
Structural Regression Trees

1

Stefan Kramer

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

E-mail: stefan@ai.univie.ac.at

Keywords: Inductive Learning, Inductive Logic Programming,

Regression

Abstract

In many real-world domains the task of machine learning algorithms is

to learn a theory predicting numerical values. In particular several stan-

dard test domains used in Inductive Logic Programming (ILP) are con-

cerned with predicting numerical values from examples and relational and

mostly non-determinate background knowledge. However, so far no ILP

algorithm except one can predict numbers and cope with non-determinate

background knowledge. (The only exception is a covering algorithm called

FORS.)

In this paper we present Structural Regression Trees (SRT), a new al-

gorithm which can be applied to the above class of problems by integrating

the statistical method of regression trees into ILP. SRT constructs a tree

containing a literal (an atomic formula or its negation) or a conjunction of

literals in each node, and assigns a numerical value to each leaf. SRT pro-

vides more comprehensible results than purely statistical methods, and can

be applied to a class of problems most other ILP systems cannot handle.

Experiments in several real-world domains demonstrate that the approach

is competitive with existing methods, indicating that the advantages are

not at the expense of predictive accuracy.

1

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen

Forschung (FWF) under grant number P10489-MAT. Financial support for the Austrian Re-

search Institute for Arti�cial Intelligence is provided by the Austrian Federal Ministry of Sci-

ence, Research, and Arts.

1 Introduction

Many real-world machine learning domains involve the prediction of a numerical

value. In particular several test domains used in Inductive Logic Programming

(ILP) (including the Mesh data sets [6] and the problem of learning quantitative

structure-activity relations (QSAR) [12] [13]) are concerned with the prediction

of numerical values from examples and relational background knowledge. This

kind of learning problem is called Relational Regression in [7], and can be formu-

lated in the \normal" ILP framework (i.e., it is not part of the non-monotonic ILP

framework which includes the closed-world assumption). Nevertheless, Relational

Regression di�ers from other ILP learning tasks in that there are no negative ex-

amples. So far, two methods have been applied to this problem: FORS [15]

builds a �rst-order theory by a covering algorithm. The other approach, a com-

bination of DINUS [16] and RETIS [14], transforms the learning problem into

a propositional language, and subsequently applies a regression tree algorithm

to the transformed problem [10]. The transformation, however, does not work

for non-determinate background knowledge, which is a strict limitation of the

approach.

In this paper we present Structural Regression Trees (SRT), a new algorithm

for predicting numerical values from examples and relational background knowl-

edge. SRT di�ers from FORS in its use of divide-and-conquer instead of separate-

and-conquer (i.e., it works like a decision tree algorithm and not like a covering

algorithm). In contrast to DINUS/RETIS, SRT solves the problem in its original

representation, and does not require transforming the problem. Moreover, SRT

can utilize non-determinate background knowledge.

To simplify the presentation, we �rst review work in statistics and machine

learning that is related to our approach. In the third section we will describe

the method, including the solution for the problem of non-determinate literals.

Furthermore, we present a new method for detecting outliers by analogy. Subse-

quently, we discuss results of experiments in several real-world domains. Finally,

we draw our conclusions, and sketch possible directions of further research.

2 Related Work

The classical statistical model for the prediction of numerical values is linear

least-squares regression. Re�nements and extensions like non-linear models are

also well-known and used in many real-world applications. However, regression

models have several limitations: First of all, regression models are often hard to

understand. Secondly, classical statistical methods assume that all features are

equally relevant for all parts of the instance space. Thirdly, regression models

do not allow for easy utilization of domain knowledge. The only way to include

knowledge is to \engineer" features, and to map these symbolic features to real-

1

valued features.

