
Predicate Invention:

A Comprehensive View

1

Stefan Kramer

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

E-mail: stefan@ai.univie.ac.at

Keywords: Predicate Invention, Constructive Induction, Inductive Learning,

Inductive Logic Programming

Abstract

This paper discusses predicate invention (PI) from various, previously

neglected viewpoints. First of all, we argue that predicate invention should

build on existing work on constructive induction in propositional learning.

We recall the major reasons for constructive induction in propositional

languages, and give a brief overview of the frameworks for constructive

induction by Matheus, Wnek and Michalski. We then apply these frame-

works to predicate invention in order to categorize systems and to identify

relevant aspects of PI. The discussion demonstrates that some relevant as-

pects are treated only implicitly, and some are largely neglected in many

systems. Secondly, we review current criticism against constructive induc-

tion that also concerns predicate invention. In particular, we agree with

Sutton's demand that constructive induction should be based on contin-

uing learning, i.e. it should reuse representational \tricks" in a series of

learning tasks. Thirdly, we discuss the advantages and disadvantages of

fully-automatic vs. interactive predicate invention. The question is how

to create meaningful new predicates. Since comprehensibility and syntac-

tical complexity are not necessarily the same, human intervention may be

required if humans shall make sense of the resulting theory.

We try to attract more attention to important aspects that have not yet

been recognized clearly, and still are present in the work of many authors.

These aspects are illustrated by existing PI systems.

1

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen

Forschung (FWF) under grant number P10489-MAT. Financial support for the Austrian Re-

search Institute for Arti�cial Intelligence is provided by the Austrian Federal Ministry of Sci-

ence, Research, and Arts. I would like to thank Gerhard Widmer for valuable discussions.



Contents

1 Introduction 2

2 Motivations for Constructive Induction 3

2.1 Hard Concepts : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.2 Algorithmic Bias : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3 Constructive Induction Frameworks 5

4 Predicate Invention 6

4.1 What is Predicate Invention ? : : : : : : : : : : : : : : : : : : : : 6

4.2 Reformulation vs. Demand-Driven Approaches : : : : : : : : : : : 7

4.3 Methods for Predicate Invention : : : : : : : : : : : : : : : : : : : 7

4.4 Utility and Decidability of Predicate Invention : : : : : : : : : : : 8

4.5 Types of Predicates : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.6 Some Considerations on Predicate Invention : : : : : : : : : : : : 12

5 Applying Constructive Induction Frameworks to Predicate In-

vention 12

5.1 Detecting the Need for Predicate Invention : : : : : : : : : : : : : 13

5.2 Selection of Predicates : : : : : : : : : : : : : : : : : : : : : : : : 14

5.3 Generalizing the De�nition of a New Predicate : : : : : : : : : : : 14

5.4 Evaluating the Set of Existing Predicates : : : : : : : : : : : : : : 15

5.5 Applying the Framework of Wnek and Michalski to Predicate In-

vention : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

5.6 Bene�ts from Applying Constructive Induction Frameworks to

Predicate Invention : : : : : : : : : : : : : : : : : : : : : : : : : : 16

6 Criticism against Constructive Induction and Continuing Learn-

ing 16

7 Autonomy vs. Human Intervention in Predicate Invention 17

8 Discussion 20

9 Conclusion and Further Research 21

1



1 Introduction

[Michalski 93] distinguishes between selective induction and constructive induc-

tion as follows:

\Empirical learning uses little domain knowledge, while constructive

induction uses more domain knowledge. A more precise way to char-

acterize this distinction is that in empirical induction the description

space for examples and for the hypotheses is the same, while in con-

structive induction these spaces are di�erent."

Constructive induction was �rst de�ned for learners using a propositional lan-

guage. Early work focussed on the use of constructive operators during induction

[Michalski 83]. These so-called \constructive generalization rules...generate in-

ductive assertions that use descriptors not present in the original observational

statements". Later, researchers investigated feature construction, i.e. the con-

struction of new features from existing features.

In the early nineties, a new area called Inductive Logic Programming (ILP)

[Muggleton 92] developed, dealing with learning theories in �rst-order logic. From

the very beginning, ILP also was concerned with constructive induction in �rst-

order logic, better known as predicate invention [Muggleton & Buntine 88]. Obvi-

ously, there is a close correspondence between features in propositional languages

and predicates in �rst-order languages. Consequently, there is a close corre-

spondence between feature construction and predicate invention. However, there

exists no systematic comparison between work done in both areas. Apart from

one exception (DUCE [Muggleton 87] and CIGOL [Muggleton & Buntine 88]),

work on predicate invention neither tries to extend ideas from propositional con-

structive induction to �rst-order logic, nor builds on existing work on feature

construction. In this report we try to apply the frameworks for constructive in-

duction by Matheus [Matheus & Rendell 89, Matheus 91] and Wnek and Michal-

ski [Wnek & Michalski 94] to predicate invention.

In the next section, we recall the major reasons for constructive induction

in propositional languages. In the third section we review the frameworks for

constructive induction by Matheus, Wnek and Michalski. We then give a brief

overview of PI methods and the types of predicates that the systems are able to

invent. Subsequently, we apply the frameworks for constructive induction to PI

in order to understand which relevant aspects distinguish existing PI systems.

In the sixth section, we review current criticism against constructive induction

that also concerns predicate invention. In the subsequent section, we discuss

the advantages and disadvantages of fully automatic vs. interactive predicate

invention. In eighth section, we discuss a selection of PI systems according to the

aspects we identi�ed in the previous sections. Finally, we draw our conclusions,

and sketch possible directions of further research.

2



2 Motivations for Constructive Induction

In this section we want to recall the motivation for constructive induction in

general, since it also applies to predicate invention.

Generally, the goal of constructive induction is an increase in accuracy and a

decrease in complexity of a hypothesis [Wnek & Michalski 94]. It is important to

include the complexity of the newly de�ned features or predicates in the complex-

ity of the hypothesis | we have to pay a price for de�ning a large number of new

features or predicates. Otherwise we would over�t the potential noise in the data

by means of the language, a problem termed \language �tting" in [Pfahringer 94].

[Pfahringer 94] also suggests the usefulness of a function measuring both accu-

racy and complexity of a hypothesis and the de�nitions of the new features or

predicates. This can be done by a measure based on the Minimum Description

Length (MDL) principle [Rissanen 78] that measures both accuracy and complex-

ity in a common currency, namely bits needed for encoding an inductive theory

and the training examples, given the theory.

Two additional reasons for constructive induction are related to the bias

2

of

learning systems, more precisely to a mismatch between the learning task and

the learner. The �rst reason is concerned with a property of certain real-world

datasets which makes learning hard for most conventional learning algorithms.

Secondly, the algorithmic bias itself is a major reason why constructive induction

is necessary for some datasets. As the discussion will show, both reasons are

closely related.

2.1 Hard Concepts

Standard learning algorithms perform quite well in terms of accuracy and com-

plexity, if domain experts can readily specify a favorable abstract representation

language. Most of the work has already been done, and hence the selective induc-

tion algorithms can produce accurate and concise hypotheses without appearing

to take advantage of domain knowledge. It is a well-known fact that the re-

sults of machine learning algorithms strongly depend on how well the domain is

understood.

Whereas easy concepts can be learned quite well even by simple learners

[Holte 93], Rendell claims that hard concepts [Rendell & Seshu 90] mostly cannot

even be learned by sophisticated learners. Basically, a concept is hard if the

2

The term \bias" refers to any basis for excluding hypotheses from the search space other

than strict completeness and consistency with the examples [Mitchell 80]. An important part of

the bias is the hypothesis language: it restricts the range of expressible concepts. The language

bias is given by the vocabulary (the available predicate, function and constant symbols) and

the syntactic form of the potential target theories. Another crucial part of the bias is the

algorithmic bias, i.e. the way how the learner excludes hypothesis from the hypothesis space

by its search strategy (other than by pruning).

