
Monitoring and Therapy Planning without E�ective Data

Validation are Ine�ective

Silvia Miksch

1

�

)

, Werner Horn

1;2)

, Gerhilde Egghart

2)

Christian Popow

3)

, Franz Paky

4)

1)

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

2)

Department of Medical Cybernetics and Arti�cial Intelligence, University of Vienna

3)

NICU, Division of Neonatology, Department of Pediatrics, University of Vienna

4)

Department of Pediatrics, Hospital of M�odling, Austria

Email: silvia@ai.univie.ac.at

January 24, 1996

Abstract

Systems for monitoring and therapy planning, which receive their data from computer-

based patient records and on-line monitoring equipment, require reliable data. Reasoning on

faulty data can cause unexplainable and life-threatening conclusions. E�ective and e�cient

data validation methods are needed to arrive at reliable conclusions.

We distinguished four categories of data validation and repair based on their underlying

temporal ontologies: time-point-, time-interval-, trend-based, and time-independent valida-

tion and repair. Observing single measurements is not e�ective to arrive at trustable data.

Therefore we take into account the behavior of parameters in the past as well as knowledge

derived from domain experts. Examples from VIE-VENT, a knowledge-based monitoring and

therapy-planning system for arti�cially-ventilated newborns, demonstrate the applicability of

these methods.

1 Introduction

In the last years, several sophisticated knowledge-based monitoring and therapy-planning systems

have been introduced. These systems concentrated on optimizing data analyses and interpre-

tation based on temporal abstraction mechanisms [Shahar and Musen 96, Haimowitz et al. 95,

Miksch et al. 95], on applying di�erent kinds of accessible knowledge and information to enrich

the reasoning process [Hayes-Roth et al. 92], and on minimizing manual data input as a result of

the improvement of technical equipment at modern clinics and of access to computer-based pa-

tient records (CPR). Nevertheless, e�ective and e�cient monitoring and therapy planning require

reliable data [Carlson et al. 95]. Real data are more faulty than is often realized. The importance

of data validation has been neglected in the past.

We evaluated on-line data sets obtained from newborn infants with various respiratory ill-

nesses. The data (mostly transcutaneous blood gas measurements and oxygen saturation) were

collected from the monitoring system of a neonatal intensive care unit (NICU) once per second
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(between 16{28 hours continuous data recording for each newborn infant). The data sets consist

of measurements of the transcutaneous partial pressure of oxygen (P

tc

O

2

) and carbon dioxide

(P

tc

CO

2

), the heart rate (HR) given from ECG, and the oxygen saturation (S

a

O

2

) and the pulse

frequency (PULS) given from pulsoximetry. We combined these data sets with additional o�-

line data acquired from the CPR. O�-line data include ventilator settings (PIP , PEEP , F

i

O

2

,

frequency f , etc.), results of invasive blood gas analyses (pH, P

a

O

2

, P

a

CO

2

, where a denotes a

measurement from arterial blood|we have venous and capillary measurements too), and clinical

parameters (e.g., spontaneous breathing e�ort).

In the following sections we will discuss the need for e�ective data validation, show the approach

taken in our monitoring and therapy-planning system VIE-VENT, and present the methods used.

2 The Need for E�ective Data Validation

Visualization and analysis of these data sets enabled a closer insight into the validity and the

quality of the observed data, as well as the importance of secure and trustable data for future

reasoning. First, small movements of the infant resulted in an unexpectedly high volume of data

oscillation. This is speci�cally a problem of pulsoximetry. For example, small movements of the

neonate result in sequences of unusable oxygen saturation (S

a

O

2

) measurements. Second, the

measurements were frequently invalid caused by external events, which have to be performed reg-

ularly (e.g., calibration of transcutaneous sensors every three to four hours, scheduled endotracheal

suctioning). Third, continuously and discontinuously{assessed measurements, which should reect

the same clinical context, frequently deviated from each other as a result of individual situation

of the patient or of variations in the environmental conditions under which the sensors operate.

Fourth, additional invalid measurements were caused by on-line transmission problems or were

unexplainable.

