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Abstract

This chapter describes an application of machine learning techniques to the study

of a fundamental phenomenon in tonal music. Learning algorithms are described that

induce general rules of expressive music performance from example of real performances

by musicians. Motivated by the insight that general knowledge about music plays an

essential role in the way humans learn this task, we present two alternative approaches to

knowledge-based learning. In both cases, the domain knowledge provided to the learner

is based on established theories of tonal music. Experimental results show that both

approaches lead to a signi�cant improvement of the learning results, compared to purely

inductive learning.

However, this project is more than basic machine learning research. Due to its thor-

ough grounding in music theory, the project can also be viewed as a contribution to the

scienti�c �eld of music research or musicology; it has produced results that have found

their way also into the literature of that scienti�c discipline. These will also be touched

on in this chapter.

1 Introduction

This chapter describes an application of machine learning that may at �rst sight seem some-

what unusual or even esoteric: learning algorithms are applied to problems of tonal music.

In a project that has evolved over several years, we have used machine learning methods to

study the foundations of a fundamental musical skill that lies at the heart of music as an art

form, namely, expressive music performance. Several learning systems have been developed

that try to learn general rules of expressive performance from examples of performances by

human musicians.

The project started as basic machine learning research in the area of knowledge-based

learning. The initial aim was to investigate various ways of introducing domain knowledge

into the learning process and to study the general nature and impact of such knowledge.

Music was selected as a test domain because it provided a set of di�cult learning tasks (and,

admittedly, for reasons of personal interest). As the domain analysis progressed and more

and more emphasis was put on a principled and musically plausible modelling of domain

knowledge, the project gradually turned into a truly interdisciplinary endeavor. It began to

produce results of interest to musicology that have in the meantime found their way also into

the literature of that scienti�c discipline (see, e.g., Widmer, 1993a, 1995a, 1995b).
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What this chapter presents, then, is a genuine application of machine learning | not

to a \practical" (e.g., industrial) problem, but to another branch of science. The potential

of machine learning as a contributing technique for other scienti�c domains | notably, bio-

chemistry and molecular biology | has been demonstrated by a number of researchers (e.g.,

Hunter, 1993; King et al., 1992; Muggleton et al., 1992; Shavlik et al., 1992). This chapter

attempts to show that also more `informal' domains like music can bene�t from machine

learning experiments.

As an interdisciplinary project, our work was guided by questions from, and has produced

results of interest to both �elds involved. From a machine learning perspective, our objective

was to study various types of weak (i.e., imprecise and incomplete) domain knowledge, and

ways of using it to bias a learner towards better hypotheses. The results that will be pre-

sented here are two alternative approaches to knowledge-based learning: in the �rst approach,

an inductive learning algorithm takes advantage of explicitly represented qualitative domain

knowledge to guide its search for generalizations (section 4). Section 5 describes an alterna-

tive strategy. Domain knowledge is used to transform the entire learning task to a higher

abstraction level where relevant regularities become more readily apparent. Experimental

results show that both approaches lead to an improvement of the learning results.

From the viewpoint of musicology, the central problem to be investigated was the notion

of musical knowledge. Relevant questions included: What kind of general musical knowledge

do music listeners possess? How can it be formalized? What is the relation between this

knowledge and expressive performance? What structural aspects of music pieces determine

or in
uence the acceptability of performances? It was our belief that machine learning can

shed new light into these matters, and the results of our experiments are indeed informative.

A comprehensive presentation and analysis of the experiments from a music-theoretic point

of view is, of course, beyond the scope of this article. In sections 6 and 7, we will at least try

to hint at some of the most interesting results.

This chapter can only give a broad overview of our projects, the algorithms and results,

but we do hope to give the reader an appreciation of the promise that machine learning holds

for scienti�c �elds like musicology and, not least, we hope to convey some of the fascination

of AI-based music research.

2 The object of study: expressive music performance

When played exactly as written, most pieces of music would sound utterly mechanical and

lifeless. Expressive performance (or interpretation) is the art of `shaping' a piece of music by

playing it not exactly as given in the written score, but continuously varying certain musical

parameters during a performance, e.g., speeding up or slowing down, growing louder or softer,

placing micro-pauses between events, etc. There are numerous parameter dimensions that

can be a�ected by a performer, some of which are limited to particular instruments (e.g.,

vibrato). In this project, we concentrate on the two most important expression dimensions,

dynamics (variations of loudness) and rubato or expressive timing (variations of local tempo).

The relevant musical terms are crescendo vs. diminuendo (increase vs. decrease in loudness)

and accelerando vs. ritardando (speeding up vs. slowing down), respectively. Our programs

will be shown the melodies of pieces as written and recordings of these melodies as played

expressively by a human pianist. From that they will have to learn general principles of

expressive interpretation (in the form of rules), which should enable them to play new pieces
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Figure 1: An abstract training example.

more or less expressively.