In order to solve some of these problems, regression tree methods (CART [3],

RETIS [14], M5 [21]) have been developed. Regression trees are supposed to be

more comprehensible than traditional regression models. Furthermore, regression

trees by de�nition partition the instance space, so the features may be of di�erent

importance for di�erent parts of the space. The basic idea of regression trees

according to CART is to minimize the least squared error for the next split of

a node in the tree, and to predict the average of the dependent variable of all

covered training instances for unseen instances in a leaf. RETIS and M5 di�er in

that they do not assign single values to the leaves, but linear regression models.

Sophisticated post-pruning methods have been developed for CART, since the

method grows the tree until every leaf is \pure", i.e. the leaf covers exactly one

instance. The regression tree resulting from the growing phase is usually bigger

than a classi�cation tree, since it takes more nodes to achieve pure leaves.

Manago's KATE [17] learns decision trees from examples represented in a

frame-based language that is equivalent to �rst-order predicate calculus. KATE

makes extensive use of a given hierarchy and heuristics to generate the branch

tests. To our knowledge, KATE was the �rst system to induce �rst-order theories

in a divide-and-conquer fashion.

Watanabe and Rendell [29] also investigated the use of divide-and-conquer

for learning �rst-order theories. Although their so-called structural decision trees

are used for the prediction of categorical classes and not continuous classes, it is

the closest work found in the literature.

3 Description of the Method

3.1 Overview

SRT is an algorithm which learns a theory for the prediction of numerical values

from examples and relational (and even non-determinate) background knowledge.

The algorithm constructs a tree containing a literal (an atomic formula or its

negation) or a conjunction of literals in each node, and assigns a numerical value

to each leaf.

More precisely, SRT generates a series of increasingly complex trees, and sub-

sequently returns one of the generated trees according to a preference criterion.

SRT's preference criterion is based on minimum description length (MDL) prin-

ciple [24]. In such a way, we try to avoid over�tting the data in the presence of

noise.

For the construction of a single tree, SRT uses the same method as used for

the usual top-down induction of decision trees [22]. The algorithm recursively

builds a binary tree, selecting a literal or a conjunction of literals (as de�ned by

user-de�ned schemata [26]) in each node of the tree until a stopping criterion is

2

ful�lled. With each selected literal or conjunction, the examples covered by a

node are further partitioned, depending on the success or failure of the literal(s)

on the example.

The selection of the literal or conjunction is performed as follows: Let I be

the set of training instances covered by a leaf l in a partial tree, and c be the

conjunction of all literals in the path from the root of the tree to l. (For a

de�nition of all used terms see table 1.) Then every possible test t is evaluated

according to the resulting partitioning of the training instances I in l. The

instances I are partitioned into the instances I

1

� I for which proving c ^ t

succeeds, and into the instances I

2

� I for which proving c ^ t fails. For every

possible test t we calculate the sum of the squared di�erences between the actual

values y

i;j

of the training instances and the average �y

i

of I

i

. From all possible

tests, SRT selects t

�

2 T which minimizes this sum of squared di�erences (see

equation 1). When the stopping criterion is ful�lled, the average �y

i

is assigned

to the leaf as the predicted value for unseen cases that reach the leaf.

Sum Squared Errors =

2

X

i=1

n

i

X

j=1

(y

i;j

� �y

i

)

2

(1)

I set of instances covered by a leaf l in a partial tree

c the conjunction of all literals in the path from the root of the tree to l

I

1

subset of I for which proving c ^ t (t 2 T , the set of possible tests)

succeeds

I

2

subset of I for which proving c ^ t fails (I = I

1

[I

2

, I

1

\ I

2

= ;)

n

1

number of instances in I

1

(n

1

= jI

1

j)

n

2

number of instances in I

2

(n

2

= jI

2

j)

y

1;j

value of the dependent variable of a training instance j in I

1

y

2;j

value of the dependent variable of a training instance j in I

2

�y

1

average of all instances in I

1

�y

2

average of all instances in I

2

Table 1: De�nition of terms

From another point of view, each path starting from the root can be seen as

a clause. Every time the tree is extended by a further literal or conjunction, two

further clauses are generated: One of them is the current clause (i.e. the path

in the current partial tree) extended by the respective literal or conjunction of

literals. The other clause is the current clause extended by the negation of the

literal(s). Table 2 shows a simple example of a structural regression tree in clausal

form. The three clauses predict the biological activity of a compound from its

structure and its characteristics. Depending on the conditions in the clauses, the