3



disjuncts of the concept to be learned are \spread out" in the instance space, but

it yet can be formulated with the given features. Since an accurate description

would be extremely complex in terms of the original features, selective induction

algorithms usually fail to learn hard concepts. Examples for hard concepts are

the prediction of protein structure and the classi�cation of chess positions as won

or lost in terms of low-level features. It is important to note that in both example

domains the information with respect to the target concept is complete: Besides

the used variables, no other (possibly unknown) variables inuence the target

concept.

In domains with incomplete information, we cannot hope to get beyond the

accuracy of very simple benchmark algorithms such as Holte's [Holte 93]: The

independent variables may inuence the value of the dependent variable, but do

not \determine" it | there is simply not enough information available. How-

ever, this is not a matter of all-or-nothing: The \causal relevance" of variables

rather is gradually di�erent. Only in a few extreme domains, the causal con-

nection between the independent and the dependent variables seems very weak.

Sidestepping philosophical problems concerning causality, [Rendell & Seshu 90]

discuss this issue under the heading of intrinsic accuracy.

In order to turn a hard problem into an easy one, useful abstractions have

to be formed from the initial low-level features/predicates. One of the goals of

constructive induction is to solve this problem. Especially interactive forms of

constructive induction appear to be promising to gain a better understanding of

the domain and to form useful abstractions.

According to Matheus, another reason for constructive induction related to

real-world datasets is feature interaction. Feature interaction occurs if the fea-

tures are not independent. More precisely, there are relations and dependencies

between original features hidden in the data that may not be visible to the learner.

2.2 Algorithmic Bias

The other major reason for constructive induction is the algorithmic bias of learn-

ing algorithms. For instance, the greedy selection [Matheus 91] of features is

a kind of bias that is problematic when applied to datasets with high feature

interaction. Experiments showed that very complex hypotheses are generated

[Pagallo & Haussler 90], since a large number of conditions are required to ex-

press interrelationships among features in the dataset.

From a theoretical point of view, the algorithmic bias is the only justi�cation

for feature construction in propositional learning

3

. For standard propositional

learning algorithms using DNF-hypotheses or decision trees of arbitrary size,

3

This is only true for hypotheses that may be arbitrarily large. For hypotheses of limited

size, such as Holte's one-level decision trees, the construction of new features in fact enhances

the set of expressible concepts.

4



the construction of new features does not change the basic ability to express a

concept. In other words, the occurrence of the real concept in the hypothesis

space is not a�ected by the construction of new features. So in the propositional

setting emphasizing the language bias does not make sense except for �xed-size

languages. Nevertheless, the way how a learner makes use of the features can

be changed by an extended representation. For some learning problems, new

features enable greedy learners to �nd generalizations that otherwise could not

be found. Constructing binary features that represent relations among features

makes feature interaction visible even to algorithms which greedily select features.

3 Constructive Induction Frameworks

According to Matheus, there are four major questions that a system must answer

when performing constructive induction [Matheus & Rendell 89, Matheus 91]:

1. When should new features/predicates be constructed ? (Detection)

Detection is necessary, because the construction of irrelevant fea-

tures/predicates usually a�ects learning like noise in the data

[Wnek & Michalski 94]. Moreover, the complexity of the de�nitions has

to be added to the complexity of the hypothesis. Additionally, the com-

plexity of the hypothesis space is increased by the de�nition of useless fea-

tures/predicates, making search in this space error-prone and more costly

in potential subsequent steps. Last, but not least, the inductive theory

usually is interpreted by humans, and it will hardly be comprehensible if

many de�nitions of useless features/predicates have to be considered.

2. Which potential new features/predicates shall be included in the trans-

formed representation ? (Selection)

Since the set of features/predicates that can be constructed is potentially

very large and its detailed evaluation is intractable in general, only a small

subset can be included in the representation.

In the propositional case, this problem is subsumed by what now is discussed

as feature subset selection (e.g. [Pfahringer 95]).

3. Shall the de�nitions be generalized ? (Generalization)

Generalizing the de�nition might e�ect an improvement, if the newly de-

�ned term is too speci�c to be useful for the concept to be learned. Only

few systems generalize the de�nitions of new features/predicates.

4. Which (if any) features/predicates should be discarded ? (Evaluation)

Again, for propositional languages this is the same as feature subset selec-

tion.

5



Matheus further distinguishes detection, selection and evaluation with respect

to the source of information they are based on. The potential sources of infor-

mation are the instances of the training set, an existing hypothesis, knowledge

provided by an expert and any possible combination. For instance, detection may

be based on the initial set of training instances or on the analysis of a concept

description. Another approach to detection is taken by CN2-MCI [Kramer 94]:

The system basically performs a kind of look-ahead: it constructs new features

and evaluates the results. If the quality of the hypothesis induced in the trans-

formed representation is worse than the original hypothesis, CN2-MCI concludes

there is no need for a representation change. As we will see below, a similar kind

of look-ahead is done by systems for predicate invention.

[Wnek & Michalski 94] introduce a taxonomy of constructive induction sys-

tems according to the sources of information that are used by constructive in-

duction operators. So the main distinction is di�erent from the one in Matheus's

framework, which is based on aspects like detection and selection.

� Data-driven constructive induction (DCI):DCI analyzes the training exam-

ples in order to perform constructive induction. Speci�cally, new descriptors

are found by the search for interrelationships among examples, attributes

and concepts.

� Hypothesis-driven constructive induction (HCI): HCI refers to methods of

transforming representation spaces by analyzing generated inductive hy-

potheses.

Methods for hypothesis-driven constructive induction typically construct

new features/predicates in iterations, where each iteration involves a learn-

ing step and a step which constructs new features/predicates based on the

hypotheses of the learning step.

� Knowledge-driven constructive induction (KCI): These systems apply

expert-provided domain knowledge to construct new features/predicates.

Furthermore, representation changes can be validated by a domain expert.

� Multi-strategy constructive induction (MCI): MCI systems combine di�er-

ent approaches to the transformation of description spaces.

4 Predicate Invention

4.1 What is Predicate Invention ?

Stahl informally explains Predicate Invention in the following way: In ILP the

search space is restricted by both the syntactic form of target theories and the

available vocabulary, i.e. the predicate, function and constant symbols. The vo-

cabulary strongly a�ects if it is more or less easy to �nd the correct hypothesis, or

6



if it cannot be found at all. For instance, the predicate \daughter-in-law" can eas-

ily be learned if the predicate \parent-in-law" is known to the learner. However,

learning \daughter-in-law" is (usually) harder if only the predicates \parent",

\married", \female" and \male" are known. Even worse, the target predicate

can obviously not be learned if nothing is known about existing marriages.

If the vocabulary is limited for a learning task at hand, predicate invention can

be a means to successfully learn a concept that otherwise could not be learned.

Predicates that make it possible to learn a given concept are called necessary

[Ling 91]. Predicates that are not crucial but help to compress a theory are

called useful.

4.2 Reformulation vs. Demand-Driven Approaches

In her overview article on predicate invention [Stahl 93], Stahl distinguishes be-

tween reformulation approaches and demand-driven approaches to predicate in-

vention. Reformulation approaches introduce new intermediate predicates as a

reformulation of an existing theory in order to express it more compactly. This

is done in any case, not only if learning fails in the given representation. The

knowledge base can be compressed either by inverse resolution or by a schema-

driven approach. The input of compression algorithms are usually clauses, either

instances of the training set or disjuncts of a previously learned or partial hy-

pothesis.

In contrast to reformulation approaches, demand-driven systems try to de-

tect situations where the given vocabulary is insu�cient for the learning task

at hand. Unfortunately, this problem is undecidable in �rst-order Horn logic

[Stahl 95]. However, Stahl proved that the problem is decidable in �xed-size lan-

guages, and she also demonstrated that PI is useful in this context. Nevertheless,

most systems have to take a heuristic decision (e.g. [Srinivasan et al. 92]) for

pragmatic reasons anyway.

