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Abstract

Daily experience shows that in the real world, the meaning of many concepts heavily

depends on some implicit context, and changes in that context can cause more or less

radical changes in the concepts. Incremental concept learning in such domains requires

the ability to recognize and adapt to such changes.

This paper presents a solution for incremental learning tasks where the domain pro-

vides explicit clues as to the current context (e.g., attributes with characteristic values).

We present a general two-level learning model, and its realization in a system named

MetaL(B), that can learn to detect certain types of contextual clues, and can react ac-

cordingly when a context change is suspected. The model consists of a base level learner

that performs the regular on-line learning and classi�cation task, and a meta-learner that

identi�es potential contextual clues. Context learning and detection occur during regular

on-line learning, without separate training phases for context recognition. Experiments

with synthetic domains as well as a `real-world' problem show that MetaL(B) is robust

in a variety of dimensions and produces substantial improvement over simple object-level

learning in situations with changing contexts.

The meta-learning framework is very general, and a number of instantiations and

extensions of the model are conceivable. Some of these are brie
y discussed.
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1 Motivation

This article is concerned with incremental supervised concept learning, also known as on-line

learning (e.g., Littlestone, 1988). A learning algorithm is incrementally processing a stream

of examples coming in. Each instance is associated with a given class label. The learner

�rst attempts to classify the instance, then learns the correct class label, and updates some

internal concept hypothesis, if appropriate. Many real-world problems (e.g., discrete control

tasks) can be cast in such a framework.

A practical problem that has been more and more acknowledged in recent years is that in

real-world tasks, the concepts of interest may not be entirely stable, in other words, they may

change in time. An on-line learning algorithm should be capable of recognizing such changes

and adjust its hypotheses and behavior accordingly. This notion of concept drift was �rst

discussed by Schlimmer and Granger (1986), in the context of their drift-tracking algorithm

STAGGER.

Another way of viewing the phenomenon of concept drift is to assume that the concepts

of interest depend on some (maybe hidden) context, and that changes in this context induce

corresponding changes in the target concepts. Recent work on drift and context tracking

in the FLORA family of algorithms (Widmer and Kubat, in press) was motivated by this

view. The basic strategy in the FLORA algorithms is to continually monitor the success of

on-line prediction and to make educated guesses at the occurrence of context changes and

corresponding concept changes. There is no explicit representation of contexts.

But maybe one can do better. In some domains, the data may in fact contain explicit

clues that would allow one to identify the current context, if one knew what these clues are.

Technically, such clues would be attributes or combinations of attributes whose values are

characteristic of the current context; more or less systematic changes in their values might

then indicate a context change.

As a simple example, consider the license plates attached to vehicles in a particular coun-

try. An agent crossing the border between, say, Austria and Germany might notice that all

of a sudden the license plates look di�erent, in a systematic way, and that might lead it to

suspect that it is now in a di�erent environment where some of the rules it had learned before

may not be valid any more. Many other examples of such contextual clues come to mind (cli-

mate or season in weather prediction, environmental conditions like exterior temperature in

technical process control tasks, lighting conditions or background color in automatic vision,

characteristics of particular rooms in in-door robotic tasks, speaker nationality and sex in

speech processing, etc.). In the following, we will refer to such context-de�ning attributes as

contextual clues.

In this article, we describe a general two-level learning model, and its realization in a

system named MetaL(B), that can learn to detect such contextual clues, and can react

accordingly when a change in context is suspected. The model consists of a base level learner

that performs the regular on-line learning and classi�cation task, and ameta-learner that tries

to identify attributes and features that might provide contextual clues. Context learning and

detection occur during regular on-line learning, without separate training phases for context

recognition. Perceived context changes are used to focus the on-line learner speci�cally on

information relevant to the current context. The result is faster adaptation to changed concept

de�nitions, and generally an increase in predictive accuracy in dynamically changing domains.

At the moment, both object-level and meta-level learning are restricted to nominal (discrete)

attributes, but extensions of the model to numeric domains seem rather straightforward.
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The following section brie
y describes the speci�c learning algorithm we use for object-

level learning. Section 3 then motivates and describes in detail the meta-learning strategy and

its realization. The algorithm's behavior was tested along various dimensions; experiments

with several synthetic domains and one `real-world' problem are presented and discussed in

section 4. Section 5 discusses other work in machine learning that is related to our approach.

We believe that the work described in this article represents a �rst step into a very interesting

and promising �eld of research, and section 6 points to a number of interesting directions that

should be pursued.

2 The base level: learning a simple Bayesian classi�er

Let us take a very simple learning algorithm for the basic object-level learning task. A

simple Bayesian classi�er is a probabilistic classi�cation scheme that uses Bayes' theorem to

determine the probability that an instance belongs to a particular class, given the instance's

description. A very readable introduction to simple Bayesian classi�ers can be found, e.g.,

in (Langley, 1993). In the following, we assume that examples are described in terms of

(discrete) attributes a

i

; we will use the term feature for a speci�c attribute-value combination,

notated as a

i

: v

ij

. Examples are assumed to belong to mutually exclusive classes c

i

. Bayes'

theorem de�nes the posterior probability that some new instance I belongs to class c

i

as

p(c

i
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i

)p(I jc
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i
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To compute the probability of a conjunction of values, one usually assumes that the

attributes are independent, so that p(

V
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) can be computed as
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A new instance is assigned to the class with the highest posterior probability. Incremental

induction of a Bayesian classi�er is straightforward. One only needs to maintain a number

of counters, from which the required prior and conditional probabilities can be estimated:

a count N of the total number of instances encountered so far, a table C

i

that keeps track

of the relative frequency of class c

i

observed so far; a table AV

ij

that records the number

of examples with attribute value a

i

= v

ij

, and a table AVC

ijk

that records the number of

examples with a

i

= v

ij

belonging to class c

k

. Learning then simply consists in updating these

counters after processing each instance.