3

theory assigns either 8.273 or 6.844 or 6.176 to every unseen instance. In the

following, we will use this latter, clausal view on the process.

activity(Drug,8.273) :- struct(Drug,Group1,Group2,Group3),

(pi doner(Group3,X), X< 2).

activity(Drug,6.844) :- struct(Drug,Group1,Group2,Group3),

n+ (pi doner(Group3,X), X< 2),

h doner(Group1,0).

activity(Drug,6.176) :- struct(Drug,Group1,Group2,Group3),

n+ (pi doner(Group3,X), X< 2),

n+ h doner(Group1,0).

Table 2: Example of a structural regression tree in clausal form

The simplest possible stopping criterion is used to decide if we should further

grow a tree: SRT stops extending a clause, when no literal(s) can produce two

further clauses that both cover more than a required minimumnumber of training

instances. In the following this parameter will be called the minimum coverage of

all clauses in the theory. Apart from its use as a stopping criterion, the minimum

coverage parameter has the following bene�ts: We have direct control over the

complexity of the trees being built. The smaller the value of the parameter, the

more complex the tree will be, since we allow for more speci�c clauses in the

tree. In such a way we can generate a series of increasingly complex trees, and

return the one which optimizes a preference function. Furthermore, this solution

prevents splits that are more asymmetric than the parameter allows: To a certain

degree, the minimum coverage controls how balanced the resulting trees will be.

SRT generates a series of increasingly complex trees by varying the minimum

coverage parameter. The algorithm starts with a high minimum coverage, and

decreases it from iteration to iteration. Fortunately, many iterations can be

skipped, since nothing would change for certain values of the minimum coverage

parameter: From those literals and conjunctions that produce two clauses with

an admissible coverage we select the one which yields the lowest sum of squared

errors. There could be literals or conjunctions yielding an even lower sum of

squared errors, but with a coverage that is too low. The maximum coverage of

these literals or conjunctions is the next value of the parameter, for which the

tree would be di�erent from the current tree. So we choose this value as the next

minimum coverage.

Finally, SRT returns the one tree from this series that obtains the best com-

pression of the data. The compression measure is based on the minimumdescrip-

tion length (MDL) principle [24], and will be discussed in the next section.

4

3.2 Tree Selection by MDL

The MDL principle tries to measure both the simplicity and the accuracy of a

particular theory in a common currency, namely in terms of the number of bits

needed for encoding theory and data. [4] de�nes the message length of a theory

(called model in his article) as:

Total message length =

Message length to describe the model +

Message length to describe the data,

given the model.

This way a more complex theory will need more bits to be encoded, but might

save bits when encoding more data correctly.

The message length of the model consists of the encoding of the literals and

the encoding of the predicted values in the leaves. The message length of the

data, given the model, is simply the encoding of the errors.

The predicted values and the errors are real numbers, so we have to devise

a suitable coding scheme for reals. In our coding scheme, we turn them into

integers by multiplication and rounding. The factor is the minimum integer that

still allows to discern the values in the training data after rounding. Subsequently,

the integers are encoded by the universal prior of integers (UPI) [25] | in this

way the coding length of the numbers roughly corresponds to their magnitude.

The encoding of the tree is simply the encoding of the choices made (for the

respective literals) as the tree is built. For a single node, we encode the choice

from all possible literals, so that the encoding considers predicates as well as all

possible variabilizations of the predicates.

We chose MDL instead of cross-validation, since it is computationally less

expensive, and it can be used for pruning in search [19]. However, we are planning

to compare both methods for model selection in the future.