Stahl's classi�cation is based on two di�erent aspects of predicate invention:

First, demand-driven and reformulation methods essentially di�er in their ap-

proach to detection. Demand-driven systems need a reason for predicate inven-

tion, reformulation-based systems do not. The other distinction is based on dif-

ferent methods for PI, namely inverse resolution and the schema-based approach.

4.3 Methods for Predicate Invention

There are basically three kinds of methods for predicate invention:

� Inverse Resolution is a method for \factoring out" the generalization

of two or more clauses, and assigning the \residues" to a new predicate.

This results in a new predicate describing the variation of the input clauses

7



relatively to their common generalization. Note that in this way the new

predicate is de�ned by several clauses, whereas it is only used once.

More precisely, several inverse resolution operators are theoretically possi-

ble. Two of them could be used for predicate invention, and mostly only

one of them is used (as described above): intraconstruction.

Only RINCON [Wogulis & Langley 89] employs the other operator usable

for PI, namely interconstruction. In contrast to intraconstruction, inter-

construction puts the commonalities between the input clauses into the

de�nition of the new predicate. The di�erences are kept in the clauses

which then make use of the newly de�ned predicate. Note that the new

predicate is used several times, whereas its de�nition is only conjunctive.

Inverting a resolution step in �rst-order logic involves computing substitu-

tions and inverse substitutions. In particular, the computation of inverse

substitutions involves the risk of combinatorial explosion, because we have

to choose which subterms shall be replaced by one common variable. For

this reason, inverse resolution methods are known to be ine�cient in certain

cases.

� Schema-Driven Methods utilize second-order clauses for predicate in-

vention. Newly de�ned predicates are simply instantiations of prede�ned

or induced schemata. A schema can be instantiated by turning its predicate

variables into predicate symbols.

� Clause-Re�nement Methods make an over-general clause consistent by

adding a literal which contains a new predicate. Before the actual re�ne-

ment step, we have to determine the clause of the theory which is to blame

for the incorrectly covered instances. This blame assignment can be simple

as in [Srinivasan et al. 92] or more sophisticated as in [Wrobel 93].

The third type of methods cannot be found in [Stahl 93] | it is a type we

identi�ed besides inverse resolution and schemata.

The kinds of methods di�er in their use of negative examples. Clause-

re�nement methods depend on the existence of negative examples, because they

shall discriminate positive and negative instances. Methods for inverse resolution

only take positive instances or clauses of a theory as input. Methods for learning

recursive new predicates e.g. by schemata shall characterize positive examples in

a special way: They shall describe everything that the given examples have in

common, namely their base-case and the repeated application of an operator.

4.4 Utility and Decidability of Predicate Invention

In the discussion of the utility of predicate invention the language bias plays

a central role [Stahl 95]. The assessment of the utility and appropriateness of

8



predicate invention is based on the question if a predicate is necessary to express

a concept. For instance, a newly invented recursive predicate is necessary to

express a recursive concept, if the original language does not contain recursive

concepts at all. According to this view, predicate invention is useful only if it

makes possible to express the given concept.

Unfortunately, the question if predicate invention is necessary to successfully

learn a theory is undecidable in �rst-order Horn logic [Stahl 95]. So in uncon-

strained or weakly constrained �rst-order Horn logic, predicate invention may be

useful, but its necessity is undecidable. However, induction in weakly-constrained

�rst-order languages is known not to be feasible anyway.

In function-free Horn logic, the problem if PI is needed is decidable, but PI is

a useless bias shift operation. New predicates can be eliminated without a�ecting

the success set of the theory.

The languages for which predicate invention is useful and still decidable are

restricted to a �xed size. The new predicates are useful because they cannot be

eliminated without violating the size constraints of the language. The decidability

stems from the �nite search space.

As experience from propositional languages suggests, exhaustive search for de-

ciding if PI is necessary is not realistic. Hence, a heuristic decision has to be taken

for pragmatic reasons. We think the usefulness of predicate invention should be

related to the algorithmic bias of learning algorithms, as it is done in the mo-

tivation of feature construction. For standard propositional learning algorithms

using DNF-hypotheses or decision trees of unconstrained size, the construction of

new features does not change the basic ability to express a concept. Still, feature

construction is useful in practice to avoid known problems of certain learning

algorithms.

Generally, literature on predicate invention has put more emphasis on the

language bias than on the algorithmic bias of ILP systems. We believe that both

of them are equally important parts of the overall bias of a learning system.

4.5 Types of Predicates

In this subsection, we try to sketch a taxonomy of the predicates invented by

various systems. In Table 1 we relate this taxonomy to the systems we want to

examine in this report.

� Extensional:

The tuples of the predicates are given extensionally. Predicate invention

often is extensionally driven: We assume some individuals belong together,

and need a name to refer to them in a simple fashion. In some cases, we do

this by drawing a border between two groups of individuals, assuming the

separation is useful or necessary for some reason. The assumption of such

a border can be seen as a hypothesis by itself.

9



� Intensional without Recursion:

The predicates are intensionally de�ned, but without recursion. The def-

inition describes the set of tuples in the relation. Intensional descriptions

are what [Thagard & Nowak 90] call concept combinations. That is, a new

concept is de�ned as a combination of existing concepts. Concepts can

be combined in numerous ways. In many cases constraints on meaningful

combinations are beyond the \knowledge" that is available to the machine.

Sometimes selecting the right and interesting combinations requires a thor-

ough understanding of the particular domain.

1. Conjunction of 2 Literals:

The predicates in [Silverstein & Pazzani 93] are restricted to conjunc-

tions of two literals. This restriction is due to e�ciency reasons.

2. Conjunction of n Literals:

For instance, RINCON's [Wogulis & Langley 89] intermediate con-

cepts consist of a deliberate number of literals.

3. Disjunctive De�nition:

Systems using the intraconstruction operator [Muggleton & Buntine

88, Rouveirol 92, Wirth 89] construct predicates with disjunctive def-

initions.

� Recursive Predicate:

Several systems [Ling 91, Lapointe et al. 93, Ling 95] are designed to invent

recursive new predicates. Ling states that recursive predicates are the only

ones that are really necessary, because they cannot be eliminated without

failing to learn certain concepts. Furthermore, they are useful because they

often allow for dramatic reductions in size in cases of unbounded growth of

a theory.

Other kinds of predicates are not necessary in the strict sense, but nev-

ertheless useful. For example, clich�es are useful to overcome the al-

gorithmic bias of FOCL (its selection of literals) [Pazzani & Kibler 92,

Silverstein & Pazzani 91].

Furthermore, the semantics of the new predicate possibly reveals a depen-

dency between variables:

� Functional Dependency: New predicates can be used to express functional

dependencies.

� Multi-Valued Dependency: New predicates can express multi-valued depen-

dencies, i.e. dependencies that assign a set of values instead of only one

value (as in the case of functional dependencies) to the values of the input

variables.

10



Reference Ext. Conj. 2 Lits. Disj. Rec. Deps.

CIGOL [Muggleton & Buntine 88] �

LFP2 [Wirth 89] �

ITOU [Rouveirol 92] �

Banerji [Banerji 92] �

RINCON [Wogulis & Langley 89] �

INPP [Ling 95] �

CILP [Lapointe et al. 93] �

CLINT-CIA [De Raedt & Bruynooghe 92] �

FOCL [Silverstein & Pazzani 93] �

GOLEM [Muggleton 94] �

CWS [Srinivasan et al. 92] � � � �

MOBAL [Wrobel 94] � � � � �

CHAMP [Kijsirikul et al. 92] � � � � �

CHILLIN [Zelle et al. 94] � � � � �

SIERES [Wirth & O'Rorke 92] � � �

INDEX [Flach 93] �

Figure 1: Types of predicates that can be invented by PI systems. (Ext.-

extensional, Conj.-conjunctive, 2 Lits.-a conjunction of two literals, Disj.-

disjunctive, Rec.-recursive, Deps.-dependencies among arguments.)