The algorithm is simple, naturally incremental, and robust in the face of noise. Its major

weakness is that we must assume that the given attributes are independent in their in
uence

on the class value, which severely limits the class of learnable concepts. Concepts like XOR

are inherently unlearnable. (But see section 4.6 below.)
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In the following, we will use this simple algorithm for incremental, on-line learning from a

stream of incoming examples. As we are interested in dynamic environments where changes

in context may lead to changes of the target concepts, the learner will be equipped with a

window of �xed length: as new examples are added to the window, the oldest ones will be

deleted from it if the window size is exceeded. This is to ameliorate the problem that very old

instances pertaining to an outdated context may prevent the learner from e�ectively adjusting

to new hypotheses. The window size is a user-settable parameter, but it remains �xed during

the entire learning process. The three tables C

i

, AV

ij

, and AVC

ijk

are always updated with

respect to the examples in the current window.

3 Contextual features and meta-learning: MetaL(B)

When the underlying target concept drifts or changes due to a changed context, the Bayes

induction algorithm will eventually adjust to the new concept, if the new context is stable

for a su�ciently long period. The smaller the �xed window, the faster the adjustment, as

old, contradictory examples will be forgotten more quickly. However, in domains that provide

explicit clues as to the current context, one would expect more: the learner should learn to

recognize such clues and should react in some appropriate way when changes in these clues

signal a potential context change. This section shows how such behavior can be achieved,

and presents an algorithm calledMetaL(B) (MetaLearning with underlying Bayes classi�er)

that learns at two levels at a time: a base-level Bayesian algorithm learns to classify incoming

examples, and a meta-level learner tries to explicitly identify potential contextual clues, which

are used to make the base-level classi�er more selective with respect to the training instances

used for prediction.

3.1 De�nitions

What are contextual clues? Turney (1993) was one of the �rst to explicitly acknowledge the

problem of context in learning and to try to give a formal de�nition of contextual and context-

sensitive features. Eventually, however, he relied on the user to explicitly identify contextual

features beforehand. His particular approach was motivated by batch learning problems where

the testing examples (i.e., those on which the learned concepts would eventually be applied)

might be governed by a di�erent context than the training examples from which the concepts

were learned. The contextual features were then used for di�erent kinds of normalization

at prediction time. In contrast, we present a method to automatically detect contextual

attributes in an on-line learning setting and to utilize this information during learning.

Our operational de�nition of contextual attributes, i.e., attributes that provide contextual

clues, is based on the notion of predictive features. Intuitively speaking, an attribute is

predictive if there is a certain correlation between the distribution of its values and the

observed class distribution. This is formalized in the following two de�nitions:

De�nition 1 (Predictive features). A feature (attribute-value combination) a

i

:v

ij

is predic-

tive if p(c

k

j a

i

= v

ij

) is signi�cantly di�erent from p(c

k

) for some class c

k

.

De�nition 2 (Predictive attributes). An attribute a

i

is predictive if one of its values v

ij

(i.e.,

some feature a

i

:v

ij

) is predictive.
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The most obvious kind of contextual clue one could imagine is that one or more attributes

would have constant values during a certain context (regardless of an instance's class). Think,

for instance, of the color of the walls in a particular room. This cannot be expected in general.

We will rely on a more abstract and powerful notion: a feature is considered a contextual

clue if it does not directly determine or in
uence the class of an object, but if there is a

strong correlation between its temporal distribution of values and the times when certain

other attributes are predictive. Intuitively, a contextual attribute is one that could be used

to predict which attributes are predictive at any point in time. This notion is formalized in

de�nitions 3 and 4:

De�nition 3 (Contextual features). A feature a

i

: v

ij

is contextual if it is predictive of

predictive features, i.e., if p(a

k

: v

kl

is predictive j a

i

= v

ij

) is signi�cantly di�erent from

p(a

k

:v

kl

is predictive) for some feature a

k

:v

kl

.

De�nition 4 (Contextual attributes). An attribute a

i

is contextual if one of its values v

ij

is

contextual.

We thus have a two-level de�nition of contextual attributes, with both levels of de�nition

being of the same type. De�nition 2 (predictive attributes) is identical to Turney's (1993)

notion of primary feature. De�nition 4 (contextual attributes) is more speci�c and opera-

tional than Turney's de�nition of contextual features (which essentially de�nes an attribute

as contextual if it is not in itself predictive, but would lead to less predictive accuracy if

omitted).

In the following, we specify procedures to identify potentially predictive and contextual

features and attributes during the incremental learning process.

3.2 Identifying contextual features through meta-learning

Assume our base-level Bayesian classi�er is learning on-line from a stream of incoming exam-

ples. After each learning step, we use a statistical �

2

test of independence to determine which

features are currently predictive:

Criterion 1 (Predictive features): A feature a

i

: v

ij

is recognized as predictive if the distri-

bution of classes in examples with a

i

= v

ij

is signi�cantly di�erent (as determined by a �

2

test with a given signi�cance level) from the unconditioned distribution of classes within the

current window.

Predictive features are computed relative to the current window because predictivity is a

temporary quality that may change with time and context. The information needed for the

�

2

test is readily available in the tables C

i

and AV C

ijk

that are maintained by the base-level

learner (see section 2 above).

Contextual features are also determined by a �

2

test, on a higher level. To this end, we

de�ne `meta-classes' ĉ

ij

: an instance I is in class ĉ

ij

if feature a

i

:v

ij

is recognized as predic-

tive at the time of classi�cation of I . Analogously to above, tables are maintained for these

meta-classes: the table

^

C

ij

counts the number of examples in meta-class ĉ

ij

,

^

AV

ij

counts

the number of examples with attribute value a

i

= v

ij

, seen since the very beginning, and

table AV

^

C

ijkl

counts the number of examples with a

i

= v

ij

in meta-class ĉ

kl

. In other words,

AV

^

C

ijkl

keeps track of the number of co-occurrences of a

i

:v

ij

combinations in examples and

the predictiveness of certain features a

k

:v

kl

. These three tables are maintained with respect
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Table 1: Tables maintained for base-level and meta-level learning.

