-curve �tting

discussed in the next section.

The schemata for data-point transformation are de�ned for all kinds of blood gas measure-

ments. They further depend on the clinical context, resulting in di�erent numerical ranges. Fig-

ure 1 shows the schemata for transformation of P

tc

CO

2

. On the left-hand side the scheme for

transformation during intermittent positive pressure ventilation (IPPV) is shown, on the right-

hand side the scheme for transformation during intermittent mandatory ventilation (IMV). De-

pending on the clinical context (IPPV or IMV) the same numerical reading results in di�erent

qualitative statements.
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Figure 1: Schemata for data-point transformation of P

tc

CO

2

during context IPPV (left) and IMV

(right). The qualitative data point categories are given in the middle column.

The data-point transformation schemata transform each (valid) numerical value into one of

seven qualitative categories. This temporal abstraction process is further enhanced by three more

options:

1. smoothing of data oscillating near thresholds. This avoids rapid changes of qualitative

categories in cases the numerical value oscillates around a threshold.

2. smoothing of data-point transformation schemata. This supports a graceful change when

changing the clinical context (e.g., changing the mode of ventilation from IPPV to IMV).
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3. context-sensitive adjustment of qualitative values. This allows to adjust qualitative values

during life-threatening situations to be able to tolerate higher values as better ones under

speci�c circumstances.

These enhancements are discussed in detail in [Miksch et al. 96].

4.2 Expected Qualitative Trend Descriptions

Similar to the transformation of numerical data points to qualitative values, interval data are

transformed to qualitative descriptions resulting in a verbal categorization of the change of a pa-

rameter over time. Analogous to the data point transformation scheme we build an uni�ed scheme

for these qualitative trend descriptions. The transformation of interval data to qualitative trend

descriptions is an abstraction process, which needs to adapt to the dynamics of the continuously{

assessed parameters. This data-abstraction process builds dynamically-derived qualitative trend

categories, which overcome the limitations of prede�ned static thresholds.

Based on physiological criteria, four kinds of trends of the time-stamped data samples can be

discerned. They di�er in the length of the sequence of the time-ordered data the use to calculate

the trend. Further, they di�er in the validity criteria, which have to be ful�lled to be able to

determine a valid trend. In monitoring more recent data are more important compared to older

measurements. Due to this precondition we de�ned two criteria of validity to ensure that a trend

is actually meaningful: (1) a certain minimum amount of valid measurements within the whole

period, and (2) a certain amount of valid measurements during the last 20 percent of the time

interval. These limits are de�ned by experts based on their clinical experience. They may easily

be adapted to a speci�c clinical situation based on the frequency at which data values arrive. The

following table summarizes the trends and their criteria:

kind of sequence valid meas. valid meas.

trend duration whole last 20%

(minutes) sequence of sequence

very short 1 50% 100%

short 10 40% 80%

medium 30 30% 60%

long 180 20% 40%

For each kind of trend the actual growth rate and the derived qualitative trend category is deter-

mined.

The trend-abstraction process is based on expected qualitative trend descriptions. These are

qualitative statements, which express physicians' expectations for how a blood gas value has

to change over time to reach the target range in a physiologically proper way. For example,

\the parameter P

tc

CO

2

is moving one qualitative step towards the target range within 20 to

30 minutes". Qualitative steps are de�ned in terms of the qualitative data-point categories of

section 4.1, which are sized di�erently. Applying the expected qualitative trend descriptions

to these data-point categories, we get a qualitative notion of \normal decrease" for the upper

region and \normal increase" for the lower region. Both are de�ned by a speci�c area of growth.

The assumed exponential functions, which delimit these areas, are determined through stepwise

linearization and a dynamic comparison algorithm. This reduces complexity considerably. The

comparison algorithm utilizes a trend curve �tting scheme to transform a growth rate into one of

ten qualitative trend categories. The categories are divided by the target range into an upper and

a lower region:
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Region Code Trend Category

C dangerous increase

ZA zero change

upper A3 decrease too slow

A2 normal decrease

A1 decrease too fast

B1 increase too fast

B2 normal increase

lower B3 increase too slow

ZB zero change

D dangerous decrease

Details about the trend-curve-�tting scheme are in [Miksch et al. 95]. The trend categories de�ne

a partial ordering for both the upper and the lower region. This partial ordering allows to use the

qualitative categories for data validation (see section 5.3).
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Figure 2: Principle method to qualify the actual development of a continuously-assessed param-

eter. The striped area A2 shows the expected normal decrease towards the target region. The

development of a parameter in the past (in the example P

tc

CO

2

during IMV) is abstracted to

qualitative trend categories (written in bold, capital letters).