In INDEX [Flach 93], new predicates are either functional respectively

multi-valued dependencies or represent partitionings of tuples in a relation.

� Partial Determination: Partial determinations are like functional depen-

dencies, but allow for exceptions. If exceptions are likely to arise in the

presence of noise, partial determinations are a useful dependency model

[Pfahringer & Kramer 95].

It should be noted that an extensional de�nition of predicates can be

turned into an intensional de�nition by a selective induction algorithm. This

step is performed by the systems MOBAL [Morik 93, Wrobel 94], CHAMP

[Kijsirikul et al. 92] and CWS [Srinivasan et al. 92]. Learning an intensional def-

inition is in fact generalization in the sense of Matheus. The de�nitions could

further be generalized by dropping a condition of the de�nition.

Figure 1

4

shows that many kinds of predicates are used, and also that only

few systems are capable of inventing predicates of several types. CHAMP and

4

Not considered in this report are the predecessors of several systems: IRES

[Rouveirol & Puget 90] (the predecessor of ITOU [Rouveirol 92]), LFP [Wirth 88] (the pre-

decessor of LFP2 [Wirth 89]), MENDEL [Ling 91] (the predecessor of INPP [Ling 95]), BLIP

[Morik 89, Wrobel 89] (the predecessor of MOBAL [Morik 93, Wrobel 94]). Furthermore, the

so-called transformation approaches (creating predicates from formal speci�cations) to PI (e.g.

[Franova & Kodrato� 92, Le Blanc 94]) are not discussed, as they are only partially relevant

in the inductive learning setting. For the same reason we omitted the discussion of FENDER

[Sommer 95], a component of MOBAL that restructures a knowledge base by certain inverse

resolution operators.

11



CHILLIN are the most exible systems

5

with respect to the variety of types of

predicates that can be invented.

4.6 Some Considerations on Predicate Invention

PI is often triggered by the need to name a group of individuals. However,

de�ning a new concept only pays o� if we make use of the name many times.

Normally, we cannot know beforehand if a new concept turns out to be useful

in practice. This is the reason why Zytkow [Zytkow 93] metaphorically calls

new terms \investments". These considerations obviously favor a process that is

iterative rather than a process that stops after a single iteration of constructive

induction.

One of the main problems of PI is to �nd patterns and subpatterns in the data

or in a theory that are not due to chance. If we �nd such patterns, they will help

to compress the theory, because they will help to subsume a lot of observations

in a certain respect. Signi�cant patterns help to describe parts of observations.

Ling emphasized the bene�ts of new recursive predicates: They are useful in their

capability of enumerating and compressing data. Stahl also emphasized the role

of compression by proving that PI theoretically only makes sense to overcome

size-bounds in �xed-size languages. Summing up, we believe that compression is

a major motivation for PI.

Nevertheless, the goal of the overall system strongly a�ects the use of PI. For

instance, the goal of interactive theory revision a�ects the way of PI in MOBAL

[Wrobel 94]. Likewise, the goal of inductive data engineering [Flach 93] needs

a di�erent strategy for the invention of new predicates than employed by other

systems.

5 Applying Constructive Induction Frame-

works to Predicate Invention

In this section we will �rst show how predicate invention can be discussed within

Matheus' framework for constructive induction: In the �rst subsections we re-

view how aspects like detection and selection are present in existing PI systems.

Subsequently, we apply the framework of [Wnek & Michalski 94] to PI. Finally,

we summarize the bene�ts of the application of those frameworks to predicate

invention.

5

MOBAL is able to construct recursive predicates given the required rule models. However,

recursion does not seem to make much sense for MOBAL, as the representation is function-free.

12



5.1 Detecting the Need for Predicate Invention

Stahl's distinction between demand-driven and reformulation approaches is es-

sentially based on detection. The task of recognizing the demand for predicate

invention is nothing else than detection. For pragmatic reasons, systems have to

decide heuristically if the existing vocabulary is insu�cient. Reformulation-based

approaches perform a kind of look-ahead, searching for new predicates that make

the theory more compact.

Demand-driven systems like CWS [Srinivasan et al. 92] and CHAMP-DBC

[Kijsirikul et al. 92] detect the need for predicate invention, if the top-down al-

gorithm fails to discriminate the tuples covered by the clause. The over-general

clauses are handed over to the algorithm for predicate invention. Note that the

component for predicate invention can be used without other parts of the system.

Among others, this scenario also highlights the relationship between predicate in-

vention and theory revision [Le Blanc 94]: A theory with exceptions can be cor-

rected by adding literals with new predicates to the over-general clauses in order

to separate those instances that are incorrectly covered from those that are cor-

rectly covered. More sophisticated techniques from theory revision can be used

to determine which clause is really to be blamed for an incorrect classi�cation.

A major task in this process is to decide if the incorrectly covered instances

are due to noise, or if they are real exceptions [Srinivasan et al. 92]. If they were

due to chance, inventing a new predicate would over�t the noise. As in feature

construction, we have to control the complexity of the theory and the newly

de�ned predicates.

Correcting a clause in this way is often used together with top-down algo-

rithms [Srinivasan et al. 92, Kijsirikul et al. 92], but does not presuppose their

use. For instance, the predicate invention component of GOLEM [Muggleton 94]

works in a similar way, correcting bottom-up generated clauses. CHILLIN

[Zelle et al. 94] combines bottom-up and top-down techniques: First, it com-

putes the least general generalization (lgg) of two clauses, then it tries to make

the generalization consistent by specializing it. If this fails, predicate invention

is performed to make the clause consistent.

SIERES [Wirth & O'Rorke 92] triggers predicate invention if no extension of

the clause exists that is correct with respect to argument dependency graphs and

critical terms, i.e. unused input or unbound output terms.

Generally, this kind of detection puts the blame on the language bias, if the

algorithmic bias causes the algorithm to fail. In many cases the over-general

clause was built by greedy hill-climbing, so we believe there are alternatives to

predicate invention, e.g. backtracking to a previous decision.

13



5.2 Selection of Predicates

Systems for PI implicitly select a new predicate from a large number of possi-

ble predicates. Selection can be distinguished with respect to the method for

predicate invention.

Inverse resolution methods have many degrees of freedom in their choice of

appropriate substitutions and inverse substitutions. Most systems a priori restrict

the possibilities by simplifying assumptions. For instance, one operator of CIGOL

[Muggleton & Buntine 88] is simpli�ed by assuming that one input clause and the

output clause have no common literal (separability assumption). This and other

restrictions determine which of the potential new predicates are included in the

vocabulary.

Schema-driven methods have to include selection, if several second-order

schemata apply. In CLINT [De Raedt & Bruynooghe 92] the user is responsi-

ble for selection. In FOCL [Silverstein & Pazzani 93], selection takes place in

two steps: First, the selection of candidates for clich�es is based on the occurrence

in an inductive hypothesis and on the information gain measure [Quinlan 90].

The next step is a complicated procedure to integrate the candidate clich�e in

a class hierarchy of existing clich�es. During this second step further candidate

clich�es are dropped.

For the case of clause-re�nement methods, we have to face a theory that is

too general and therefore has to be specialized with a new predicate. The �rst

task is to select the set of arguments for the new predicate. [Srinivasan et al. 92]

select the same arguments as in the head of the over-general clause. CHAMP

[Kijsirikul et al. 92] starts with all variables and drops variables as long as there

are enough to discriminate the positive and the negative instances. As Stahl

[Stahl 94] points out, searching for minimumsets of discriminating arguments has

a subjective component, since there might be several such sets. The intersection

of all minimal discriminating sets of arguments roughly corresponds to the core

as de�ned in rough set theory [Ziarko 92]. The core of arguments is in any case

necessary to discriminate the examples. Unfortunately, the core is empty if the

noise level is su�ciently high. We therefore believe that a robust measure like the

MDL measure in [Pfahringer & Kramer 95] could be more successfully applied to

the problem of �nding good sets of arguments in the presence of noise than rough

set theory.