Up to now data validation concentrated on numerical methods. These methods are successful

for particular problem characteristics detecting values, which are not within certain ranges and

trend values, which are physiologically implausible. At least range checking facilities are standard

for today's monitors in ICUs. However, they result in numerous false alarms|or, if switched

o�|missing alarms. Most of these numerical methods do not allow to classify data as unreliable,

because a large portion of reliability checking is dependent on the correct interpretation of the

clinical context. Further, cross-checking of di�erent parameters needs a very high, abstract level of

reasoning. They give insight into the reliability of measured data, both on a speci�c data point and

on the trend over some selected time period. Avoiding false and providing reliable monitoring and

e�ective therapy planning requires data validation procedures, which combine numerical methods

with validation methods operating on derived qualitative values and trend schemata.

3 Data Validation in VIE-VENT

These �ndings led us to concentrate on the data validation component in our system VIE-VENT

[Miksch et al. 93], an open-loop, knowledge-based monitoring and therapy-planning system for

arti�cially-ventilated newborn infants. We performed a two-step data-validation process based

on various kinds of real data (high and/or low frequency, continuously and/or discontinuously

assessed, and quantitative and/or qualitative data) and on di�erent temporal ontologies (time

points, time intervals, and trends): �rst, context-sensitive examination of the plausibility of input

data and second, applying repair and adjustment methods for correcting erroneous or ambiguous

data. To classify the input data we combined and enhanced established techniques (e.g., causal

and functional dependencies) with newer techniques, based on qualitative descriptions, during

di�erent time periods.
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4 Data Validation Methods

We distinguished four categories of data validation and repair based on their underlying temporal

ontologies: time-point-, time-interval-, trend-based, and time-independent validation and repair.

In the following, the order of listing the methods expresses the order of their application. An

introductory discussion of the basic methods for data validation including an explanation of the

time-point-based data abstraction methods is given in [Miksch et al. 94].

4.1 Time-Point-Based Validation and Repair

The time-point-based category uses for the reasoning process the value of a variable at a particular

time point for the reasoning process. This concept can handle all kinds of data. It bene�ts from

the transparent and fast reasoning process but su�ers from neglecting any information about the

history of the observed parameters. We applied range checking as well as causal and functional

dependencies to detect faulty values. We extended the concept of functional and causal dependen-

cies to deal with qualitative functional dependencies and with inaccurate measurements caused

by measuring faults. Invalid values are repaired by applying functional dependencies or using a

simpli�ed model, which is able to cope with missing values.

Range checking is basically simple but has shown very powerful to detect disconnections and

missing measurements. We have enhanced the method by adding a clinical context. This context

modi�es the range for plausible values depending on the mode of ventilation.

Causal dependencies allow to establish a relationship between di�erent parameters. Qualitative

values (e.g., chestwall extension = small) are related to numerical ranges of other parameters

(e.g., tidalvolume � 5ml=kg). A causal dependency may be bidirectional|as shown in the ex-

ample above|or unidirectional. In the bidirectional case we are able to conclude that some of

the parameters are wrong. The unidirectional case allows to invalidate a speci�c parameter. For

example, S

a

O

2

is invalidated if we can't �nd a valid pulse from pulsoximetry (PULS) or if we

detect a substantial di�erence between the pulse and the heart rate from ECG (HR, measured in

beats=min):

valid(PULS) = false ! valid(S

a

O

2

) = false (1)

jHR� PULS j > 8! valid(S

a

O

2

) = false (2)

This example demonstrates the complexity in scheduling the validation process. First we have to

use all known methods to validate PULS and HR. If both are valid we apply equation (2).

Functional dependencies are used to provide a value for a dependent parameter and to check

inadequate data transmission for parameters where we know the exact functional relation. E.g.,

f =

60

t

i

+ t

e

(3)

relates frequency f with inspiration time t

i

and expiration time t

e

. Most important, rounding

errors and errors resulting from A/D conversion (explained error) does not allow to use the exact

equation (3), but forces to compare the real di�erence between the left and the right side of the

equation with the maximum allowed di�erence due to the explained error of the parameters.