Table Counts occurrences/rel.frequency of Computed over Used at

C

i

# examples in class c

i

current window base-level

AV

ij

# examples with a

i

= v

ij

current window base-level

AVC

ijk

# examples with a

i

= v

ij

in class c

k

current window base-level

^

C

ij

# examples in meta-class ĉ

ij

entire history meta-level

^

AV

ij

# examples with a

i

= v

ij

entire history meta-level

AV

^

C

ijkl

# examples with a

i

= v

ij

in meta-class ĉ

kl

entire history meta-level

to the entire learning history (not the current window), as changes of context and the emer-

gence of skewed predictivity distributions are long-term processes. Table 1 summarizes the

various tables that have to be maintained by our algorithm. There are then two conceivable

operational criteria by which one could detect contextual features and attributes:

Criterion 2a (Contextual features): A feature a

i

:v

ij

is recognized as contextual if the distri-

bution of meta-classes ĉ

kl

in examples with a

i

= v

ij

is signi�cantly di�erent (as determined

by a �

2

test with a given signi�cance level) from the unconditioned distribution of the ĉ

kl

,

observed over the entire learning history.

Criterion 2b (Contextual features): A feature a

i

:v

ij

is recognized as contextual if, for some

feature a

k

: v

kl

, the distribution of meta-class ĉ

kl

versus ĉ

kl

in examples with a

i

= v

ij

is

signi�cantly di�erent (as determined by a �

2

test with a given signi�cance level) from the

unconditioned distribution of ĉ

kl

versus ĉ

kl

, observed over the entire learning history.

Criterion 2a pays attention to global distribution changes between the predictivity of

di�erent features, while criterion 2b is basically a direct translation of de�nition 3 above:

a

i

:v

ij

is contextual if its values correlate with the predictivity of some other feature a

k

:v

kl

.

After some experimentation with both approaches, we have settled for criterion 2b (though

criterion 2a yields very similar results in most cases).

Obviously, since the de�nition of contextual attributes comprises two levels, the success of

this process hinges on the reliable recognition of predictive features. Our experience indicates

that very strict signi�cance levels for the �

2

tests yield the best results. More on that in

section 4.2 below.

3.3 Using contextual features to focus on relevant examples

Recognizing contextual features and attributes via this two-stage process constitutes an act

of meta-learning: the base-level learning process is monitored, and the temporal coincidence

of predictivity of certain features and the presence of other features in training instances leads

to the identi�cation of attributes that could provide contextual clues. The contextual features

are taken as a description or identi�er of the current context. They are now used to focus the

base-level Bayesian classi�er on relevant examples when making predictions: whenever a new

instance comes in, the set of attributes that are currently contextual (if any) is established,

and the base-level learner is then made to use for prediction only those examples from the

window that have the same values for the contextual attributes as the new instance to be
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Table 2: The complete two-level algorithm of MetaL(B)

Parameters: W (�xed window size), � (signi�cance level for �

2

test).

for each new incoming instance I do

begin

CAs := current context attributes(

^

C

ij

,

^

AV

ij

, AV

^

C

ijkl

, �);

Vs := values of attributes CAs in current instance I ;

RIs := examples in current window with values Vs for attributes CAs;

Class := class predicted for I by naive Bayesian classi�er from selected examples RIs;

add I to current window and drop oldest instance from window;

update tables C

i

, AV

ij

, AV C

ijk

for base-level Bayesian learning;

PFs := currently predictive features(C

i

, AV

ij

, AV C

ijk

, �);

update tables

^

C

ij

,

^

AV

ij

, AV

^

C

ijkl

for meta-level learning, given PFs

end;

classi�ed. In other words, the base-level classi�er uses only those instances as a basis for

prediction that seem to belong to the same context as the incoming example. If no attributes

are currently recognized as contextual, the entire window is used for Bayesian classi�cation

of the new instance. After classi�cation, the true class of the new instance is read, and the

learning tables for both base and meta-level are updated. Table 2 summarizes the complete

two-level algorithm of MetaL(B).

A consequence of this selective strategy is that base-level class prediction becomes more

expensive: the Bayesian classi�er can no longer use the available tables C

i

, AV

ij

, and AVC

ijk

,

as these summarize all examples from the window. The relative frequencies required for the

application of Bayes' rule must now be computed dynamically from the set of currently

relevant instances (which are a subset of the window). On the other hand, this is no more

expensive than the lookup in an instance-based learning algorithm (Aha et al., 1991) would

be, and the �xed window size at least puts an upper bound on the number of examples

that must be examined at each point in the learning process. In the learning experiments

performed so far, we have not encountered any practical problems in this respect.

Note that the algorithm MetaL(B) depends on two parameters. In all the experiments

reported below we used a signi�cance level of �=0.01 (99% con�dence that the observed

di�erence between conditioned and unconditioned distributions is not due to chance) and a

�xed window size of 100.

4 Experiments

In the following, various aspects of MetaL(B)'s capabilities and behavior are tested on

a number of synthetic domains which allow us to systematically experiment with di�erent

problem characteristics. Section 4.7 then evaluates the meta-learning approach on a hard

`real-world' problem where contextual e�ects might play a role, but the exact characteristics

of the problem are not known.
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Figure 1: E�ect of context identi�cation in STAGGER concepts.