5.3 Generalizing the De�nition of a New Predicate

Only a few systems perform a generalization step after the initial de�nition of

a new predicate: CHAMP [Kijsirikul et al. 92], CWS [Srinivasan et al. 92] and

MOBAL [Wrobel 94]. An extensional de�nition can easily be generalized by

applying a relational learning algorithm to the tuples of the de�nition.

CIGOL only generalizes its de�nitions if this step helps to compress the knowl-

14



edge base. Systems like CILP de�ne recursive predicates without considering ex-

tensional de�nitions as an alternative. Furthermore, it is not obvious if it makes

sense at all to generalize recursive new predicates.

If we do not include a generalization step, we implicitly accept the generality

of the initial de�nition. However, the desired generality strongly depends on the

particular context of the learning task. Thus, considering the generalization of

de�nitions makes the learner more exible in learning situations.

5.4 Evaluating the Set of Existing Predicates

MOBAL [Morik 93] is the only system that also evaluates its newly de�ned theo-

retical vocabulary. Therefore, it is the only system that considers all four aspects

of Matheus' framework.

The reason for this step is the need to check our theoretical vocabulary from

time to time, since otherwise the complexity of the theory would grow more

than is necessary. Hence, neglecting the evaluation of the vocabulary is a serious

shortcoming of existing systems.

5.5 Applying the Framework of Wnek and Michalski to

Predicate Invention

Inverse resolution methods do not distinguish between example clauses and

clauses that are generalizations. Therefore, inverse resolution methods are based

on both examples and a partial hypothesis. Consequently, inventing predicates

by inverse resolution is multi-strategy constructive induction (MCI).

Clause re�nement methods mostly process a single clause of a theory and the

set of examples that are covered by the clause. Thus, constructive induction by

clause re�nement is also multi-strategy constructive induction (MCI).

Schema-driven methods have to be discussed separately. CILP is the only

system that performs data-driven constructive induction (DCI). In CLINT-CIA

[De Raedt 91] the instantiation of a schema is data-driven, and the subsequent

suggestion of the new predicate is accepted or rejected by a human expert. Since

it is based on two sources of information, CLINT-CIA is a method for multi-

strategy constructive induction (MCI), too.

With respect to this framework, FOCL is the most interesting system. In

the �rst step it explicitly analyses a hypothesis. So it would be tempting to

categorize it as the only PI system performing hypothesis-driven constructive

induction (HCI). However, FOCL subsequently evaluates pairs of literals by their

information gain, and this computation requires looking through the data. So

FOCL is not a system for HCI, but also for MCI.

The framework of [Wnek & Michalski 94] does not reveal fundamental di�er-

ences and commonalities among the systems under consideration. The methods

15



primarily di�er in how strongly parts of the hypothesis and subsets of examples

inuence the construction of a new predicate. Interestingly, there is no method

that constructs a new predicate merely based on the analysis of a hypothesis, and

only one method based on data alone (CILP). In existing systems, the process is

almost always related to partial or over-general hypotheses and example sets.

5.6 Bene�ts from Applying Constructive Induction

Frameworks to Predicate Invention

The bene�ts of the application of frameworks for propositional constructive in-

duction can be stated as follows:

� The distinction demand-driven/reformulation is in fact based on detection.

� Many systems implicitly select from a large number of possible new predi-

cates.

� Important aspects like generalization and evaluation are largely neglected

in existing systems, and deserve more attention.

� Almost all systems utilize information from the data as well as information

from a partial or over-general hypothesis. Experience from the propositional

setting, however, suggests that pure HCI-methods [Pagallo & Haussler 90,

Wnek & Michalski 94] are worth consideration, too. Successful work in this

�eld should be extended to �rst-order logic.

Summing up, the application of the frameworks suggests directions of further

research, and shows that the mentioned aspects of CI should be taken seriously

in PI systems.

6 Criticism against Constructive Induction

and Continuing Learning

While everyone agrees that a good representation is crucial for obtaining good

learning results, work on constructive induction has to face serious criticism that

also concerns predicate invention.

Scha�er [Scha�er 94] proved that the generalization performance of any induc-

tive learning algorithm over all learning situations is null. Positive performance

in some learning situations must be o�set by an equal degree of negative perfor-

mance in others. Roughly speaking, Scha�er's result reminded us that the whole

task of machine learning research is to �nd biases that work well when applied

to real-world datasets.

16



In the light of his result, Scha�er discusses constructive induction as an at-

tempt to enhance a learner. Since every attempt to enhance a learner without

simultaneously impairing the generalization performance in other learning situa-

tions must fail, constructive induction also has to fail in this respect. However, the

theorem makes clear that constructive induction just makes learning algorithms

more exible, a exibility that does not guarantee any improvement.

Sutton [Sutton 94] argues that constructive induction is doomed to e�ect only

minor improvements with a single learning task at hand. As a solution he pro-

posed a new methodology for constructive induction that is based on continuing

learning (as outlined in [Sutton 92]). Constructive induction will e�ect major

improvements when the learner is confronted with a sequence of learning tasks.

These tasks may have di�erent solutions, but supposedly often share the same

useful representations.

Note that Sutton's idea is especially interesting with respect to Scha�er's

theoretical results: The success of continuous learning critically depends on the

similarity between learning tasks from the real world. We need to employ biases

that work for real-world applications, so we should learn from these applications

to improve the performance on subsequent learning tasks by analogy.

These ideas have yet to prove their usefulness. Strictly, only two existing

systems implement this idea (learning across domain borders): FOCL extended

by the capability to learn clich�es [Silverstein & Pazzani 93], and MOBAL-MAT

[Thieme 89], a component of MOBAL that learns rule models from rules. Fur-

thermore, CLINT-CIA could be used in this way, but it seems that it only has

been tested in single domains.

Several systems are able to utilize schemata (possibly acquired in another

domain) for learning. In fact, using such schemata or rule models is the

basic principle of MOBAL. Moreover, work on second-order learning (e.g.

[Hamfelt & Nilsson 94]) and on schema-driven approaches to predicate invention

deals with the problem of \retrieving" schemata.

ILP methods are apparently well suited for this task, since a lot of structure

is available for learning useful patterns in the representation. For instance, type

information, levels of existential quanti�cation, modes and schemata could be

utilized to �nd similarities between useful representations.

7 Autonomy vs. Human Intervention in Pred-

icate Invention

The original goal of constructive induction was to automatically transform the

initial representation into a representation usable by the learner. A learner using

constructive induction shall detect if a shift to a better bias is required and, if

so, automatically transform the representation. In this scenario, the learner shall

17



�nd a suitable representation on his own. This amounts to a higher degree of

autonomy, and turns a learner into a discoverer [Zytkow 93]. In this section we

want to discuss the advantages and disadvantages of autonomy in contrast to

human intervention in predicate invention. There are two kinds of systems for

predicate invention:

1. Systems like GOLEM [Muggleton 94] perform constructive induction with-

out human intervention. Constructive induction takes over in order to

improve the best \human" representation.

2. Systems like CLINT [De Raedt & Bruynooghe 92] and CIGOL [Muggleton

& Buntine 88] perform interactive constructive induction, a kind of con-

structive induction that is not performed fully automatically. Instead, a

constructive induction component proposes the application of constructive

induction operators to an oracle. The oracle rejects or accepts, and in the

latter case has the opportunity to name the new feature or predicate. This

procedure ensures that the new features/predicates are meaningful to the

user [Muggleton 87].

The scenario for interactive constructive induction has a great potential for

helping to learn hard concepts. It is exploratory in nature, and should help to

gain a better understanding of poorly understood domains. The exploration of

the data shall help to �nd the abstractions that are necessary for the learning of

hard concepts.

Furthermore, this scenario is best suited for reusing patterns of useful repre-

sentations, much in the spirit of Sutton's idea of performing constructive induc-

tion in a sequence of learning tasks.