Figure 2 shows the principle method taking the actual development of P

tc

CO

2

during IMV as

an example. What we would like to achieve are trends, which go into the A2 direction, namely

a normal decrease towards the target region. We observe a dangerously increasing long-term
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trend (last 3 hours, category C), a nearly zero change of the medium-term trend (last 30 minutes,

category ZA), a decrease too slow of the short-term trend (last 10 minutes, category A3), and a

normal decrease of the very-short-term trend (last minute, category A2).

The data-selection procedure of VIE-VENT returns a data value for each of the continuously{

assessed parameters once per second. Data abstraction gives their derived context-sensitive, quali-

tative data-point categories, and the growth rates of the di�erent trends and their derived qualita-

tive trend categories. Data validation described in the next section use these continuously{assessed

data together with the discontinuously-assessed parameters. It tries to produce a consistent overall

view, which of the parameters are valid and which are not.

5 Data Validation and Repair Methods

We distinguished three categories of data validation and repair based on their underlying tem-

poral ontologies: time-point-, time-interval-, trend-based validation and repair. Further, a time-

independent validation method is used to rate the reliability of speci�c parameters. Table 1 gives

an overview of all methods applied. The methods are grouped by the underlying ontology and

quali�ed by the kind of data used (quantitative or qualitative) and the action performed (validation

or repair).

Ontology Method quant. qual. validation repair

Time-point Range checking x x

Causal dependencies x x x

Functional dependencies x x x x

Time-interval Temporal validity x x x

Stability check x x

Cross-validation x x

Dynamic calibration x x

Trend Range checking x x

H�jstrup modi�ed x x x

Functional dependencies x x

Parameter assessment x x

Predicting values x x x

Time-independent Priority lists x x x

Table 1: Data validation and repair methods

In principle, the order of listing the methods expresses the order of their application. The

order of application is of speci�c importance both for the data abstraction process and the data

validation. Details are discussed in section 5.5.

5.1 Time-Point-Based Validation and Repair

The time-point-based category uses for the reasoning process the value of a variable at a particular

time point for the reasoning process. This concept can handle all kinds of data. It bene�ts from

the transparent and fast reasoning process but su�ers from neglecting any information about the

history of the observed parameters. We applied range checking as well as causal and functional

dependencies to detect faulty values. We extended the concept of functional and causal dependen-

cies to deal with qualitative functional dependencies and with inaccurate measurements caused
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by measuring faults. Invalid values are repaired by applying functional dependencies or using a

simpli�ed model, which is able to cope with missing values.

Range checking

Range checking is basically simple but has shown very powerful to detect disconnections and

missing measurements. Figure 1 gives an example by marking the invalid regions for the transcu-

taneous measurement P

tc

CO

2

. Most modern equipment is able to perform range checks by itself,

but most often the data available at serial or analog lines do not include the information whether

the data point is within the chosen range or not. Further, range checks have to be sensitive to the

explained error which comes from A/D conversion and the precision of the instruments. Most of-

ten we have received a S

a

O

2

reading of 100.1%, which would be classi�ed invalid without inclusion

of an explained error.

Causal dependencies

Causal dependencies allow to establish a relationship between di�erent parameters. Qualitative

values (e.g., chestwall extension = small) are related to numerical ranges of other parameters

(e.g., tidalvolume � 5ml=kg). A causal dependency may be bidirectional|as shown in the ex-

ample above|or unidirectional. In the bidirectional case we are able to conclude that some

of the parameters are wrong. The unidirectional case allows to invalidate a speci�c parameter.