4.1 Basic context identi�cation

To demonstrate the basic e�ects of the context detection mechanism, MetaL(B) was �rst

applied to a sequence of simple concepts �rst introduced by Schlimmer and Granger (1986) to

test their concept drift tracking algorithm STAGGER. The concepts were later on also studied

extensively in experiments with the FLORA algorithms (Widmer and Kubat, in press). In

a simple blocks world de�ned by three nominal attributes size 2 fsmall, medium, largeg,

color 2 fred, green, blueg, and shape 2 fsquare, circular, triangularg, we de�ne a sequence

of three target concepts (1) size = small^ color = red, (2) color = green_ shape = circular

and (3) size = (medium_ large). The (hidden) target concept will switch from one of these

de�nitions to the next at certain points, creating situations of extreme concept drift. In

addition, we introduce a fourth attribute ctxt 2 fc1, c2, c3g, which is used to create perfect

contextual information: whenever concept (1) is in e�ect, all examples (positive and negative)

are made to have value ctxt = c1, etc.

Figure 1 plots the on-line predictive accuracy of MetaL(B) vs. the simple Bayesian

classi�er on the concept sequence 1-2-3-1-2-3. Sequences of 600 examples each were generated

randomly and labeled according to the currently ruling concept, and after every 100 instances

the context plus underlying concept was made to change. On-line predictive accuracy was

computed as a running average over the last 20 predictions. The �gure plots the averages

over 10 (paired) runs. Parameter settings were � = 0:01 and window size = 100.

The curves show convincingly that MetaL(B) does make e�ective use of the contextual

information contained in the data. We witness both a less dramatic drop in accuracy at points

of context change, and signi�cantly faster re-convergence to high accuracy levels. Obviously,

MetaL(B) quickly identi�es the contextual attribute ctxt (soon after the context has �rst

switched from 1 to 2) and from then on concentrates only on examples pertaining to the

new context, whereas the naive Bayes algorithm gives equal consideration to all examples in

the current window, including those the still pertain to the old context. The fact that both

algorithms do not always reach an accuracy of 100% within the span of 100 instances is due

to a certain inertia of the underlying Bayesian learner and, in the case of concept (1), the

sparsity of the concept. The improvement produced by meta-learning, however, is evident.
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Figure 2: Predictive features and contextual attribute in STAGGER experiment.

To understand more precisely what is going on, it is instructive to look at the details

of which features are identi�ed as predictive and contextual, and when. Figure 2 shows,

for each feature, at what times it was considered predictive by MetaL(B) in a single run.

The topmost bar indicates when the attribute ctxt was recognized as contextual. No other

attribute was ever considered contextual in the entire run.

The identi�cation of predictive attributes works basically as expected: of the `base-level'

attributes (the ones used in our hidden concept de�nitions), the two most relevant color and

size features are recognized as predictive about midway during context (1), the color and

shape features during context (2), and size during context (3).

1

One can observe a certain

inertia in this recognition process. It takes a while for predictive features to establish them-

selves, and they are considered predictive way into the following context. This is simply an

e�ect of the �xed window (of 100 instances, in this case) from which predictivity is computed.

However, that has little e�ect on the e�ciency of the usage of context information: it may

take a while for contextual attributes to be �rst recognized, but once the context attributes

are established, they immediatly lead to selective behavior when the context changes.

Interestingly, the attribute ctxt is also recognized as predictive, and that creates a sur-

prising e�ect: ctxt is recognized as contextual because of itself becoming suddenly predictive!

That ctxt is identi�ed as predictive in context (2) is easily explained by the observation that

the class distribution (positive vs. negative instances) is very di�erent in the �rst two con-

texts: positive examples in context (1) are much rarer than positive examples in context (2),

because concept (1) (size = small^ color = red) is very speci�c | only 11% of the possible

size-color-shape combinations are instances of concept (1). So the feature ctxt = c2 in the

examples during context (2) is accompanied by a class distribution that is very di�erent from

when ctxt = c1, which makes ctxt a predictive attribute (see de�nition 2 in section 3.1). At

the same time, the predictiveness of ctxt is accompanied by constant values of ctxt = c2,

whereas ctxt was not predictive while ctxt was c1 in context (1), which makes ctxt also a

contextual attribute (de�nitions 3 and 4). The status of ctxt as a contextual attribute is later

corroborated by the changing temporal distribution of the other predictive features.

This extreme change in class distribution made it very easy to establish ctxt as contextual.

1

Of course, all values of the respective attributes (in principle), not just those appearing in the positive

concept de�nition; the other values are predictive of negative instances.
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Figure 3: STAGGER concepts | window size 50.
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Figure 4: STAGGER concepts | window size 300.

In order to remove this e�ect in the other experiments, in all the subsequently reported tests

with synthetic domains we made sure that the absolute distribution of classes would be the

same in each context (50% positive, 50% negative).

4.2 The e�ect of the system parameters

MetaL(B) depends on two system parameters: the signi�cance level � used in the �

2

tests

at two levels, and the �xed window size. A signi�cance level of � = 0:01 has produced

good results in all our experiments so far. Less strict signi�cance levels generally tend to

make the meta-learner less discriminating: it becomes more easily possible for features to be

accidentally `recognized' as predictive for short periods, which causes frequent changes in the

distribution of predictive features. The e�ect is that certain other features are erroneously

labeled contextual, and the learning process becomes unstable. On the other hand, tighter

signi�cance levels (e.g., � = 0:001) have left our results virtually unchanged. Ultimately, the

optimal setting of � will depend on the characteristics of the given application domain. This
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Figure 5: STAGGER concepts + 10 irrelevant attributes.

issue will require more systematic investigation in the future.

As for the window size, the smaller the window, the faster the base-level Bayesian learner

will adapt to changes, and thus the smaller the di�erence between meta-learning and simple

base-level learning. This is borne our in Figure 3, where the two algorithms were trained on

the STAGGER concepts with a �xed window size of 50. The advantage of meta-learning is

still visible. For both learners, a window that is too narrow will adversely a�ect predictive

accuracy, as the Bayesian classi�er will base its predictions on too few data points.