The scenario was �rst realized by DUCE [Muggleton 87], a system that trans-

forms a propositional knowledge base via a number of operators. The system

searches for the operation achieving the best compression. If the operation is not

truth-preserving, it is proposed to an oracle, otherwise it is performed without

asking. If the application of a constructive induction operator is proposed, the

oracle is asked to reject or accept the new feature, and, in the latter case, is asked

to name it.

In the same manner, CIGOL [Muggleton & Buntine 88] (the successor of

DUCE) works in �rst-order logic. CIGOL was the �rst system based on in-

verse resolution, and employed three operators to compress a given knowledge

base.

In general, the fundamental question is if and how we can create meaningful

new predicates. Comprehensibility and syntactical complexity might be corre-

lated, but surely are not the same. Basically, we think that this decision should

be based on who the \user" of the theories is. Human intervention may be nec-

essary if humans shall make sense of the resulting theory.

18



CIGOL LFP2 ITOU Banerji

Selective Induction Algorithm: Top-down (TD),

Bottom-up (BU)

BU BU BU BU

When ? Detection: Reformulation (R), Demand-

driven (DD)

R R R R

How ? Method: Inverse resolution (IR), Schema-

driven (SD), Clause-Re�nement (CR)

IR IR IR IR

How much Input ? n Clauses 2 � 2 2 2

Generalization ? no yes no no

Compression-based ? yes yes no no

Meta-Learning ? no no no no

Human Intervention yes no yes yes

RINCON INPP CILP CLINT-CIA

Selective Induction Algorithm: Top-down (TD),

Bottom-up (BU)

BU BU TD TD/BU

When ? Detection: Reformulation (R), Demand-

driven (DD)

R DD DD R

How ? Method: Inverse resolution (IR), Schema-

driven (SD), Clause-Re�nement (CR)

IR IR,SD SD SD

How much Input ? n Clauses 1 � 2 - 1

Generalization ? no yes no no

Compression-based ? yes yes no no

Meta-Learning ? no no no yes

Human Intervention no no no yes

FOCL GOLEM CWS MOBAL

Selective Induction Algorithm: Top-down (TD),

Bottom-up (BU)

TD BU TD TD

When ? Detection: Reformulation (R), Demand-

driven (DD)

R DD DD DD

How ? Method: Inverse resolution (IR), Schema-

driven (SD), Clause-Re�nement (CR)

SD CR CR CR

How much Input ? n Clauses 1 1 1 1

Generalization ? no yes yes yes

Compression-based ? no no yes no

Meta-Learning ? yes no no yes

Human Intervention no no no yes

CHAMP CHILLIN SIERES INDEX

Selective Induction Algorithm: Top-down (TD),

Bottom-up (BU)

TD BU/TD BU/TD -

When ? Detection: Reformulation (R), Demand-

driven (DD)

DD DD DD -

How ? Method: Inverse resolution (IR), Schema-

driven (SD), Clause-Re�nement (CR)

CR CR CR -

How much Input ? n Clauses 1 1 1 -

Generalization ? yes yes yes -

Compression-based ? yes yes no no

Meta-Learning ? no no no no

Human Intervention no no no yes

Figure 2: An overview of systems for predicate invention

19



8 Discussion

In this section, we systematically compare existing systems for PI according to the

aspects we identi�ed in the previous sections. The comparison will be supported

by the summary of all systems under consideration in �gure 2. (The references

of the systems can be found in �gure 1.) In �gure 2, systems are distinguished

by the following properties:

� Selective Induction Algorithm

The selective induction algorithms of the systems mostly employ top-down

(specializing the most general theory) or bottom-up (generalizing the most

speci�c theory) search, but several systems combine top-down and bottom-

up strategies. The strategy is usually independent of the constructive in-

duction operator, but mostly the selective induction algorithm and the con-

structive induction operator are similar or related.

� When ? (Detection)

Detection was discussed in the section on the application of Matheus' frame-

work.

� How ? (Method)

We distinguished three types of methods for predicate invention in Section

4: Inverse resolution methods, schema-driven methods and clause re�ne-

ment methods.

� How much input ?

Methods for PI di�er in the number of clauses that are processed by the

constructive induction operator.

� Generalization

We discussed the generalization of de�nitions in Section 5. Generalization

is an important issue in predicate invention, but only few systems include

a generalization step.

� Compression-based

Compression-based measures are a good means of avoiding over�tting in

the presence of noise. Systems like CHAMP, CWS, and INPP have a

compression-based criterion for detection. In contrast to these systems,

the overall goal of CIGOL and CHILLIN is compression. RINCON in a

way tries to compress the knowledge base by intermediate concepts, but

does not use a compression-based measure.

� Meta-Learning

As we said in Section 6, meta-learning and continuing learning could be

useful to overcome inherent limitations of current constructive induction

systems.

20



� Human Intervention

In section 7 we argued that human intervention may be necessary, depend-

ing on the usage of the theories. However, it should be clear that human

intervention has its limitations as well, such as the cognitive overhead in-

volved.

Figure 2 shows that inverse resolution methods mostly employ a reformula-

tion approach. An interesting exception to this rule is INPP, an inverse resolution

system that is demand-driven: If the theory size grows beyond a certain thresh-

old, INPP decides to invent a recursive new predicate by inverse resolution and

a subsequent schema-driven step. Only those schema-driven approaches which

create new recursive predicates are demand-driven (INPP, CILP). As expected,

all clause re�nement methods are demand-driven.

Figure 2 also demonstrates that most systems apply their operator for pred-

icate invention to maximal two input clauses. (Since CILP is data-driven, its

input does not contain clauses of a partial hypothesis at all.) Mostly the result-

ing predicates are invented just for one or two clauses. These predicates are quite

ad hoc, and they are not likely to capture signi�cant and meaningful patterns in

the data.

INDEX [Flach 93] is not really comparable to other systems, since its goal

is restructuring a relational database, and not concept learning. So there is no

selective induction algorithm, and no detection if predicate invention is needed.

However, other PI systems can learn from INDEX its way to invent new predicates

with a special semantics, namely dependencies among arguments.

Compression-based learning, meta-learning and human intervention are

known to be ingredients of successful methods. Nevertheless �gure 2 indicates

that no system actually integrates all three of them. Future systems should

integrate several such elements that are currently used in isolation.

9 Conclusion and Further Research

In this report we argued that predicate invention can bene�t from existing work

in propositional constructive induction in several ways:

� First, the general motivation for constructive induction also applies to PI.

In particular, the notion of \hard concepts" should be kept in mind when

considering PI. However, the notion of hard concepts has to be re-thought

for relational domains, since it is not clear how structural examples are

\spread out" in the instance space.

� We emphasized the role of the algorithmic bias instead of the language bias.

� We applied frameworks for propositional constructive induction to predi-

cate invention. Having identi�ed important aspects and building blocks of

21



predicate invention in this way, we are ready to select and combine features

of these systems in order to put predicate invention to work.

� The idea that CI should be based on continuing learning should be adapted

by work on PI. (Interestingly, FOCL [Silverstein & Pazzani 93] anticipated

this idea.)

� Another lesson from propositional constructive induction is that we have

to take care of the complexity. We have to avoid what is called \lan-

guage �tting" in [Pfahringer 94] . Robust measures are needed to avoid

�tting insigni�cant patterns in the theory or in the data. Except for CWS

[Srinivasan et al. 92], no system appears to account for noisy data.

� Systems for PI tend to construct insigni�cant predicates. New predicates

are invented to complete a single clause, or they are used only once. Two

exceptions are RINCON [Wogulis & Langley 89] and MOBAL [Wrobel 94].

RINCON chooses the one conjunctive concept that allows to rewrite as

many other concept de�nitions as possible. MOBAL evaluates new predi-

cates by a number of structural properties, including the usage of the new

predicate in other clauses.