For example, S

a

O

2

is invalidated if we can't �nd a valid pulse (from pulsoximetry) or if we de-

tect a substantial di�erence between the pulse and the heart rate from ECG (HR, measured in

beats=min):

valid(PULS) = false ! valid(S

a

O

2

) = false (1)

jHR� PULS j > 8! valid(S

a

O

2

) = false (2)

Equation 2 may be used only if we have a valid HR and a valid PULS. In fact, such de-

pendencies de�ne an implicit ordering of parameters with respect to the application of validation

procedures.

Functional dependencies

Functional dependencies are useful both for numerical and qualitative parameters. Applying a

functional dependency not only provides a mean for validating the parameters of the function, but

gives a way to repair an invalid parameter.

Functional numerical dependencies are used to provide a value for a dependent parameter and

to check inadequate data transmission for parameters where we know the exact functional relation.

E.g.,

f =

60

t

i

+ t

e

(3)

relates frequency f with inspiration time t

i

and expiration time t

e

. Most important, rounding

errors and errors resulting from A/D conversion (explained error) does not allow to use the exact

equation (3), but forces to compare the real di�erence between the left and right side of the

equation with the maximum allowed di�erence due to the explained error of the parameters.

Qualitative functional dependencies establish a relationship between derived qualitative values

of di�erent parameters. Due to the uni�ed scheme for the qualitative values of all blood-gas mea-

surements as shown in section 4.1 it is easy to compare di�erent measurements. For blood-gas

measurements we expect that measures taken from di�erent sites (arterial, venous, capillary, and

transcutaneous) belong to the same qualitative data point category, or at least to the neighboring

one. For example, we expect the same classi�cation of the transcutaneous P

tc

CO

2

and the invasive

9



capillary P

c

CO

2

measurements. If we detect, e.g., P

tc

CO

2

is s2 and P

c

CO

2

is normal we remem-

ber the ambiguousity of the transcutaneous and the capillary carbon dioxide measurement. Which

of the values is more plausible depends on the static priority list discussed in section 5.4 and the

dynamic reliability score computed by each of the various validation methods. Comparing tran-

scutaneous and invasive blood-gas measurements involves another need for a special management

of time-stamped data: time-synchronization of the measurements. Taking an invasive blood-gas

sample at timestamp t

x

with the results available after some minutes, say at timestamp t

x+n

,

we have to remember the P

tc

CO

2

(t

x

) and compare it with the P

c

CO

2

(t

x+n

). This may result

in the necessity of revising past decisions. We neglect this due to the impossibility of changing

recommendations already given, but we use it correctly for time-interval-based cross-validation

and repair discussed in the next section.

5.2 Time-Interval-Based Validation and Repair

The time-interval-based category deals with the values of di�erent variables within a time interval.

We used three methods: (1) temporal validity of measurements, (2) allowed changes of values of

a single variable depending whether a therapeutic action has taken place, (3) cross-validating

data from di�erent sources (e.g., continuously and discontinuously{observed data). We applied a

dynamic calibration of values acquired by di�erent sources to repair invalid values.

Temporal validity

Temporal validity sets the time interval a parameter is valid. For discontinuously{assessed data

there are two possibilities for setting the valid time interval:

� The user of VIE-VENT can specify the duration of validity when entering a particular

discontinuous data value. E.g., \P

a

O

2

should be valid for the next 30 minutes".

� For each parameter there is a prede�ned default maximum duration of validity.

A discontinuously{assessed parameter is set invalid, if one of the following conditions becomes

true:

� the time interval of the parameter`s validity has elapsed,

� a new value of the parameter is available, or

� an external event enforces to manually set the parameter invalid.

The reliability score of a discontinuous parameter gets smaller over time. The temporal validity

interval determines how long the time-interval-based repair method dynamic calibration may be

active.

Continuously{assessed data are handled in a di�erent way: instead of valid time intervals we

de�ne invalid time intervals. The user may set a parameter invalid explicitly, if speci�c external

events take place (e.g., calibration of sensors, new application of sensors, disconnection).