Functional qualitative dependencies establish a relationship between derived qualitative values

of di�erent parameters. For blood gas measurements we expect that measures taken from di�erent

sites (arterial, venous, capillary, and transcutaneous) belong to the same qualitative data point

category, or at least to the neighboring one. For example, we expect the same classi�cation of

the transcutaneous P

tc

CO

2

and the invasive capillary P

c

CO

2

measurements. VIE-VENT uses an

uni�ed scheme for all blood gas measurements:
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Code Category

g3 extremely

g2 substantially below

g1 slightly

normal target range

s1 slightly

s2 substantially above

s3 extremely

If we detect, e.g., P

tc

CO

2

is s2 and P

c

CO

2

is normal we remember the ambiguity of the

transcutaneous and the capillary carbon dioxide measurement. Which of the values is more plau-

sible depends on the static priority list discussed in section 4.4 and the dynamic reliability score

computed by each of the various validation methods. Comparing transcutaneous and invasive

blood gas measurements involves another need for a special management of time-stamped data:

time-synchronization of the measurements. Taking an invasive blood gas sample at time t

x

with

the results available after some minutes, say at time t

x+n

, we have to remember the P

tc

CO

2

(t

x

)

and compare it with the P

c

CO

2

(t

x+n

). This may result in the necessity of revising past decisions.

We neglect this due to the impossibility of changing recommendations already given, but we use

it correctly for time-interval-based cross-validation and repair discussed in the next section.

4.2 Time-Interval-Based Validation and Repair

The time-interval-based category deals with the values of di�erent variables within a time interval.

We used three methods: (1) temporal validity of measurements, (2) allowed changes of values of

a single variable depending whether a therapeutic action has taken place, (3) cross-validating

data from di�erent sources (e.g., continuously and discontinuously{observed data). We applied a

dynamic calibration of values acquired by di�erent sources to repair invalid values.

Temporal validity sets the time interval a parameter is valid. For discontinuously{assessed data

there are two possibilities for setting the valid time interval:

� The user of VIE-VENT can specify the duration of validity when entering a particular

discontinuous data value. E.g., \P

a

O

2

should be valid for the next 30 minutes".

� For each parameter there is a prede�ned default maximum duration of validity.

A discontinuously{assessed parameter is set invalid, if one of the following conditions becomes

true:

� the time interval of the parameter`s validity has elapsed,

� a new value of the parameter is available, or

� an external event enforces to manually set the parameter invalid.

The reliability score of a discontinuous parameter gets smaller over time.

Continuously{assessed data are handled in a di�erent way: instead of valid time intervals we

de�ne invalid time intervals. The user may set a parameter invalid explicitly, if speci�c external

events take place (e.g., calibration of sensors, new application of sensors, disconnection).

Allowed changes of values of parameters is the comparison of the new value of a parameter

with previously assessed values within a prede�ned time-interval. This method is applicable for

continuously assessed data only. We distinguish two situations:

� Allowed changes of parameter values without a therapeutic action: this is a strong method

to perform a stability check. After a period of invalidity it is essential to enforce some (short)

period of stability before the parameter is set back valid. This is speci�cally true for rapidly

changing parameters like S

a

O

2

. The �rst value of parameter, which is classi�ed valid by all
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other validation methods becomes a candidate for stability testing. During time interval n

we require, e.g.,

8i; i = 1; : : : ; n : jS

a

O

2

(t)� S

a

O

2

(t + i) j � " (4)

For excellent stability of S

a

O

2

we currently use n = 120sec and " = 5%.

� Allowed changes of parameter values after a therapeutic action: we expect a particular

parameter to improve towards the normal range after a certain delay time. Besides the fact

that therapeutic actions are not recommended in case the guiding parameters are invalid,

a stability check as de�ned above is less useful. A larger " for the direction of the desired

improvement is used in this case.

Cross-validation of data from di�erent sources is the time-interval-based utilization of func-

tional dependencies described in section 4.1. Its speci�c use is the correlation of a parameter

X, which gives a quite exact measurement but is rarely available, with a parameter Y , which is

inexact but available continuously. The basic assumption is that X behaves like Y .

In ventilation management X is an invasively measured blood gas and Y is a transcutaneous

blood gas. If cross-validation detects a signi�cant qualitative di�erence between, e.g., P

c

CO

2

and

P

tc

CO

2

as described above, and both parameters are not invalidated by other methods, we directly

apply dynamic calibration.