On the other hand, too large a window reduces the base-level learner's ability to adjust

to changes and, if it permanently contains con
icting instances from di�erent contexts, may

prevent the classi�er from ever reaching high predictive accuracy. Figure 4 plots the results

on the STAGGER task, when the window size is set to 300. The simple Bayesian classi�er

fails completely, while MetaL(B) detects the contextual clue somewhere during context (2)

and uses it to always select the correct examples for prediction. After the �rst 300 examples,

the window always contains instances of all three contexts, and MetaL(B) perfectly masters

context changes from then on. However, too large a window may also cause problems for

MetaL(B): in a large set of partially con
icting instances, it may become impossible to

�nd predictive features according to our de�nition, and then meta-learning will never �nd

contextual attributes, even if they are very clear. Generally, then, the window should be

large enough for stable concept identi�cation, but no larger than necessary.

4.3 Irrelevant attributes and noise

The presence of irrelevant attributes in the data has a detrimental e�ect on many inductive

learners (most notably, instance-based ones). Bayesian learners, on the other hand, are gen-

erally quite robust against irrelevant attributes. One would thus expect MetaL(B) not to

be easily fooled by the presence of random features in the data. This should also hold for

the meta-level learning algorithm, which also has a Bayesian 
avor. Figure 5 con�rms our

expectations. Here, MetaL(B) and the naive Bayesian classi�er are compared on the basic

task (see section 4.1), where the training examples were extended with 10 irrelevant attributes

with randomly assigned values (from domains of 3 possible values each). Both learners still
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Figure 6: STAGGER concepts | 5 irrelevant attributes and 10% attribute noise.
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Figure 7: STAGGER concepts | 5 irrelevant attributes and 20% attribute noise.

perform well, and the context-detection capability is more or less una�ected, as evidenced by

the marked advantage of MetaL(B).

It is also well known that Bayesian learners are inherently noise-tolerant. To check how

noise a�ects the context-detection facility, experiments with di�erent levels of attribute noise

were run (where a noise level of �% means that for each attribute in a training example,

its true value is replaced by a random value from its domain with probability �=100). Both

the `base-level' attributes color, size, and shape and the context attribute ctxt were equally

subjected to noise. In addition, 5 irrelevant attributes with random values were added to

the example descriptions. Figures 6 and 7 show the results of experiments with noise levels

� = 10% and � = 20%, respectively. Meta-learning still leads to improved adjustment to

changes, but high noise levels may produce e�ects of instability, as can be seen from Figure

7. Features that are erroneously regarded as contextual, even if only for a short time, lead

the Bayesian classi�er to rely on too few examples for classi�cation decisions.
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Figure 9: Abrupt vs. gradual context change.

4.4 Gradual vs. abrupt context changes

The following experiment is concerned with what might be called the speed of context changes,

that is, whether contexts and the associated concepts change abruptly or gradually. As in

(Widmer and Kubat, in press), we use a linear function � (see Figure 8) to model the speed

of change. The value of � at any point in time represents the degree of dominance of the

old context A over the new context B or, in other words, the probability that the current

instance still pertains to the old context. � = 1 means that A is fully in e�ect, � = 0 means

that B has completely taken over. X1 is the point where the context begins to change. The

slope of the function � can be characterized by �x, the number of training instances until �

reaches zero. Between X1 and X1+�x, � � 100% of the examples still belong to context A,

(1� �) � 100% to B.

Figure 9 compares MetaL(B) and the simple Bayesian classi�er on di�erent rates of

change. Target concepts are our three familiar STAGGER concepts with additional context

attribute ctxt; context (1) always starts to change into (2) after 100 instances, (2) starts to

change into (3) after 300 instances (see the dotted vertical lines); the change rates compared

are �x = 0 (abrupt change), �x = 50, and �x = 100 (slow drift). The results are again

averages over 10 runs.

The results are as expected. Naturally, the slower the change, the longer the valley of

decreased accuracy. But it is evident that the e�ectivity of meta-learning is more or less

una�ected by the speed of change. In particular, unlike systems like FLORA4 (Widmer,
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Figure 10: STAGGER concepts with changing conjunctive contextual clues.

1994), MetaL(B) has no problems with slow drift | it is the overall distributions of the

predictivity of features that determine MetaL(B)'s behavior, not necessarily dramatic short-

term changes.

4.5 Complex and imperfect contextual clues

In real life, contexts may be de�ned by more complex combinations of features. As an

additional complication, the identity of the contextual attributes themselves may be changing.

Generally, of course, the meta-learner su�ers from the same fundamental limitation as the

base-level Bayesian classi�er: it must assume independence between contextual attributes.

Preliminary experiments suggest that MetaL(B) has no problems with conjunctively

de�ned contexts; disjunctive contexts may cause problems.

For some simple experiments, we use again the STAGGER concepts, but replace the

attribute ctxt with three contextually relevant attributes a 2 fa

1

; a

2

; a

3

g, b 2 fb

1

; b

2

; b

3

g, and

c 2 fc

1

; c

2

; c

3

g. We de�ne a series of three contexts as follows: context (1) (associated with

the �rst STAGGER concept size = small ^ color = red) is characterized by a = a

1

^ b = b

1

,

context (2) by b = b

2

^ c = c

2

, and context (3) by a = a

3

^ c = c

3

. Figure 10 compares the

two learners on this task. Clearly, MetaL(B)'s performance is not a�ected by these more

complex contextual clues.

The story changes considerably when contexts are characterized by disjunctive combi-

nations of features. Consider the three contexts a = a

1

^ b = b

1

, b = b

2

_ c = c

1

, and

a = a

2

_ a = a

3

, again associated with the three STAGGER concepts.

2

As Figure 11 shows,

MetaL(B) outperforms the simple Bayesian classi�er in context (1), which is de�ned by a

conjunction of features, but is clearly inferior in the other two contexts.