Stability check

After a period of invalidity of a parameter it is essential to enforce some (short) period of stability

before the parameter is set back valid. This is speci�cally true for rapidly changing parameters

like S

a

O

2

. The method de�nes allowed changes of values of parameters. It compares the new value

of a parameter with previously{assessed values within a prede�ned time-interval. This method is

applicable for continuously{assessed data only. We distinguish two situations:
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� Allowed changes of parameter values without a therapeutic action: The �rst value of pa-

rameter, which is classi�ed valid by all other validation methods becomes a candidate for

stability testing. During time interval n we require, e.g.,

8i; i = 1; : : : ; n : jS

a

O

2

(t)� S

a

O

2

(t + i) j � " (4)

For excellent stability of S

a

O

2

we currently use n = 120sec and " = 5%. The e�ect of the

stability check is a delay in setting a parameter valid again. E.g., for S

a

O

2

we will wait 120

seconds until the data values can be used again. If the stability check succeeds, we are able

to reuse the values of the last 120 seconds. This results in a recalculation of the trends.

� Allowed changes of parameter values after a therapeutic action: we expect a particular

parameter to improve towards the normal range after a certain delay time. Besides the fact

that therapeutic actions are not recommended in case the guiding parameters are invalid,

a stability check as de�ned above is less useful. A larger " for the direction of the desired

improvement is used in this case.

Cross-validation

Cross-validation of data from di�erent sources is the time-interval-based utilization of qualitative

functional dependencies described in section 5.1. Its speci�c use is the correlation of a parameter

X which gives a quite exact measurement but is rarely available with a parameter Y which is

inexact but available continuously. The basic assumption is that X behaves like Y .

In ventilation management X is an invasively-measured blood gas and Y is a transcutaneous

blood gas. If cross-validation detects a signi�cant qualitative di�erence between, e.g., P

a

CO

2

and P

tc

CO

2

as described above, and both parameters are not invalidated by other methods, we

directly apply dynamic calibration.

Dynamic calibration

Dynamic calibration is a time-interval-based repair method, which repairs continuously{assessed

data values by applying a repair function which utilizes the di�erence between the discontinuously{

assessed data value X and the corresponding continuously{assessed data value Y . This repair

function is applied during the temporal validity interval of X. The resulting repaired value of Y

receives a decreasing reliability score over time.

Based on 442 cases with corresponding measurements we were able to �nd a correlation function

between P

a

CO

2

and P

tc

CO

2

:

P

tc

CO

corr

2

= 2:226 + 1:039P

a

CO

2

; r

2

= 0:705 (5)

If dynamic calibration is initiated at time point t

x

and PCO

meas

2

are the measured values we

calculate calibrated P

tc

CO

cal

2

for each time point t

y

= t

x+m

:

P

tc

CO

cal

2

(t

y

) = P

tc

CO

meas

2

(t

y

) + (6)

P

tc

CO

corr

2

(t

x

)� P

tc

CO

meas

2

(t

x

)

The calibration is done for each m in the temporal validity interval of P

a

CO

2

(t

x

).

5.3 Trend-Based Validation and Repair

Trend-based validation analyzes the behavior of a variable during a time interval. A trend is

a signi�cant pattern in a sequence of time-ordered data. Therefore the following methods can

handle only continuously{observed variables. They bene�t from dynamically-derived qualitative
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trend categories (descriptions) presented in section 4.2. We applied range checks on the growth

rate, an evaluation procedure, which inspects the temporal behavior of measurements (H�jstrup

method modi�ed), trend-based functional dependencies of di�erent dependent variables, and an

assessment procedure of the development of a variable. Predicting values is a repair method with

allows to deal with missing values.

Range check of the growth rate

A �rst basic check is the inspection of the growth rate. It is a sensible method for recognizing

problems with the technical equipment, e.g., sensor loss. Range checks are applied on the very

short-term trend and react thus very fast.

H�jstrup method modi�ed

The H�jstrup method modi�ed recognizes growth rates, which are unacceptable after a certain

amount of time. It recognizes unplausible values by inspecting the temporal behavior of measure-

ments. The temporal behavior is given as a function of measured values over time. Measurements

are classi�ed as unplausible if the growth of this function is either too steep or the growth rate

lies above a threshold and lasts for too long.

The basic idea is given in [H�jstrup 92]. Starting with a sequence of data points, the mean

value m of this sequence, and the correlation K of two neighboring points it predicts the next

data value v

i

by

v

i

= x

i�1

K + (1�K)m (7)

Getting the new value x

i

the mean m and the correlation K will be updated. Based on the

assumption that the di�erence between the predicted v

i

and the actual measured value x

i

follows

a Gaussian distribution a threshold for this di�erence is de�ned. E.g., the error threshold E may

be �xed to a value that the probability is less than 0.01 that a correct value exceeds the threshold.