3.3 Non-Determinate Background Knowledge

Literals are non-determinate if they introduce new variables that can be bound

in several alternative ways. Non-determinate literals often introduce additional

parts of a structure like adjacent nodes in a graph. (Other examples are "part-of"-

predicates.) Clearly, non-determinate literals do not immediately reduce the error

when they are added to a clause under construction. Thus, any greedy algorithm

without look-ahead would ignore non-determinate literals. The problem is how

to introduce non-determinate literals in a controlled manner.

In SRT, the user has to specify which literal(s) may be used to extend a

clause. Firstly, the user can de�ne conjunctions of literals that are used for a

limited look-ahead. (These user-de�ned schemata are similar to relational cliches

[26]). Furthermore, the user can constrain the set of possible literals depending

5

on the body of the clause so far. The conditions on the body are arbitrary Prolog

clauses, and therefore the user has even more possibilities to de�ne a language

than by Antecedent Description Grammars (ADGs) [5]. To further reduce the

number of possibilities, the set of literals and conjunctions is also constrained by

modes, types of variables, and variable symmetries.

3.4 Outlier Detection by Analogy

Test instances that are outliers strongly deteriorate the average performance of

learned regression models. Usually we cannot detect if test instances are outliers,

because only little information is available for this task. If relational background

knowledge is available, however, a lot of information can be utilized to detect,

by \analogy", if test instances are outliers. Intuitively, when a new prediction is

made, we check if the test instance is similar to the training instances which are

covered by the clause that �res. If we have not seen anything like the test instance

before, we should consider a di�erent prediction than the one suggested by the

clause which succeeds on the instance. In this case, we interpret the regression

tree as de�ning a hierarchy of clusters. SRT chooses the cluster which is most

similar to the test instance, and predicts the average of this cluster for the test

instance.

To implement this kind of reasoning by analogy, we �rst have to de�ne similar-

ity of \relational structures" (such as labeled graphs).

2

Our simple approxima-

tion of similarity is based on properties of such structures. In this context, we say

that an instance i has a property P i� P is a literal or a conjunction (permitted

by speci�ed schemata) that immediately succeeds on i (i.e., it succeeds without

the introduction of intermediate variables). The similarity is de�ned as follows:

Let p

instance

(i) denote the set of properties of an instance i. Let p

in common

(I) be

the set of properties all instances in a set I have in common. Then the similarity

between a test instance i and a set (cluster) of training instances I is

similarity(i; I) =

jp

instance

(i) \ p

in common

(I)j

jp

in common

(I)j

The similarity is simply de�ned as the number of properties that the test instance

and the covered training instances have in common, divided by the number of

properties that the training instances have in common.

SRT uses a parameter for the minimum similarity to determine if the sim-

ilarity between a test instance and the training instances covered by the clause

that �res is large enough.

This way of detecting and handling outliers adds an instance-based aspect to

SRT. However, it is just an additional possibility, and can be turned o� by means

of the minimum similarity parameter.

2

[1] de�ned a similarity measure for �rst-order logic, but it measures the similarity of two

tuples in a relation, not of two \relational structures".

6

4 Experimental Results

A common step in pharmaceutical development is forming a quantitative

structure-activity relationship (QSAR) that relates the structure of a compound

to its biological activity. Two QSAR domains, namely the inhibition of Es-

cherichia coli dihydrofolate reductase (DHFR) by pyrimidines [12] and by tri-

azines [13] have been used to test SRT.

The pyrimidine dataset consists of 2198 background facts and 55 instances

(compounds), which are partitioned into 5 cross-validation sets. For the tri-

azines, the background knowledge are 2933 facts, and 186 instances (compounds)

are used to perform 6-fold cross validation. Hirst et al. made comprehensive

comparisons of several methods in these domains, but they concluded there is no

statistically signi�cant di�erence between these methods.

For the experiments we set minimum similarity = 0:75. Table 3 shows the

results of the methods compared in [12] and in [13], and the results of SRT.

The table summarizes the test set performances in both domains as measured

by the Spearman rank correlation coe�cients. The Spearman rank correlation

coe�cient is a measure of how much the order of the test instances according

to the target variable correlates with the order predicted by the induced theory.