Basically, there are two possible directions of further research: First, the in-

teractive approach could be further developed, aiming at the support of data

engineering for inductive learning (which is explorative in nature) and for in-

ductive data engineering [Flach 93]. For this purpose it would be promising to

integrate compression-based and second-order learning approaches.

The second challenge is to build autonomous machine discoverers, which are

capable of creating and transforming intermediate concepts and theoretical terms

according to their needs. These discoverers would act in a continuing learning

situation.

Although constructive induction was �rst tackled in the late seventies, it re-

mains a vital and interesting problem. This is due to the fact that �nding a

suitable representation is crucial for every application of machine learning algo-

rithms. Predicate invention is the next step in this development, but has not yet

been applied successfully in practice. We think that predicate invention has still

a long way to go before it will successfully be applied to hard real-world problems.

22



References

[Banerji 92] Banerji R.B.: Learning Theoretical Terms, in Muggleton S.(ed.), Inductive Logic

Programming, Academic Press, London, U.K., pp.93-112, 1992.

[De Raedt & Bruynooghe 89] De Raedt L., Bruynooghe M.: Constructive Induction by Anal-

ogy, in Segre A.M.(ed.), Proceedings of the Sixth International Workshop on Machine

Learning, Morgan Kaufmann, Los Altos, CA, pp.476-477, 1989.

[De Raedt 91] De Raedt L.: Interactive Concept-Learning, Ph.D. Thesis, Katholieke Univer-

siteit Leuven, 1991.

[De Raedt & Bruynooghe 92] De Raedt L., Bruynooghe M.: Interactive Concept-Learning and

Constructive Induction by Analogy, Machine Learning, 8(2), 1992.

[Flach 93] Flach P.A.: Predicate Invention in Inductive Data Engineering, in Brazdil P.B.(ed.),

Machine Learning: ECML-93, Springer, Berlin, pp.83-94, 1993.

[Franova & Kodrato� 92] Franova M., Kodrato� Y.: Predicate Synthesis from Formal Speci�-

cations: Using Mathematical Induction for Finding the Preconditions of Theorems, Rap-

port de Recherche No.781, L.R.I., Univ. de Paris-Sud, 1992.

[Hamfelt & Nilsson 94] Hamfelt A., Nilsson J.F.: Inductive Metalogic Programming, in Pro-

ceedings of the Fourth International Workshop on Inductive Logic Programming (ILP-94),

GMD-Studien Nr. 237, pp.85-96, 1994.

[Holte 93] Holte R.C.: Very Simple Classi�cation Rules PerformWell on Most CommonlyUsed

Datasets, Machine Learning, 11(1), 1993.

[Kietz & Wrobel 92] Kietz J.-U., Wrobel S.: Controlling the Complexity of Learning in Logic

through Syntactic and Task-Oriented Models, in Muggleton S.(ed.), Inductive Logic Pro-

gramming, Academic Press, London, U.K., pp.335-359, 1992.

[Kijsirikul et al. 92] Kijsirikul B., Numao M., Shimura M.: Discrimination-Based Constructive

Induction of Logic Programs, in Proceedings of the Tenth National Conference on Arti�cial

Intelligence, AAAI Press/MIT Press, Menlo Park, pp.44-49, 1992.

[Kramer 94] Kramer S.: CN2-MCI: A Two-Step Method for Constructive Induction, Proceed-

ings of the Workshop on Constructive Induction and Change of Representation, 11th In-

ternational Conference on Machine Learning (ML-94/COLT-94), New Brunswick, New

Jersey, 1994.

[Lapointe et al. 93] Lapointe S., Ling C., Matwin S.: Constructive Inductive Logic Program-

ming, in Bajcsy R.(ed.), Proceedings of the Thirteenth International Joint Conference on

Arti�cial Intelligence, Morgan Kaufmann, San Mateo, CA, pp.1030-1036, 1993.

[Le Blanc 94] Le Blanc G.: BMWk Revisited - Generalization and Formalization of an Algo-

rithm for Detecting Recursive Relations in Term Sequences, in Bergadano F. & Raedt

L.de(eds.), Machine Learning: ECML-94, Springer, Berlin, pp.183-197, 1994.

[Ling 91] Ling C.: Inventing Necessary Theoretical Terms in Scienti�c Discovery and Inductive

Logic Programming, Report No. 302, Dept. of Computer Science, University of Western

Ontario, London, Ontario, 1991.

[Ling 95] Ling C.: Introducing New Predicates to Model Scienti�c Revolution, to appear in:

International Studies in the Philosophy of Science, 9(2), 1995.

23



[Ling & Narayan 91] Ling C., NarayanM.A.: A Critical Comparison of Various Methods Based

on Inverse Resolution, in Birnbaum L.A. & Collins G.C.(eds.), Machine Learning: Pro-

ceedings of the Eighth International Workshop (ML91), Morgan Kaufmann, San Mateo,

CA, pp.168-172, 1991.

[Matheus & Rendell 89] Matheus C.J., Rendell L.A.: Constructive Induction On Decision

Trees, in Proceedings of the Eleventh International Joint Conference on Arti�cial Intelli-

gence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 645-650, 1989.

[Matheus 91] Matheus C.J.: The Need for Constructive Induction, in Birnbaum L.A. & Collins

G.C.(eds.),Machine Learning: Proceedings of the Eighth International Workshop (ML91),

Morgan Kaufmann, San Mateo, CA, pp.173-177, 1991.

[Michalski 83] Michalski R.S.: A Theory and Methodology of Inductive Learning, in Michalski

R.S., et al.(eds.),Machine Learning: An Arti�cial Intelligence Approach, Tioga, Palo Alto,

CA, pp.83-134, 1983.

[Michalski 93] Michalski R.S.: Inferential Theory of Learning as a Conceptual Basis for Multi-

strategy Learning, in Special Issue on Multistrategy Learning,Machine Learning, 11(2/3),

1993.

[Mitchell 80] Mitchell T.M.: The Need for Biases in Learning Generalizations, in Shavlik J.W.,

Dietterich T.G.(eds.), Readings in Machine Learning, Morgan Kaufmann, San Mateo, CA,

1990.

[Morik 89] Morik K.: Sloppy Modeling, in Morik K.(ed.), Knowledge Representation and Orga-

nization in Machine Learning, Vol. 347 of Lecture Notes in Arti�cial Intelligence, Springer,

Berlin, pp.107-134, 1989.

[Morik 93] Morik K.: Balanced Cooperative Modeling, in Special Issue on Multistrategy Learn-

ing, Machine Learning, 11(2/3), 1993.

[Muggleton & Feng 90] Muggleton S., Feng C.: E�cient Induction of Logic Programs, in Mug-

gleton S.(ed.), Inductive Logic Programming, Academic Press, London, U.K., pp.281-298,

1992.

[Muggleton 87] Muggleton S.: Duce, An Oracle-Based Approach to Constructive Induction, in

Proceedings of the 10th International Joint Conference on Arti�cial Intelligence (IJCAI-

87), Morgan Kaufmann, Los Altos, CA, p.287-292, 1987.

[Muggleton 94] Muggleton S.: Predicate Invention and Utilization, in Special Issue: Algorith-

mic Learning Theory, JETAI Journal of Experimental and Theoretical Arti�cial Intelli-

gence, 6(1), 1994.

[Muggleton 92] Muggleton S.: Inductive Logic Programming, Academic Press, London, U.K.,

1992.

[Muggleton 92] Muggleton S.: Inductive Logic Programming, in Muggleton S.(ed.), Inductive

Logic Programming, Academic Press, London, U.K., 1992.

[Muggleton & Buntine 88] Muggleton S., Buntine W.: Machine Invention of First-Order Pred-

icates by Inverting Resolution, in Laird J.(ed.), Proceedings of the Fifth International

Conference on Machine Learning, Univ.of Michigan, Ann Arbor, June 12-14, Morgan

Kaufmann, San Mateo, CA, pp.339-352, 1988.

[Pagallo & Haussler 90] Pagallo G., Haussler D.: Boolean Feature Discovery in Empirical

Learning, Machine Learning, 5(1), 71-100, 1990.