The algorithm has been modi�ed to the requirements of analyzing blood gas values: the corre-

lation function K is replaced by a measurement for the deviation of the last two points from the

mean. We further may not assume a normal distribution of the di�erences. Therefore the error

threshold E is derived from knowledge about the maximum growth rate to accept and the desired

rigidity of the system.

The algorithm works as follows:

1. Using the last measurement x

i�1

, the last mean m

i�1

, and the last standard deviation s

i�1

predict the next value v

i

:

v

i

= x

i�1

e

�js

i�1

j

R

+m

i�1

(1� e

�js

i�1

j

R

) (8)

2. Get the new data value x

i

3. Update mean and standard deviation:

m

i

= m

i�1

(1�

1

M

) +

x

i

M

(9)

s

i

= s

i�1

(1 �

1

M

) +

(x

i

�m

i

)(x

i�1

�m

i�1

)

M

(10)

4. Decide whether x

i

is valid:

j v

i

� x

i

j > E ! valid(x

i

) = false (11)
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5. Continue with next i.

The important parameters of this algorithm are M and R. They in
uence on the one hand the

calculation of the predicted value v

i

and the update of the mean m

i

and the deviation s

i

, and on

the other hand the classi�cation of unplausible values. By these means they specify which growth

rate is \too steep". Therefore, the �ne tuning of the determining parameters M , R (and E) is the

critical part of the algorithm.

A systematic analysis was performed modeling the algorithm in the form of an RC-low-pass

�lter. Equations 9 and 10 have been expressed as di�erential equations and the limits to their

solutions have been analyzed. Using this analysis it is possible to derive values for M , R, and E

from three plausible parameters: the sampling rate T , the steepest growth which is valid T

a

min

,

and the rigidity Rig. Let T

a

be a measurement for the growth rate by counting the number of

data points until the data value has changed by 1 unit. For a �xed T

a

the di�erence between the

measured values and the calculated means converges towards a boundary value. The predicted

values follow the slope of measurements with an error that depends on T

a

. The error converges

towards a boundary value E

b

(T

a

). The smaller T

a

is the greater is E

b

(T

a

). For a �xed E we

can approximate the time T

g

(T

a

), which is needed until E

b

(T

a

) is greater than E. There is a

logarithmic relation between growth rate T

a

and the time needed to signal an error T

g

(T

a

). T

a

min

is that T

a

where it takes in�nite time to signal an error. For all T

a

> T

a

min

we will never receive

an error. Further, there exists a T

a

imm

, where E(T

a

imm

) exceeds E within the time until the next

data point is taken. Thus, the error is signaled immediately. For T

a

in between T

a

imm

and T

a

min

the rigidity Rig determines T

g

(T

a

). The higher the rigidity, the faster an error will be reported.

Details are to be found in [Egghart 95].

Several experiments have been done to get the desired behavior for each of the continuously{

assessed parameters. For example, a sampling rate of 60 data points per minute (T = 60), the

acceptance of a change of 6 units per minute (T

a

min

= 10), and a low rigidity (Rig = 0:2) result

in M = 1:3; R= 0:39; E = 7:6. These values have shown useful for validating S

a

O

2

.

The main advantage of the method is the ability to select an area of growth between a value

where it never signals an invalidity and a value where it immediately signals an invalidity. In

between the lower the growth rate the longer it will take to signal an invalidity.

The H�jstrup method is well suited to be used as a repair method. In case x

i

is not valid, the

predicted v

i

can be used to repair the incorrect x

i

.

Trend-based functional dependencies

Trend-based functional dependencies model expectations on trends. They allow to compare the

behavior of two di�erent parameters, which are related measurements within the same physiological

context. For example, S

a

O

2

and P

tc

O

2

both give insight into the oxygenation of the patient.

However, they react di�erent in detail, but the global trend should be in parallel for both. We

use the qualitative trend categories described in section 4.2 to compare the trends of such related

parameters. The comparison is done using the short-term trend and the medium-term trend. If

the trends di�er by more than one category both measurements are marked ambiguous.