The only reason why Hirst et al. use the Spearman rank correlation coe�cient

instead of, say, the average error is to compare GOLEM [18] (which cannot predict

numbers) with other methods.

3

For the pyrimidines, SRT performs better than other methods, but the im-

provement is not statistically signi�cant. Hirst et al. emphasize that a di�erence

in Spearman rank correlation coe�cient of about 0.2 would have been required

for a data set of this size. The comparatively good performance of SRT is mostly

due to the detection of two outliers that cannot be recognized by other meth-

ods. These two outliers were the only ones identi�ed in these two domains. For

the triazine dataset, SRT performs quite well, but again the di�erences are not

statistically signi�cant.

4

Since the Spearman rank correlation coe�cient does not measure the quan-

titative error of a prediction, we included several other measures as proposed by

Quinlan [23]. Clearly, these measures have disadvantages, too, but they represent

interesting aspects of how well a theory works for a given test set. Unfortunately,

we do not yet have a full comparison with other methods that are capable of

predicting numbers. Tables 4 and 7 contain the cross-validation test set perfor-

mances of SRT in four test domains not only in terms of the Spearman rank

3

Despite this disadvantage of GOLEM, Hirst et al. state that GOLEM is the only method

that provides understandable rules about drug-receptor interactions. SRT can be seen as a step

towards integrating both capabilities.

4

Note that for the triazines the di�erences between the standard deviations are very high.

Since the hypothesis of equal standard deviations must be rejected even with Bonferroni ad-

justment, we cannot perform an analysis of variance with the results.

7

Method Pyr. Mean (�) Triaz. Mean (�)

Lin. Regr. on Hansch parameters and squares 0.693 (0.170) 0.272 (0.220)

Lin. Regr. on attributes and squares 0.654 (0.104) 0.446 (0.181)

Neur. Netw. on Hansch parameters and squares 0.677 (0.118) 0.377 (0.190)

Neur. Netw. on attributes and squares 0.660 (0.225) 0.481 (0.145)

GOLEM 0.692 (0.077) 0.431 (0.166)

SRT 0.806 (0.110) 0.457 (0.089)

Table 3: Summary of all methods in the biomolecular domains of the inhibi-

tion of dihydrofolate reductase by pyrimidines and by triazines: Performances as

measured by the Spearman rank correlation coe�cients

Measure of Accuracy Pyr. Mean (�) Triaz. Mean (�) Mutagen. Mean (�)

Spearman rank corr. coe�. 0.806 (0.110) 0.457 (0.089) 0.683 (0.124)

Average error jEj 0.435 (0.088) 0.514 (0.084) 1.103 (0.121)

Correlation r 0.818 (0.091) 0.457 (0.104) 0.736 (0.089)

Relative Error RE 0.218 (0.170) 0.381 (0.132) 0.170 (0.055)

Table 4: Performances of SRT in three domains in terms of several accuracy

measures

correlation coe�cient, but also in terms of several other accuracy measures.

Furthermore, we performed experiments in the domain of �nite element mesh

design (for details see [6]), where the background knowledge is non-determinate.

Table 5 shows the results of SRT for the mesh dataset together with the results

of FOSSIL [11] and results of other methods that were directly taken from [15].

SRT performs better than FOIL [20] and mFOIL [8], but worse than the other

methods. However, statistical analysis shows that only the di�erences between

FOIL and the other algorithms are signi�cant.

5

Struct. FOIL mFOIL GOLEM MILP FOSSIL FORS SRT

A 17 23 21 21 23 22 23

B 6 12 12 12 13 12 11

C 7 9 10 11 6 8 9

D 0 6 16 16 16 16 16

E 6 12 21 30 32 29 9

� 36 62 80 90 90 87 68

% 12.9 22.3 28.8 32.4 32.4 31.3 24.4

Table 5: Summary of numbers and percentages of correctly classi�ed edges in the

domain of �nite element mesh design

5

For FOIL/GOLEM, FOIL/MILP and FOIL/FORS, the results of both t-test and paired

t-test are signi�cant. For FOIL/mFOIL and FOIL/SRT, only the paired t-test shows that the

di�erence is signi�cant. (For FOIL/mFOIL the paired t-test is highly signi�cant, even with

Bonferroni adjustment.) For FOIL/FOSSIL, only the t-test shows signi�cance.