The explanation of this negative e�ect involves two factors. One problem is that contextual

information is used conjunctively in MetaL(B)'s focusing strategy | only those examples

from the window are used for prediction that share all context attribute values with the

new instance |, which makes the base-level learner rely on too few examples in some cases.

2

In e�ect, these context de�nitions are equivalent in form and complexity to the `base-level' concepts to be

learned.
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Figure 11: STAGGER concepts with partially disjunctive contextual clues.

Replacing MetaL(B)'s instance selection strategy with a less brittle method (e.g., feature

weighting | see section 6 below) might solve this problem.

A second problem is that changes in the identity of contextual attributes are generally

di�cult to track. In our example, attribute a is contextually relevant in contexts (1) and (3),

but not in context (2). This is more or less impossible to detect, given the data and criteria

to which MetaL(B) has access. MetaL(B) considers a to be contextual during the entire

learning episode. But then, this may not be a serious problem in practical applications; it is

hard to think of realistic situations where the contextual attributes change so radically.

Another potential complication of our basic scenario that should be studied is that contexts

may not always be characterized by perfectly constant values. Experiments with noise in the

context attributes suggest thatMetaL(B) is highly robust to that kind of imperfection, but

more re�ned experiments will be needed to study other types of imperfect clues (e.g., changing

value distributions).

4.6 \Quasi-contextual learning"

An interesting side-e�ect of the meta-learning strategy is that it may in certain cases help

the Bayesian learner to overcome its inherent representational limitations. Remember that

a naive Bayesian classi�er must assume the independence of attributes, which severly limits

the class of concepts it can represent.

As an example, consider the XOR function: in the concept x = 1� y = 1, neither of the

two attributes x and y in isolation contributes directly to the classi�cation of the examples.

A Bayesian classi�er will always linger around the base-level accuracy of 50%, given a set of

uniformly distributed examples of XOR.

The same holds for MetaL(B), as long as the examples are presented in random order.

However, if during some period of the learning episode examples appear in a skewed distribu-

tion, meta-learning may exploit this by learning to regard one of the attributes as contextual

and the other as predictive of the concept. This two-level view of the XOR function would

then allow the system to perfectly classify from that point on: if context is x = 1, then y = 0

implies XOR, and vice versa.
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Figure 12: \Quasi-contextual" learning: XOR with 5 irrelevant attributes.

Figure 12 demonstrates this e�ect. Here, MetaL(B) and the naive Bayesian classi�er

were trained on sequences of XOR examples with �ve additional irrelevant attributes, where

during a certain period P (between the 100th and the 300th instance), examples | both

positive and negative | with x = 1 were more frequent than those with x = 0 (90% vs. 10%).

Before example 100 and after example 300, instances were presented in a uniform distribution.

The results are again averages over 10 runs.

The e�ect is very clear: MetaL(B) does indeed single out x as the contextual attribute

at some point during period P, which allows it to reach an accuracy level of (almost) 100%

quickly, and also to hold on to this level during the following random period. The simple

Bayesian classi�er improves its performance between examples 100 and 300 (it can never reach

100%), but quickly drops to 50% as the instances are again uniformly distributed.

It may seem surprising that MetaL(B) fails to achieve a perfect 100% during period

P, but then performs perfectly afterwards. Close examination reveals that this is due to

the limited window size of 100 and the highly unbalanced instance distribution during P.

Instances with x = 0 are so rare that the prediction of the focused base-level learner is based

on very few cases whenever x = 0 in an incoming example, which allows coincidental features

to mislead the Bayesian classi�er. It is only later, when the examples are again uniformly

distributed, that predictive performance becomes perfect.

In summary, this result indicates that meta-learning may be useful also in settings that are

not normally thought of as characterized by changing contexts. If there are periods of skewed

example distributions, for whatever reason, meta-learning can improve the discriminating

power of an underlying (e.g., Bayesian) learning algorithm that has problems with disjunctive

concepts.

4.7 Learning from real data

MetaL(B) was also tested on a di�cult `real-world' problem with unknown characteristics.

The problem comes from the domain of tonal music and consists in learning to predict (on-

line) what chord should accompany the next note in a given melody. Speci�cally, the task is

to correctly predict one of three classes: tonic harmony (e.g., the note is to be played with

a C major chord, if the piece is in the key of C major), dominant (i.e., a G major chord in

the key of C), or other. In terms of a real scenario, imagine a guitar player who is trying to
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Learning algorithm Mean acc. (%) Std. dev. # runs better max.better

Naive Bayes: 68.75 1.07 0 |

MetaL(B): 74.62 1.44 50 9.22

Table 3: Results of Schubert experiment.

accompany a singer in real time on pieces he does not know and at least tries to get the two

most important chord types (tonic and dominant) right.

The data used for the experiment were the melodies of Franz Schubert's German Mass,

a collection of 8 songs of varying length (between 42 and 113 notes). There are 553 melody

notes in total. The distribution of classes is 290 (52%) tonic, 179 (32%) dominant, and 84

(15%) other.

The individual notes were described by 11 discrete attributes: the mode of the current

piece (major or minor), the meter (e.g., 4/4, 3/4, or 6/8), the current tactus (i.e., whether the

major metrical level | the level at which one would tap one's foot in rhythm | is the level

of quarter of eighth notes), the current local key (to describe modulations within a piece),

and various attributes that describe the current note itself and its predecessor: scale degree

(a tonality-independent abstraction of the note name), duration, and metrical strength of the

current note, duration of the note's predecessor, the interval and its direction between the

previous and the current note, and the harmony that accompanied the previous note.

We conjectured that more global properties like mode, meter, tactus, and local key might

have a context-de�ning e�ect in certain cases, i.e., that the rules determining the harmonic

role of a note might be slightly di�erent in some of these contexts. However, we don't know

this in detail, and the contextual e�ects, if any, might be weak and di�cult to discover.