Dynamic calibration is a time-interval-based repair method, which repairs continuously{assessed

data values by applying a repair function, which utilizes the di�erence between the discontinu-

ously assessed data valueX and the corresponding continuously assessed data value Y . This repair

function is applied during the temporal validity interval of X. The resulting repaired value of Y

receives a decreasing reliability score over time.

Based on 442 cases with corresponding measurements we were able to �nd a correlation function

between P

a

CO

2

and P

tc

CO

2

:

P

tc

CO

corr

2

= 2:226 + 1:039P

a

CO

2

; r

2

= 0:705 (5)

If dynamic calibration is initiated at time point t

x

and PCO

meas

2

are the measured values we

calculate calibrated P

tc

CO

cal

2

for each time point t

y

= t

x+m

:

P

tc

CO

cal

2

(t

y

) = P

tc

CO

meas

2

(t

y

) + (6)

P

tc

CO

corr

2

(t

x

)� P

tc

CO

meas

2

(t

x

)

The calibration is done for each m in the temporal validity interval of P

a

CO

2

(t

x

).

4.3 Trend-Based Validation and Repair

Trend-based validation analyzes the behavior of a variable during a time interval. A trend is

a signi�cant pattern in a sequence of time-ordered data. Therefore the following methods can

handle only continuously{observed variables. They bene�t from dynamically-derived qualitative

trend categories (descriptions), which overcome the limitations of prede�ned static thresholds. We

applied range checks on the growth rate, an evaluation procedure, which inspects the temporal

behavior of measurements (H�jstrup method modi�ed), trend-based functional dependencies of

di�erent dependent variables, and an assessment procedure of the development of a variable.

There are two possibilities to handle missing or invalid measurements. First, a stepwise backward

checking provides the last reliable value and we continue with this value as long as no other system

change is detected. Second, applying a linear regression model based on the short-term trend (i.e.,

of the last 10 minutes) to predict a \correct" value.

Based on physiological criteria, four kinds of trends of the time-stamped data samples can be

discerned. They di�er in the length of the sequence of the time-ordered data the use to calculate

the trend. Further, they di�er in the validity criteria, which have to be ful�lled to be able to

determine a valid trend. In monitoring more recent data are more important compared to older

measurements. Due to this precondition we de�ned two criteria of validity to ensure that a trend
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is actually meaningful: (1) a certain minimum amount of valid measurements within the whole

period, and (2) a certain amount of valid measurements during the last 20 percent of the time

interval. These limits are de�ned by experts based on their clinical experience. They may easily

be adapted to a speci�c clinical situation based on the frequency at which data values arrive. The

following table summarizes the trends and their criteria:

kind of sequence valid meas. valid meas.

trend duration whole last 20%

(minutes) sequence of sequence

very short 1 50% 100%

short 10 40% 80%

medium 30 30% 60%

long 180 20% 40%

For each kind of trend the actual growth rate k and the derived qualitative trend category is

determined.

Range checking of the growth rate is a sensible method for recognizing problems with the

technical equipment, e.g., sensor loss. They are applied on the very short-term trend and react

thus very fast.

The H�jstrup method modi�ed recognizes growth rates unacceptable after a certain amount

of time. The basic idea is given in [H�jstrup 92]. It predicts a next data value v

i

using the last

value received x

i�1

, the mean value M of a sequence of data points, and the correlation K of two

neighboring points:

v

i

= x

i�1

K + (1�K)M (7)

After getting the new value x

i

it updates M and K. If the di�erence between v

i

and x

i

exceeds a

threshold x

i

is invalid. Based on the assumption that this di�erence follows a Gaussian distribution

we �x the error threshold E to a value that the probability is less than, e.g., 0.01 for a correct

value exceeding the threshold.

The algorithm has been modi�ed to the requirements of analyzing blood gas values: the corre-

lation function K is replaced by a measurement for the deviation of the last two points from the

mean. We further may not assume a normal distribution of the di�erences. Therefore the error

threshold E is derived from knowledge about the maximum growth rate to accept and the desired

rigidity of the system.