A second usage of trend-based functional dependencies is the validation whether the desired

e�ect of a therapeutic action takes place. It is performed after a signi�cant change of a parameter

(ventilator setting), which controls the condition of the neonate. The method utilizes a speci�c

delay time required to make a change in the ventilator setting visible in monitored parameters.

For example, an increase of the inspired oxygen fraction FiO

2

should cause an increase of the

neonate's oxygen level O

2

. This should be visible after a delay of 10 minutes in S

a

O

2

and P

tc

O

2

.

The utilization of trend-based functional dependencies after a therapeutic action is hard to

interpret for two reasons: (1) if the trend of the monitor parameter does not change, the system

has to decide whether the parameter is invalid or the therapy is not e�ective. Therefore, the
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method is useful for both data validation and therapy assessment; (2) during the delay time

needed for an e�ect of a therapeutic action to become visible other therapeutic actions may cause

adverse e�ects to the parameter in question. For example, a decrease of the peak inspiratory

pressure PIP may adverse the increase of O

2

caused by the FiO

2

increase. We have to take into

account all known in
uences during the time interval, which is composed of the delay time and

the time needed to compute the trend.

The combination of inspecting trends of di�erent parameters, which measure the same physio-

logical context, with the inspection of trends after a therapeutic action gives a quite good insight

into the validity of parameters. For example, if we �nd after an increase of FiO

2

that S

a

O

2

is increasing, but P

tc

O

2

is not, we will assume P

tc

O

2

giving invalid readings due to some other

causes, like bad circulation.

Assessment of a parameter

The assessment procedure of the development of a parameter examines the short-term trend. It

compares two successive qualitative trend values of the parameter. An invalidity of the parameter is

signaled if the trend categories are not the same or at least neighboring. The assessment procedure

is applicable for the short-term trend only. The very-short-term trend reacts too rapidly to small

oscillations of the values. The medium-term and the long-term trend are too insensitive.

Figure 3 gives an in-depth example of the assessment procedure for the parameter P

tc

CO

2

. It

plots 33 minutes of P

tc

CO

2

(given in mmHg) plus the qualitative data-point values and derived

qualitative trend categories in the corresponding columns of the tables. Inspecting the short-term

trend we detect a change from A3 to A1 at 20:57:00. As these two are not neighboring categories,

an error is signaled and the P

tc

CO

2

value is invalidated. The �gure shows further that the very-

short-term trend reacts too fast. The rapid changes between qualitative categories (e.g., at 20:45)

are not useful for detecting invalid or suspect measurements.

The advantage of assessing qualitative trends is the ability to classify changes on a basis, which

is better founded physiologically. For severe deviations from the target range we expect a return

to the target range, which is fast initially and becomes slower and slower the nearer we approach

the normal value. The trend-curve-�tting schema and its resulting qualitative trend categories

dynamically models this behavior.

Predicting values

During a monitoring process the position of a sensor has to be changed frequently and regularly.

Therefore, the measurements are often missing. The implicit assumption of missing measurements

during such a position change is that they will be steady keeping their previously observed values.

There are three possibilities to deal with missing measurements. First, a stepwise backward

checking provides the last reliable value and we continue with this value as long as no other

system change is detected. Second, applying the growth rate of the short-term trend to predict

a \correct" value. A precondition is the stability of the trend. The stability is assessed applying

the qualitative trend-categories. If the medium-term and short-term qualitative trend-categories

are identical, the precondition of intrinsic development of the measurements becomes true. The

trend-based prediction of a value is a more accurate action, because it takes the history of the

values into account. But the criteria of validity to calculate a trend have to be ful�lled to predict

a value. Third, to use the value predicted by the H�jstrup method. Here again we have to ensure

that the number of valid values allows to use the method for prediction.