What makes the problem even harder is that the given attributes are highly inadequate:

there are numerous cases of notes with the same description but di�erent classi�cation. Har-

monic choices are by no means unique, and the speci�c decision also depends on aspects of

larger context (musical form, harmonic rhythm, etc.) that are not captured by our local

representation. It is thus clearly impossible to achieve a predictive accuracy of anything close

to 100%.

In order to reduce the e�ect of the speci�c ordering of the songs, the algorithms were

run on 50 random permutations of the 8 songs. The window size was set to 300, so that the

window would contain notes from more than one song. The results, in terms of the total

number of examples classi�ed correctly, were as follows: the naive Bayes learner achieved

an average accuracy (over the 50 runs) of 68.75%, with a standard deviation of 1.07. The

accuracy ofMetaL(B) on the same data was 74.62%, standard deviation 1.44. The di�erence

of 5.87 percentage points is signi�cant at the 0.0001 level, according to a two-sided t-test.

MetaL(B) scored better than the simple Bayesian classi�er in all of the 50 runs, with a

maximum advantage over the base-level learner of 9.2 percentage points. Table 3 summarizes

the results.

The attributes most often singled out as contextual were meter and tactus, less frequently

mode, and very rarely local key (which was surprising to us, but probably indicates that the

periods of modulation are too short and unstable to be contextually signi�cant). Interestingly,

also note duration was sometimes considered contextual: it does not help in directly predicting
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the harmony, but it is useful as a `secondary' decision criterion. In other words, there is some

dependency between this attribute and some more predictive ones, and MetaL(B) resolves

the dependency by treating note duration as a contextual attribute.

As a kind of afterthought, we propose an alternative view of contextual meta-learning as

realized in MetaL(B). Instead of a focusing or selection strategy, it could also be interpreted

as a process of transfer of (learned) information or knowledge across contexts. That perspec-

tive leads one to ask the following question: could it be that the 8 pieces are so di�erent that

there cannot be much useful transfer from one piece to the next, in other words, that one

would achieve better overall results by learning from each piece separately, simply discarding

the learned information when a new piece starts? And indeed, it turns out that the base-

level learner, when run on each piece separately, reaches a total accuracy over the 8 songs

of 69.54%, which is slightly higher (though not at a statistically signi�cant level) than the

68.75% achieved by simple Bayesian learning with a �xed window over the whole sequence!

MetaL(B), on the other hand, achieves markedly higher accuracy. The conclusion is that

indiscriminate transfer can indeed be harmful, butMetaL(B) performs what might be called

selective cross-contextual transfer | only those pieces of information are carried over that

appear relevant to the current context.

5 Relation to other work

The idea that real-world concepts are not necessarily perfectly stable and well-de�ned has

only gradually become a topic for machine learning research. Michalski (1987) was one of

the �rst to discuss the problem of context dependence. He proposed a two-tiered knowledge

representation scheme for learning and describing context-dependent concepts, where the �rst

tier (the `base concept representation') would capture the more general, typical aspects of a

concept, and the second tier (the `inferential concept interpretation') would contain relevant

knowledge to dynamically determine the actual meaning of the concept in a particular context.

Algorithms for learning both tiers were implemented in the system POSEIDON (Bergadano

et al., 1992).

Making adjustments (before or after base-level learning) to account for context e�ects

has been the focus of some recent application-oriented research. Watrous and Towell (1995)

describe a neural network for ECG monitoring that is augmented with an explicit `patient

model'. The model consists of three pre-de�ned parameters. It is used to adjust the neural

classi�er to the individual characteristics of a particular patient by modulating the weights on

the inter-layer connections. The model can be trained on individual patients. The network

thus has an explicit context model that can be adjusted to the current context in a separate

training phase. A similar approach was taken to adapt a classi�er to di�erent speakers in

speech recognition (Watrous, 1993).

Earlier, Katz et al. (1990) had described a two-stage neural network classi�er, where a

higher-level network learned to switch between a set of n base-level classi�er. The application

domain was the recognition of targets on infrared and daytime television images. Di�erent

contexts were characterized by features such as lighting conditions and maximum image con-

trast. Again, these contextual attributes were explicitly de�ned beforehand. Examples from

di�erent contexts had to be presented in separate batches.

Turney (1993) discusses the problem of context from a di�erent angle. He is concerned

with classi�cation problems where the test examples (those that will be processed using the
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learned classi�er) are governed by a di�erent context than the training set from which the

classi�er was learned. He discusses several normalization strategies that use information about

contextual and context-sensitive features to transform the examples to be classi�ed. The

intent is to reduce the context-sensitivity of certain features. The methods assume that the

contextual and context-sensitive features are known a priori. The methods are demonstrated

in a number of practical applications, among them, the diagnosis of aircraft engines (Turney

and Halasz, 1993).

All these approaches assume that contextually relevant attributes are known, and that

the learner is in some way explicitly trained on di�erent contexts. The novelty of our method

is that contextual features are detected automatically and dynamically, during the regular

(on-line) learning process, and that they are then used immediately to focus the classi�er on

relevant information.

With respect to on-line learning and the dynamic tracking of changes, the �rst to address

the problem of concept drift, i.e., that concepts may change over time, were Schlimmer and

Granger (1986). Their system STAGGER learns by updating statistical (Bayesian) measures

of logical su�ciency and necessity of a set of description items in a distributed concept

representation, and by simultaneously and incrementally searching the space of description

items that can be constructed by conjunction and disjunction of individual features.

The FLORA family of algorithms (Widmer and Kubat, in press) introduces the idea of

explicitly forgetting old instances and of dynamically controlling the rate of forgetting during

learning. Forgetting is controlled by a window over the stream of incoming examples, and the

window size is dynamically adjusted by a heuristic that monitors the learning process. Similar

ideas were also put forward for unsupervised learning situations (Kilander and Jansson, 1993).