8

We also applied SRT to the biological problem of learning to predict the

mutagenic activity of a chemical, i.e., if it is harmful to DNA. (For details see

[28] and [27]). This domain involves non-determinate background knowledge,

too. In Table 6 we compiled results from [15] and [27], and �lled the result

of SRT. In the table, 'S' refers to structural background knowledge, 'NS' refers

to non-structural features, 'PS' refers to prede�ned structural features that can

be utilized by propositional algorithms, and 'MDL' refers to MDL pre-pruning.

(Note that the results of FORS are the best that can be be found for its three

parameters.) In the experiments we used the 188 instances (compounds) for a 10-

fold cross-validation. The accuracy concerns the problem to predict if a chemical

is active or not. Since SRT learns a theory that predicts the activity (a number)

instead, we had to evaluate it in a di�erent way to compare the results. Summing

up, the experiments showed that also in this domain SRT is competitive, although

the di�erences between SRT and the rest are not statistically signi�cant.

Finally, we applied SRT to a domain where we are trying to predict the half-

rate of surface water aerobic aqueous biodegradation in hours [9]. To simplify

the learning task, we discretized this quantity and mapped it to f1; 2; 3; 4g. The

background knowledge is non-determinate, and except for the molecular weight

there are no \global" features available. The dataset contains 62 chemicals, and

we performed 6-fold cross-validation in our tests. The results of SRT can be

found in table 7. SRT is the �rst algorithm to be tested on the data, and the

results appear to indicate that there are too few instances to �nd good general-

izations. Interestingly, SRT with outlier detection (see column 'Biod.1') improves

the initial result of SRT without it in this domain (column 'Biod.2'). Note that

neither a propositional algorithm (such as CART) nor an algorithm that can-

not handle non-determinate background knowledge (such as FOIL, GOLEM and

DINUS/RETIS) can be applied to this problem.

To sum up the experiments, SRT turned out to be quantitatively competi-

tive, but its main advantages are that it yields comprehensible and explicit rules

predicting numbers, even when given non-determinate background knowledge.

5 Conclusion and Further Research

In this paper we presented Structural Regression Trees (SRT), a new algorithm

which can be applied to learning problems concerned with the prediction of num-

bers from examples and relational (and non-determinate) background knowledge.

SRT can be viewed as integrating the statistical method of regression trees [3] into

ILP. SRT can be applied to a class of problems no ILP systems except FORS can

handle, and provides more comprehensible results than purely statistical meth-

ods. The main di�erence between SRT and FORS is that it is a tree-based and

not a covering algorithm. Therefore, all the advantages and disadvantages known

9

Algorithm Accuracy

Lin.Regr. + NS 0.85 (0.03)

Lin.Regr. + NS + PS 0.89 (0.02)

Neural Network + NS 0.86 (0.03)

Neural Network + NS + PS 0.89 (0.02)

CART + NS + PS 0.88 (0.02)

CART + NS 0.82 (0.03)

FOIL + NS + S 0.81 (0.03)

Progol + NS + S 0.88 (0.02)

FORS + NS + S 0.89 (0.06)

FORS + NS + S + MDL 0.84 (0.11)

SRT + NS + S 0.85 (0.08)

Table 6: Summary of accuracy of several systems in the mutagenicity domain

Measure of Accuracy Biod.1 Mean (�) Biod.2 Mean (�)

Spearman rank correlation coe�cient 0.463 (0.213) 0.402 (0.232)

Average error jEj 0.744 (0.190) 0.771 (0.210)

Correlation r 0.382 (0.247) 0.364 (0.223)

Relative Error RE 0.363 (0.139) 0.377 (0.141)

Table 7: Performances of SRT with and without outlier detection in the

biodegradability domain

from other algorithms of these types apply.