Predicting values is less problematic when the medical sta� follows the general guideline that

sensors should not be changed or calibrated during critical phases of the neonate. However, if

we are no able get valid measurements over a longer period of time, VIE-VENT falls back to a

simpli�ed reasoning process.
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Figure 3: Example assessing the development of the parameter P

tc

CO

2

. The x axis represents

the time in minutes. The left y axis gives the P

tc

CO

2

value in mmHg, the right y axis measures

the very-short-term and short-term trends. The tables below the plot show the corresponding

qualitative trend categories and data-point categories, respectively. The faulty measurement is

detected at 20:57 using the short-term trend category.
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The simpli�ed reasoning process uses only a few parameters. VIE-VENT uses a simpli�ed

system model of neonatal respiration during the initial phase when the only reliable continuous

measurement is S

a

O

2

. There are restricted reactions to decrease oxygenation depending on the

degree of abnormality of the S

a

O

2

and the actual tidal volume V T . The tidal volume is estimated

here by the extent of the chest wall expansion.

5.4 Time-Independent Validation

The last category is based on time-independent priority lists of variables. Priority lists of the

measurements are an indicator of the reliability of measurements. The data-validation process

allows to identify a less reliable parameter from a set of con
icting parameters. The result is a

reliability ranking. From the medical and technical sampling point of view, there is a well-de�ned

priority which measurement is more reliable than another, depending on di�erent conditions. On

the one hand these lists facilitate the data-validation task and on the other hand they also help

the pruning of di�erent and concurrent therapy recommendations.

Examples of priority lists of VIE-VENT are: arterial blood gases are more reliable than venous

blood gases; invasive blood gases are more reliable than transcutaneous blood gases and they are

more reliable than S

a

O

2

; and S

a

O

2

is more reliable than P

tc

O

2

.

5.5 Interaction of the Methods

The sequence of presentation of data-validationmethods above de�nes the principle sequence these

methods are applied. The reasoning methods based on time points and time intervals represent

a preprocessing for the reasoning based on trends. They primarily perform static data validation

which delivers the necessary preconditions to proceed with the trend-based validation.

Temporal data abstraction is a prerequisite for all data-validation methods operating on qual-

itative data. Thus, a �rst step is the abstraction of time-point-based data. Next we apply data-

validation methods based on time points and time intervals. If repair is needed, we will further

use the time-point- and time-interval-based repair methods. In the next step we calculate trends

for all parameters found valid by the previous steps, both by linear regression methods and by de-

termining the qualitative trend categories. Next, we apply trend-based data validation and repair.

The priority list of parameters and the dynamic reliability score of the parameters is consulted if

there is a necessity to decide towards a more reliable parameter in case of ambiguity.

Trend-based validation may result in the conclusion that a data value of the last time point

is implausible and has to be invalidated (in some severe cases even older values have to be invali-

dated). In such a case previous validation methods have to be reapplied.

The sequence of application of methods is further complicated by the causal and functional

dependencies of the parameters. The example of the causal relation between heart rate HR from

ECG, pulse PULS from pulsoximetry, and S

a

O2 given in equations (1) and (2) demonstrates

the complexity in scheduling the validation process. First we have to use all known methods to

validate HR and PULS. This is resolved by explicitly representing dependencies of parameters

and methods.

Given such strong interaction of the methods presented the data-abstraction and the data-

validation processes have been implemented in a modular form. The modules are activated when-

ever applicable resulting in a multi-step procedure.

6 Discussion

VIE-VENT integrates data validation with data abstraction. They are two processes strongly

intertwined due to the need of abstracted data values and trends for high-level data validation,
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and due to the need of valid data for the abstraction process.

Looking at data abstraction, several signi�cant and encouraging approaches have been devel-

oped in the past years: R

�

ESUM

�

E [Shahar and Musen 93, 96] supports temporal abstraction of

time-stamped data. It performs context-dependent temporal abstraction and temporal reasoning

over intervals. TrenDX [Haimowitz et al. 95] detects clinically signi�cant trends in series of time-

ordered data. The drawbacks of these methods lie in the prede�nition of the expected normal be-

havior of parameters during the whole observation process and the usage of absolute value thresh-

olds matching a trend template. The main focus of temporal data abstraction is to provide short,

informative, and context-sensitive summaries of time-oriented data. This goal can be achieved by

the elimination of unimportant details (e.g., the Temporal Control System TCS [Russ 95]) or by

creation of synthetic views of the patient's clinical history (e.g., M-HTP [Larizza et al. 92]). A

comprehensive review of temporal-reasoning approaches is given in [Shahar and Musen 96]. All

these systems use data abstraction to support a higher level of clinical reasoning. This is essential

for monitoring and therapy planning.