Sometimes composers place explicit expression marks in the score (e.g., the command

cresc underneath a musical passage), but more often than not expressive form is left implicit,

to be decided by the performer on the basis of his/her musical understanding. Our systems

will be shown only the notes of a piece, with no explicit expression marks.

To be more precise, input to the learner are melodies of musical pieces (i.e., sequences

of notes), where each note in a melody is associated with two numeric values: the exact

loudness with which the note was played by a performer (the dynamics dimension) and the

precise tempo (i.e., the ratio of the duration as actually played vs. the duration as prescribed

by the score). The learner's task is to induce rules that allow it to determine exactly how

loud and how fast any note in a new given pieces should be played. The problem is thus a

numeric prediction task.

Section 4.3 below will present a knowledge-based algorithm for this type of induction

problem, but �rst we take a closer look at what music theory can tell us about the problem.

3 The nature and importance of background knowledge

Consider again the abstract learning task: training examples are melodies, i.e., sequences of

notes, where each note is associated with a numeric value that represents the precise degree

of loudness or local tempo that has been applied to the note by a musician in a particular

performance. These numeric values can be viewed as de�ning a curve (a performance curve,

in music-technical terms) above the melody. The task is to learn to `draw' `correct' or at least

`sensible' curves above new melodies, i.e., new sequences of notes.

Figure 1 tries to give the reader an intuition of what the problem looks like to a learner

without any knowledge of music: to a naive learner, the individual notes are simply generic

symbols with various intrinsic characteristics or features. This abstract representation illus-

trates the di�culty of the learning task. It is quite evident that one of the main problems is

that of context: one symbol alone does not uniquely determine the numeric value (the height

of the curve) associated with it. It is not at all clear, however, what the relevant context is,

whether there are only local or also nonlocal context in
uences.

It is a fact that humans (e.g., music students) learn general principles of expressive per-

formances quite e�ectively, from rather few examples. The reason is, of course, that we as

humans possess additional knowledge about the meaning of the symbols. To us, this is music,

and that gives us an interpretation framework for the symbols. Listeners do not perceive a

presented piece as a simple sequence of unrelated symbols or events, but they immediately and

3




������ 
������ 
������ 
������

����
 ����


����


	�������	���
	�������	���

�����
��� ��

�����
��� ��


���
����� ������

Figure 2: The problem as perceived by a human learner.

automatically interpret it in structural terms. For instance, they segment the 
ow of events

into `chunks' (motives, groups, phrases, etc.); they intuitively hear the metrical structure of

the music, i.e., identify a regular alternation of strong and weak beats and know where to tap

their foot. Linearly ascending or descending melodic lines are often heard as one group, and

so are typical rhythmic �gures and other combinations of notes. To a human learner, then,

the above training example would look more like Figure 2.

Many more dimensions of musical structure can be identi�ed, and it has been shown

that acculturated listeners extract these structures in a highly consistent manner, and mostly

without being aware of it. All these structures and patterns are related to the rise and fall

of loudness or tempo that are observed (heard) in a performance. That is the (unconscious)

musical `knowledge' that listeners and musicians automatically bring to bear when listening

to or playing a piece.

Results from musicology support this hypothesis. Numerous recent studies tell us that

expression is not arbitrary, but highly correlated with the structure of music as it is perceived

by performers and listeners. In fact, expression is a means for the performer to emphasize

certain structures and maybe de-emphasize others, thus conducing the listener to `hearing'

the piece as the performer understands it.

1

The following sections describe two di�erent approaches towards providing the learning

algorithm with general background knowledge about musical structure and its possible re-

lation to expressive performance. The knowledge itself will be based in both cases on two

well-known theories of tonal music | Lerdahl and Jackendo�'s (1983) Generative Theory

of Tonal Music and Eugene Narmour's (1977) Implication-Realization Model. Both theories

postulate certain types of structures that are claimed to be perceivable by human listeners.

That is also where the project becomes interesting to musicology: experimental results

with these learning systems can provide empirical evidence for or against the relevance of var-

ious parts of the underlying music theories and will generally help us identify those structural

1

A clarifying remark to readers who feel that we are trivializing the artistic phenomenon of expressive

performance by reducing it to a function of structural patterns in the music: We are not talking here about the

highly artistic details that distinguish a great pianist or other performer, and that derive in part from his/her

deep understanding of music history, experience with styles, social circumstances, and artistic intentions.

What is being investigated here is the \rational" component of expression, the types of musical behavior and

understanding that are more or less common and agreed upon among musicians | in other words, what a

music student must learn in order to produce acceptable performances. Even a virtuoso's performance is

constrained by and large by such common norms of interpretation.
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dimensions of music that seem to have the most `explanatory power' with respect to given

expressive performances.