In addition, FLORA3 (Widmer and Kubat, 1993) introduces a mechanism for storing and re-

using learned concept descriptions in environments with changing contexts; the goal is faster

re-adaptation to concepts that had already appeared in the past. In situations of abrupt

context change, the FLORA systems may be a bit more reactive than MetaL(B), but they

are also more brittle; heuristic window adjustment is based on a number of parameters whose

optimal setting may be a delicate matter. MetaL(B) was designed for a di�erent class of

learning situations, where explicit context clues are present. The identi�cation of these is

MetaL(B)'s key to success. Explicit context identi�cation and representation also opens the

door to a number of other interesting possibilities (see below).

As suggested above, there is also a certain relation between our meta-learning scenario

and the notion of transfer of knowledge between learning tasks, as mentioned { though in

rather di�erent settings | by, e.g., Pratt et al. (1991), Ourston and Mooney (1991), Caruana

(1993), and Thrun and Mitchell (1995). While these authors study the e�ect of cross-category

transfer, MetaL(B) can be interpreted as performing cross-context transfer. The e�ect can

be most clearly seen in the Schubert experiment above.

In terms of the dynamic selection of predictors, there is some relation betweenMetaL(B)

and instance-based learners like IB3 (Aha et al., 1991). IB3 determines predictive exemplars

by monitoring each stored instance's individual predictive accuracy. Only those exemplars

are used for prediction that have established a stable classi�cation record. MetaL(B), on

the other hand, uses identi�ed contextual attributes to select predictive exemplars. The two

mechanisms are thus quite di�erent, both in intent and in e�ect.

Finally, the capability of \quasi-contextual learning" discussed in section 4.6 also places

MetaL(B) in the vicinity of systems that try to increase the representational power of

Bayesian classi�ers (e.g., Kononenko, 1991; Langley, 1993).
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6 Discussion and directions for further research

The main contribution of this paper is to have shown that it is indeed possible for an incre-

mental learner to autonomously detect, during on-line object-level learning, contextual clues

in the data if such exist. The key is an operational de�nition of predictive and, based on those,

contextual features. Identi�cation and subsequent use of contextually relevant feature is an

act of meta-learning. MetaL(B), our speci�c incarnation of this meta-learning architecture,

employs a simple Bayesian classi�er as the object-level learning algorithm and uses contextual

attributes, once identi�ed, to focus the object-level learner on examples that appear pertinent

to the current context. The algorithm has been shown to be powerful and quite robust in a

number of test domains.

A general advantage of the MetaL(B) algorithm, at least as compared to systems like

FLORA3 or FLORA4 (Widmer and Kubat, 1993; Widmer, 1994), is that it depends on only

two parameters: the signi�cance level � used in the �

2

tests, and the �xed window size.

Experiments so far indicate that the algorithm is not exceedingly sensitive to the speci�c

settings of these. On the other hand, despite the apparent simplicity of the de�nitions and

the MetaL(B) algorithm, there are some subtle interactions between (the detection of)

predictive and contextual features, as could be seen in section 4.1. These need to be further

studied.

MetaL(B) is currently limited to domains described by symbolic, discrete attributes.

A generalization to numeric features should not prove too di�cult. Instead of maintaining

counts of attribute-value and attribute-value-class combinations, the Bayesian classi�er could

simply assume that numeric features follow a normal distribution and keep track of the mean

values and standard deviations. At the meta-level, the �

2

tests would have to be replaced by

an appropriate test of independence for continuous distributions.

The meta-learning framework proposed is very general. The choice of a Bayesian classi�er

for object-level learning was rather arbitrary, motivated mainly by considerations of elegance.

The meta-level, i.e., the criteria used to identify predictive and contextual features, is of a

Bayesian nature, so employing a Bayesian learner for on-line classi�cation seemed natural.

The power of meta-learning, however, does not depend on the underlying generalizer, and we

expect instantiations or variants of this general model for other base-level learners.

3

One highly interesting extension suggests itself immediately. It is a trivial matter to

augment the meta-level algorithm with the ability to predict which attributes are or should be

predictive for each incoming example, given the instance's values for the currently recognized

context attributes. The tables updated in the meta-learning process (

^

C

ij

,

^

AV

ij

, and AV

^

C

ijkl

)

contain all the necessary statistics for the prediction of predictive attributes via Bayes' rule.

As these predictions are not categorical, but associated with probabilities, they could be

trivially used for feature weighting in object-level learning. Features believed to be predictive

relative to the current context would receive correspondingly higher weights, which might

lead to less brittle behavior than strict exemplar selection in noisy or otherwise unstable

situations. Feature weighting is not directly possible in MetaL(B), because the underlying

Bayesian classi�er combines feature information in a multiplicative manner. But in other

types of learners (e.g., instance-based ones) this would be a simple possibility.

Generally, we regard the work presented here as a small �rst step into what might become

a rich �eld of research. The identi�cation of contextual features is a �rst step towards naming,

3

Hence the explicit (B) in the name MetaL(B); it would be replaced appropriately in other instantiations.
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and thus being able to reason about, contexts. That is the level where we expect the full power

of meta-learning to become apparent. Reasoning and learning about contexts could be used in

a variety of ways and for a number of purposes, e.g., constructive induction, the recognition of

(and faster readjustment to) previously encountered contexts, the emergence of expectations

and predictions of the next context, etc.

There is a very interesting connection between our learning model and the notion of

life-long learning, as recently proposed by Thrun and Mitchell (1995). Our learner can be

interpreted as performing cross-contextual transfer, and it certainly is a `lifelong' learner. At

�rst sight, the two models might appear to be orthogonal (one performs transfer across learn-

ing tasks, the other across contexts within a single task), but there are interesting parallels,

and further research might lead to the formulation of a more general and powerful model that

integrates both aspects of transfer.
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