VIE-VENT extends the approach of data abstraction to utiliz the derived temporal patterns

for data validation as well as for monitoring and therapy planning. Its data-abstraction mechanism

is well suited for domains with high-frequency data acquisition. Its abstraction process is context-

sensitive and expectation-guided. This allows for dynamic orientation to the clinical context. The

behavior of parameters over time is quali�ed by an expectation-guided principle. It is based on the

experience of domain experts about the expected normal development of parameters of critically

ill neonates. The outcome of VIE-VENT's data-abstraction process are uni�ed qualitative values

for data points and trends, easy to comprehend for experts and easy to use for data interpretation

and therapy planning.

VIE-VENT receives data from monitors once per second. Its e�cient temporal representation

and its understanding of the temporal characteristics of the monitored parameters enable VIE-

VENT to operate in real-time. This e�ciency in temporal representation is to be seen as one of the

prerequisites for completing each cycle of data validation, data abstraction, and data interpretation

in real-time [Musliner et al. 95].

Looking at data validation one direction is the e�ort to �nd complete data sets containing

consistent data [Carlson et al. 95]. This is motivated basically by data collection procedures, which

operate on remote sites with data input from clinical personnel. The range checks and referential

integrity conditions are useful speci�cally for discontinuously-assessed parameters. Continuously-

assessed parameters received on-line require methods which are muchmore enhanced. For example,

it is necessary to include the explained error (of a sensor and the A/D converter) in range checks

and functional dependencies to be able to accept a reading of 100:1%FiO

2

as valid.

In high-frequency domains artifact{recognition methods include statistical signal processing

techniques and neural networks. Statistical signal processing, like Kalman �ltering, is compu-

tationally expensive [Sittig and Factor 90]. It puts much power in processing signals at a very

low level, which may be unnecessary, if we know from high-level reasoning processes that the

signal is useless. The same arguments hold for arti�cial neural networks [Sittig and Orr 92]. The

second main area of artifact recognition is intelligent alarming. It has shown useful in anes-

thesia monitoring [Aa 90] and post-operative care [Sukuvaara et al. 92]. The combination of

range checks and validation and invalidation rules provide good results in eliminating false alarms

[Gar�nkel et al. 89]. Here we see that simple rules like the \small change rule" (if the prior value

was valid and the new value showed a 7% or smaller change, then the new value is valid) are most

useful. In e�ect, VIE-VENT's expectation-guided trend templates implement such concepts in a

uni�ed fashion, which is based on the knowledge of experts.

VIE-VENT is designed for real-time operations at neonatal ICUs. Given such a complex

clinical environment a set of methods is required operating on both numerical input and qualitative

values, which are either manual input values or values derived from data-abstraction procedures.

The e�ectiveness of data validation in VIE-VENT is a result of the combination of a diversity of
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methods. Its basic robustness stems from the enhanced possibilities to cross-validate parameters

and to check functional dependencies of both data points and trends.

7 Conclusion

We demonstrate methods for automated data validation and repair based on di�erent temporal

ontologies (time points, time intervals, and trends). They take into account the various types of

data available occurring at various frequencies and combine and integrate a set of methods for

data validation in a real-time environment. It is important to use all available information for data

validation, to cross-validate continuously and discontinuously{observed data, and to cross-validate

data from di�erent sources. Of essential importance is the reliability ranking of data values to

reach meaningful conclusions in con
icting situations. Such reliability may result from a priori

de�nitions, from experience, or from dynamic evaluation of the current data set.

Our approach bene�ts from dynamically-derived qualitative data-point and trend categories

which result in uni�ed qualitative descriptions of parameters and overcome the limitations of

comparison with prede�ned static thresholds.

Applying our validationmethods to the observed on- and o�-line data sets resulted in automatic

elimination of invalidmeasurements. Using these classi�ed measurements improved the monitoring

and the therapy-planning process signi�cantly: (1) false positive alarms were minimized, (2) errors

of data interpretation were reduced, (3) abrupt changes of therapeutic recommendations were

eliminated promoting a stable and graceful weaning process.
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