The algorithm works as follows:

1. Using the last measurement x

i�1

, mean m

i�1

, and standard deviation s

i�1

predict the next

value v

i

:

v

i

= x

i�1

e

�js

i�1

j

R

+m

i�1

(1� e

�js

i�1

j

R

) (8)

2. Get the new data value x

i

3. Update mean and standard deviation:

m

i

= m

i�1

(1�

1

M

) +

x

i

M

(9)

s

i

= s

i�1

(1 �

1

M

) +

(x

i

�m

i

)(x

i�1

�m

i�1

)

M

(10)

4. Decide whether x

i

is valid:

j v

i

� x

i

j > E ! valid(x

i

) = false (11)

5. Continue with next i.
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The critical part of the algorithm is the �ne tuning of the determining parameters M , R,

and E. Based on a systematic analysis we are able to derive M , R, and E from three plausible

parameters: the sampling rate, the steepest valid growth, and the rigidity. Several experiments

have been done to get the desired behavior for each of the continuously{assessed parameters.

The main advantage of the method is the ability to select an area of growth between a value

where it never signals an invalidity and a value where it immediately signals an invalidity. In

between the lower the growth rate the longer it will take to signal an invalidity.

Expected qualitative trend descriptions are qualitative statements, which express physicians'

expectations for how a blood gas value has to change over time to reach the target range in a

physiologically proper way. For example, \the parameter P

tc

O

2

is moving one qualitative step

towards the target range within 20 to 30 minutes". Applying these qualitative trend descrip-

tions to the data-point categories de�ned in section 4.1 we get a qualitative notion of \normal

decrease", which is de�ned by an area of (negative) growth. The supposed exponential functions,

which delimit this area, are determined through stepwise linearization and a dynamic compari-

son algorithm. This reduces complexity considerably. The comparison algorithm utilizes a trend

curve �tting scheme to transform a growth value into one of ten qualitative trend categories. The

categories are divided by the target range into an upper and a lower region:

Region Code Trend Category

C dangerous increase

ZA zero change

upper A3 decrease too slow

A2 normal decrease

A1 decrease too fast

B1 increase too fast

B2 normal increase

lower B3 increase too slow

ZB zero change

D dangerous decrease

Details about the trend-curve-�tting scheme are to be found in [Miksch et al. 95].

Trend-based functional dependencies model expectations on trends. They use the qualitative

trend categories to compare the trends of related parameters, e.g., the trend of S

a

O

2

and P

tc

O

2

.

The comparison has to be done using the short-term trend and the medium-term trend. If trends

di�er by more than one category both measurements are marked ambiguous.

The assessment procedure of the development of a parameter examines the short-term trend. It

compares two successive qualitative trend values of the parameter. An invalidity of the parameter

is signaled if the trend categories are not the same or at least neighboring. The advantage of

assessing qualitative trends is the ability to classify changes on a basis, which is better founded

physiologically. For severe deviations from the target range we expect a return to the target range,

which is fast initially and becomes slower and slower the nearer we approach the normal value.

The trend-curve-�tting schema and its resulting qualitative trend categories dynamically models

this behavior.

4.4 Time-Independent Validation

The last category is based on time-independent priority lists of variables. Priority lists of the

measurements are an indicator of the reliability of measurements. The data validation process

allows to identify a less reliable parameter from a set of conicting parameters. The result is a

reliability ranking. From the medical and technical sampling point of view, there is a well-de�ned

priority, which measurement is more reliable than another. On the one hand these lists facilitate

the data validation task in case of bidirectional dependencies. On the other hand they also help

pruning of di�erent and concurrent therapy recommendations.
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Examples of priority lists of VIE-VENT are: arterial blood gases are more reliable than venous

blood gases; invasive blood gases are more reliable than transcutaneous blood gases and they are

more reliable than S

a

O

2

.

5 Conclusion

Applying our validation methods to the observed on- and o�-line data sets resulted in automatic

elimination of invalidmeasurements. Using these classi�ed measurements improved the monitoring

and the therapy-planning process signi�cantly: (1) false positive alarms were minimized, (2) errors

of data interpretation were reduced, (3) abrupt changes of therapeutic recommendations were

eliminated promoting a stable and graceful weaning process.
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