[Pazzani & Kibler 92] Pazzani M., Kibler D.: The Utility of Knowledge in Inductive Learning,

in Machine Learning, 9, 57-94, 1992.

24



[Pfahringer 94] Pfahringer B.: Controlling Constructive Induction in CiPF: An MDL Ap-

proach, in Bergadano F. & Raedt L.de(eds.), Machine Learning: ECML-94, Springer,

Berlin, pp.242-256, 1994.

[Pfahringer 95] Pfahringer B.: Compression-Based Feature Subset Selection, Proceedings of

the IJCAI-95 Workshop on Data Engineering for Inductive Learning, Montreal, Canada,

1995.

[Pfahringer & Kramer 95] Pfahringer B., Kramer S.: Compression-Based Evaluation of Partial

Determinations, Proceedings of the First International Conference on Knowledge Discovery

and Data Mining, AAAI Press, 1995.

[Quinlan 90] Quinlan J.R.: Learning Logical De�nitions from Relations, Machine Learning, 5,

239-266, 1990.

[Rendell & Seshu 90] Rendell L.A., Seshu R.: Learning Hard Concepts through Constructive

Induction: Framework and Rationale, Computational Intelligence, 6, 247-270, 1990.

[Rissanen 78] Rissanen J.: Modeling by Shortest Data Description, Automatica, 14, 465-471,

1978.

[Rouveirol & Puget 90] Rouveirol C., Puget J.F.: Beyond Inversion of Resolution, in Porter

B.W. & Mooney R.(eds.), Machine Learning, Morgan Kaufmann, Los Altos, CA, pp.122-

131, 1990.

[Rouveirol 92] Rouveirol C.: ITOU: Induction of First-Order Theories, in Muggleton S.(ed.),

Inductive Logic Programming, Academic Press, London, U.K., 1992.

[Scha�er 94] Scha�er C.: A Conservation Law for Generalization Performance, in Proceedings

of the Eleventh International Conference on Machine Learning, Morgan Kaufmann, San

Mateo, CA, pp.259-265, 1994.

[Silverstein & Pazzani 91] Silverstein G., Pazzani M.J.: Relational Clich�es: Constraining Con-

structive Induction During Relational Learning, in Birnbaum L.A. & Collins G.C.(eds.),

Machine Learning: Proceedings of the Eighth International Workshop (ML91), Morgan

Kaufmann, San Mateo, CA, pp.203-207, 1991.

[Silverstein & Pazzani 93] Silverstein G., Pazzani M.J.: Learning Relational Clich�es, in

Bergadano F., et al., Proceedings of the IJCAI-93 Workshop on Inductive Logic Program-

ming, Chambery, France, 1993.

[Sommer 95] Sommer E.: FENDER: An Approach to Theory Restructuring, in Lavra�c N. &

Wrobel S.(eds.), Machine Learning: ECML-95, Springer, Berlin, pp.356-359, 1995.

[Srinivasan et al. 92] Srinivasan A., Muggleton S., Bain M.: Distinguishing Exceptions from

Noise in Non-Monotonic Learning, Proceedings of the 2nd International Workshop on In-

ductive Logic Programming, 1992.

[Stahl 94] Stahl I.: On the Utility of Predicate Invention in Inductive Logic Programming, in

Bergadano F. & Raedt L.de(eds.), Machine Learning: ECML-94, Springer, Berlin, pp.272-

286, 1994.

[Stahl 93] Stahl I.: Predicate Invention in ILP - an Overview, in Brazdil P.B.(ed.), Machine

Learning: ECML-93, Springer, Berlin, pp.313-322, 1993.

[Stahl 94] Stahl I.: The Arguments of Newly Invented Predicates in ILP, in Proceedings of the

Fourth International Workshop on Inductive Logic Programming (ILP-94), GMD-Studien

Nr. 237, pp.233-245, 1994.

25



[Stahl 95] Stahl I.: The Appropriateness of Predicate Invention as Bias Shift Operation in ILP,

to appear in Machine Learning, 1995.

[Sutton 92] Sutton R.S.: Adapting Bias by Gradient Descent: An Incremental Version of

Delta-Bar-Delta, in Proceedings of the Tenth National Conference on Arti�cial Intelli-

gence, AAAI Press/MIT Press, Menlo Park, pp.171-176, 1992.

[Sutton 94] Sutton R.S.: Constructive Induction Needs a Methodology based on Continuing

Learning, Panel of the Workshop on Constructive Induction and Change of Representation,

11th International Conference on Machine Learning (ML-94/COLT-94), New Brunswick,

New Jersey, 1994.

[Thagard & Nowak 90] Thagard P., Nowak G.: The Conceptual Structure of the Geological

Revolution, in Shrager J., Langley P.(eds.): Computational Models of Discovery and The-

ory Formation, Morgan Kaufmann, San Mateo, CA, 1990.

[Thieme 89] Thieme S.: The Acquisition of Model-Knowledge for a Model-Driven Machine

Learning Approach, in Morik K.(ed.), Knowledge Representation and Organization in

Machine Learning, Vol. 347 of Lecture Notes in Arti�cial Intelligence, Springer, Berlin,

pp.177-191, 1989.

[Weber & Tausend 94] Weber I., Tausend B.: A Three-Tiered Con�dence Model for Revising

Logical Theories, in Proceedings of the Fourth International Workshop on Inductive Logic

Programming (ILP-94), GMD-Studien Nr. 237, pp.391-402, 1994.

[Wirth 88] Wirth R.: Learning by Failure to Prove, in Proceedings of the Third European

Working Session on Learning (EWSL-88), pp.237-251, 1988.

[Wirth 89] Wirth R.: Completing Logic Programs by Inverse Resolution, in Proceedings of the

Fourth European Working Session on Learning (EWSL-89), Pitman, London, pp.239-250,

1989.

[Wirth & O'Rorke 92] Wirth R., O'Rorke P.: Constraints on Predicate Invention, inMuggleton

S.(ed.), Inductive Logic Programming, Academic Press, London, U.K., pp.299-318, 1992.

[Wnek & Michalski 94] Wnek J., Michalski R.S.: Hypothesis-Driven Constructive Induction

in AQ17-HCI: A Method and Experiments, in Special Issue on Evaluating and Changing

Representation, Machine Learning, 14(2), 1994.

[Wogulis & Langley 89] Wogulis J., Langley P.: Improving E�ciency by Learning Intermedi-

ate Concepts, in Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 657-662, 1989.

[Wrobel 89] Wrobel S.: Demand-Driven Concept Formation, in Morik K.(ed.), Knowledge Rep-

resentation and Organization in Machine Learning, Vol. 347 of Lecture Notes in Arti�cial

Intelligence, Springer, Berlin, pp.289-319, 1989.

[Wrobel 93] Wrobel S.: On the Proper De�nition of Minimality in Specialization and Theory

Revision, in Brazdil P.B.(ed.), Machine Learning: ECML-93, Springer, Berlin, pp.65-82,

1993.

[Wrobel 94] Wrobel S.: Concept Formation during Interactive Theory Revision, in Special

Issue on Evaluating and Changing Representation, Machine Learning, 14(2), 1994.

[Zelle et al. 94] Zelle J.M., Mooney R.J., Konvisser J.B.: Combining Top-down and Bottom-up

Techniques in Inductive Logic Programming, in Proceedings of the Eleventh International

Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, pp.343-351, 1994.

26



[Ziarko 92] Ziarko W.: The Discovery, Analysis, and Representation of Data Dependen-

cies in Databases, in Piatetsky-Shapiro G.,Frawley W.J.(eds.), Knowledge Discovery in

Databases, AAAI Press, Palo Alto, CA, 1992.

[Zytkow 93] Zytkow J.M.: Introduction: Cognitive Autonomy in Machine Discovery, in Special

Issue on Machine Discovery, Machine Learning, 12(1-3), 1993.

27