4 Approach I: Learning at the note level with explicit qual-

itative background knowledge

The �rst approach we pursued was very much in the tradition of what is generally known

as knowledge-based or knowledge-intensive learning: knowledge about musical structure per-

ception was formulated in an explicit (albeit abstract, incomplete, and partly inconsistent)

domain theory (Mitchell et al., 1986). A learning algorithm by the name of IBL-Smart was

developed that can use the knowledge to advantage.

4.1 The target concepts

Learning proceeds at the level of notes. Each individual note is a training example, and the

induced rules refer to individual notes as well. The goal is to learn rules that determine the

precise degrees of loudness and tempo to be applied to each note in a piece. We have thus

two separate (numeric) learning tasks | dynamics and tempo | and accordingly, the system

will learn two sets of rules.

In order to make the problem accessible to a symbolic, knowledge-based induction algo-

rithm, we split it into a symbolic classi�cation task and a numeric prediction task. In both

expression dimensions, we distinguish two classes of notes: those that are associated with a

rise of the performance curve (relative to the previous note), and those that witness a fall

of the curve. In the dynamics dimension, the relevant musical terms for the two classes are

crescendo (an increase in loudness) and decrescendo (a decrease), and in the tempo dimension,

accelerando (an increase in tempo, i.e., speeding up) and ritardando (slowing down). These

are common musical concepts.

The learner induces classi�cation rules that distinguish between instances of the two

classes. In addition, for each of these rules it learns a scheme to predict precise numeric

values, i.e., by how much the dynamics or tempo curve should rise or fall at a particular

point. The learning algorithm IBL-Smart, which was developed for this class of problems,

is described in section 4.3 below.

4.2 The qualitative domain theory

The musical examples are initially described only through intrinsic features of the individual

notes (e.g., pitch (tone height), duration, relative position in the piece) and some simple

relations between pairs of adjacent notes (the interval between two notes, and the direction of

the interval). As we have tried to show in section 3 above, this is hardly su�cient for e�ective

learning. Knowledge about relevant musical structure is needed. We have devised a structured

symbolic domain theory that represents what we consider general musical intuitions that

ordinary human listeners possess. Most of this knowledge is only approximate and uncertain,

and that is made explicit in the formulation of the theory. Figure 3 sketches the general

structure of the theory. A more detailed discussion can be found in (Widmer, 1993a, 1995a).

The model consists of two major components. The lower part, named model of structural

hearing in �gure 3, is basically a set of programs that perform a structural analysis of a given

melody and explicitly annotate the melody with various musical structures that we believe
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Figure 3: Structure of the qualitative background model.

are perceived by human listeners. This part of the model is based on the well-known music

theories by Lerdahl and Jackendo� (1983) and Narmour (1977). Essentially, the purpose is to

construct meaningful higher-level descriptors that capture aspects of musical context. These

can then be referred to in the induction process.

The upper part of the theory (the qualitative dependency network) expresses our intuitions

concerning possible relations between structural aspects of the music and appropriate expres-

sive performance decisions (i.e., the symbolic target concepts). It is similar in structure to

the `classical' domain theories as used in Explanation-Based Learning (EBL) (Mitchell et al.,

1986). It is a hierarchy of statements relating non-operational predicates (including the target

concepts) to more operational, speci�c conditions. However, these statements may describe

relations of various strength and speci�city:
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Strict (deductive) rules: As in EBL, the domain theory contains some strict deductive

rules of the form Q : �P

1

; P

2

; : : : that specify su�cient conditions (P

1

; P

2

; : : :) for some

(non-operational) predicate Q to be true.

Directed qualitative dependencies: A statement of the form q+(A,B) can be paraphrased

as \the values of attributes A and B are positively proportionally related" or \high (or

low) values of A tend to produce high (or low) values of B, all other things being equal".

Negative dependency q-(A,B) is de�ned analogously. Obviously, this type of knowl-

edge is less precise and logically weaker than strict rules. It does not permit deductive

reasoning. Similar types of knowledge items have been proposed in (Michalski, 1983)

and (Collins and Michalski, 1989).

Undirected qualitative dependencies: A statement depends on(Q; [P

1

; P

2

; : : :]) denotes

an unspeci�c, undirected relation between the set of predicates P

i

and the (non-operational)

predicate Q. Basically, it says that the value (or truth value) of Q depends somehow on

the values (or truth values) of the P

i

, but we do not know the exact function that

de�nes this dependency. Similar types of general knowledge items have been described

in (Russell, 1989) and (Bergadano et al., 1989). They are used to focus the learner on

sets of relevant predicates or attributes in the search for rule re�nements.