6

Experiments in several real-world

domains demonstrate that the approach is competitive with existing methods,

indicating that its advantages (the applicability to relational regression given

non-determinate background knowledge and the comprehensibility of the rules)

are not at the expense of predictive accuracy.

SRT generates a series of increasingly complex trees, but currently every it-

eration starts from scratch. We are planning to extend the algorithm such that

parts of the tree of one iteration can be reused in the next iteration.

We also plan to compare our way of coverage-based prepruning and tree se-

lection by MDL with more traditional pruning methods a la CART [3].

Besides, we addressed the problem of non-determinate literals. We adopted

and generalized solutions for this problem, but they involve the tiresome task of

writing a new speci�cation of admissible literals and conjunctions for each do-

main. We therefore think that a more generic solution would make the application

of the method easier.

One of the current limitations of the approach is that only constants are

6

For a good discussion of tree-based vs. covering algorithms in ILP we have to refer to [2].

For a comparison of tree induction and rule induction in propositional regression see [30].

10

assigned to the leaves, not linear models as in [14] and [21]. Since it could help

to build more accurate models, one of the next steps will be to assign linear

regression models to the leaves.

Acknowledgements

I would like to thank Johannes F�urnkranz, Bernhard Pfahringer and Gerhard

Widmer for valuable discussions. I also wish to thank Sa�so D�zeroski for providing

the biodegradability dataset.

References

[1] G. Bisson, `Learning in FOL with a similarity measure', in Proc. Tenth

National Conference on Arti�cial Intelligence (AAAI-92), (1992).

[2] H. Bostr�om, `Covering vs. Divide-and-Conquer for Top-Down Induction of

logic programs', in Proc. Fourteenth International Joint Conference on Arti-

�cial Intelligence (IJCAI-95), pp. 1194{1200, San Mateo, CA, (1995). Mor-

gan Kaufmann.

[3] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J Stone, Classi�cation and

Regression Trees, The Wadsworth Statistics/Probability Series, Wadsworth

International Group, Belmont, CA, 1984.

[4] P. Cheeseman, `On �nding the most probable model', in Computational Mod-

els of Discovery and Theory Formation, eds., J. Shrager and P. Langley,

Morgan Kaufmann, Los Altos, CA, (1990).

[5] W.W. Cohen, `Grammatically biased learning: Learning logic programs

using an explicit antecedent description language', Arti�cial Intelligence,

68(2), (1994).

[6] B. Dolsak, I. Bratko, and A. Jezernik, `Finite element mesh design: An en-

gineering domain for ILP application', in Proceedings of the Fourth Interna-

tional Workshop on Inductive Logic Programming (ILP-94), GMD-Studien

Nr. 237, pp. 305{320, (1994).

[7] S. D�zeroski, Numerical Constraints and Learnability in Inductive Logic Pro-

gramming, Ph.D. dissertation, University of Ljubljana, Ljubljana, Slovenija,

1995.

[8] S. D�zeroski and I. Bratko, `Handling noise in Inductive Logic Programming',

in Proceedings of the International Workshop on Inductive Logic Program-

ming, Tokyo, Japan, (1992).

11

[9] S. D�zeroski and B. Kompare, 1995. Personal Communication.

[10] S. D�zeroski, L. Todoroski, and T. Urbancic, `Handling real numbers in in-

ductive logic programming: A step towards better behavioural clones', in

Machine Learning: ECML-95, eds., N. Lavrac and S. Wrobel, pp. 283{286,

Berlin Heidelberg New York, (1995). Springer.

[11] J. F�urnkranz, `Fossil: A robust relational learner', in Machine Learning:

ECML-94, eds., F. Bergadano and L. De Raedt, pp. 122{137, Berlin Heidel-

berg New York, (1994). Springer.

[12] J.D. Hirst, R.D. King, and M.J.E. Sternberg, `Quantitative structure-

activity relationships by neural networks and inductive logic program-

ming. the inhibition of dihydrofolate reductase by pyrimidines', Journal of

Computer-Aided Molecular Design, 8, 405{420, (1994).

[13] J.D. Hirst, R.D. King, and M.J.E. Sternberg, `Quantitative structure-

activity relationships by neural networks and inductive logic programming:

The inhibition of dihydrofolate reductase by triazines', Journal of Computer-

Aided Molecular Design, 8, 421{432, (1994).

[14] A. Karalic, `Employing linear regression in regression tree leaves', in

Proc. Tenth European Conference on Arti�cial Intelligence (ECAI-92), ed.,

B. Neumann, pp. 440{441, Chichester, UK, (1992). Wiley.

[15] A. Karalic, First Order Regression, Ph.D. dissertation, University of Ljubl-

jana, Ljubljana, Slovenija, 1995.

[16] N. Lavrac and S. D�zeroski, Inductive Logic Programming, Ellis Horwood,

Chichester, UK, 1994.

[17] M. Manago, `Knowledge-intensive induction', in Proceedings of the Sixth

International Workshop on Machine Learning, ed., A.M. Segre, pp. 151{

155. Morgan Kaufman, (1989).

[18] S. Muggleton and C. Feng, `E�cient induction of logic programs', in In-

ductive Logic Programming, ed., S. Muggleton, 281{298, Academic Press,

London, U.K., (1992).

[19] B. Pfahringer and S. Kramer, `Compression-based evaluation of partial

determinations', in Proceedings of the First International Conference on

Knowledge Discovery and Data Mining. AAAI Press, (1995).

[20] J.R. Quinlan, `Learning logical de�nitions from relations',Machine Learning,

5, 239{266, (1990).

12

[21] J.R. Quinlan, `Learning with continuous classes', in Proceedings AI'92, ed.,

Sterling Adams, pp. 343{348, Singapore, (1992). World Scienti�c.

[22] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, CA, 1993.

[23] J.R. Quinlan, `A case study in machine learning', in Proceedings ACSC-16

Sixteenth Australian Computer Science Conference, (1993).

[24] J. Rissanen, `Modeling by shortest data description', Automatica, 14, 465{

471, (1978).

[25] J. Rissanen, `Stochastic complexity and modeling', The Annals of Statistics,

14(3), 1080{1100, (1986).

[26] G. Silverstein and M.J. Pazzani, `Relational cliches: Constraining construc-

tive induction during relational learning', in Machine Learning: Proceedings

of the Eighth International Workshop (ML91), eds., L.A. Birnbaum and G.C.

Collins, pp. 203{207, San Mateo, CA, (1991). Morgan Kaufmann.

[27] A. Srinivasan, S. Muggleton, and R.D. King, `Comparing the use of back-

ground knowledge by Inductive Logic Programming systems', in Proceedings

of the 5th International Workshop on Inductive Logic Programming (ILP-

95), pp. 199{230. Katholieke Universiteit Leuven, (1995).

[28] A. Srinivasan, S. Muggleton, R.D. King, and M. Sternberg, `Mutagenesis:

ILP experiments in a non-determinate biological domain', in Proceedings of

the Fourth International Workshop on Inductive Logic Programming (ILP-

94), GMD-Studien Nr. 237, pp. 217{232, (1994).

[29] L. Watanabe and L. Rendell, `Learning structural decision trees from exam-

ples', in Proc. Twelfth International Joint Conference on Arti�cial Intelli-

gence (IJCAI-91), pp. 770{776, San Mateo, CA, (1991). Morgan Kaufmann.

[30] S.M. Weiss and N. Indurkhya, `Rule-based machine learning methods for

functional prediction', Journal of Arti�cial Intelligence Research, 3, 383{

403, (1995).

13