Most of the arrows in �gure 3 represent qualitative dependencies. For instance, the fol-

lowing statement at the top level of the theory relates the phenomenon of loudness variations

to some abstract musical notions:

depends_on( crescendo(Note,X),

[stability(Note,S), goal_directedness(Note,G), closure(Note,C)]).

\Whether crescendo should be applied to a note (and if so, the exact amount X)

depends, among other things, on the musical stability S of the note, on its degree

G of melodic `goal-directedness', and on its degree of melodic `closure'.".

Abstract notions like stability, goal directedness, and closure are then again related

to lower-level musical e�ects, all the way down to some surface features of training instances,

for example:

q+( metrical_strength(Note,X), stability(Note,Y)).

q+( harmonic_stability(Note,X), stability(Note,Y)).

\The perceived degree of stability Y of a note is positively proportionally related

to (among other things) the metrical strength X of the note" etc.

where metrical strength is a numeric and harmonic stability is a symbolic attribute

(with a discrete, ordered domain of qualitative values). Both are de�ned as operational and

are computed by the lower part of the domain theory | the model of structural hearing.

4.3 The learning algorithm IBL-Smart

A knowledge-based learning algorithm by the name of IBL-Smart was developed for the

purpose of this project. According to the two-part structure of the learning task as de�ned
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Figure 4: Integration of symbolic learning and numeric learning in IBL-Smart.

in section 4.1 above, IBL-Smart is composed of two major components (see �gure 4)

2

: a

symbolic learning component that learns to distinguish between the symbolic target concepts

(e.g., crescendo and decrescendo) and can utilize domain knowledge in the form of a qualitative

model, and an instance-based component that stores the instances with their precise numeric

attribute values and can predict the target value for some new note by numeric interpolation

over known instances. The connection between these two components is as follows: each

rule (conjunctive hypothesis) learned by the symbolic component describes a subset of the

instances; these are assumed to represent a subtype of the target concept (e.g., some particular

type of crescendo situations). All the instances covered by a rule are given to the instance-

based learner to be stored together in a separate instance space. Predicting the target value

for some new note in a new piece then involves matching the note against the symbolic

rules and using only those numeric instance spaces (interpolation tables) for prediction whose

associated rules are satis�ed by the note.

IBL-Smart's symbolic component is a non-incremental discrimination algorithm that

learns classi�cation rules in disjunctive normal form (DNF). It has been speci�cally designed

to be able to use imprecise, qualitative background knowledge as contained in our domain

theory. The algorithm starts with a nonoperational de�nition of the target concept (e.g.,

crescendo) and performs stepwise top-down operationalization (specialization) by growing a

heuristic best-�rst search tree. Expressions (nodes of the tree) are re�ned by operationalizing

non-operational predicates or by inductively adding new conditions that discriminate between

positive and negative examples. A node becomes a leaf when it covers only positive training

instances; it then represents one conjunct (rule) in the �nal DNF hypothesis. The search

terminates when a certain percentage of the positive examples are covered.

Operationalization steps that reduce a non-operational predicate to more basic ones are

based on rules or dependency statements given in the domain theory. In the case of strict

rules, this is identical to the method used in Explanation-Based Generalization (Mitchell et

al., 1986). In the case of a qualitative dependency, say, q+(A,B), the operationalization step

consists in replacing the non-operational predicate B with A. The algorithm creates successor

nodes by replacing B(X,.) with A(X; a

i

) for all values a

i

appearing in positive instances

covered by the current node. Which of these node expansions is most promising and will

2

The name IBL-Smart re
ects the two components: IBL stands for Instance-Based Learning (Aha et

al., 1991) and characterizes the numeric component, and Smart is a tribute to the ML-Smart algorithm

(Bergadano and Giordana, 1988), which provided some of the ideas for the search strategy of the symbolic

learner.
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Figure 5: Beginnings of three little minuets by J.S.Bach.

most likely be expanded further is then determined by a heuristic evaluation function, which

guides the search. The function takes into account empirical measures like the `purity' of the

current node, i.e., the ratio of positive / negative instances covered by the expression, but

also semantic criteria, like the degree to which the attribute values involved in the opera-

tionalization observe the proportionality relation postulated by some dependency statement

in the domain theory.

By taking into account both such inference-dependent plausibility measures and informa-

tion about the numbers of instances covered, the search heuristic combines weak, imprecise

background knowledge with empirical information from the training data, producing hypothe-

ses that tend to correspond to the background knowledge as much as the data permits and

overriding the background knowledge if the data is in con
ict with the knowledge. A more

detailed description of the search strategy can be found in (Widmer, 1993b).

4.4 An experiment

The system has been tested with pieces from various musical epochs and styles (Bach minuets,

Chopin waltzes, even jazz standards). Here we present two typical results.

Figure 5 shows the beginnings of three well-known minuets from J.S.Bach's Notenb�uchlein

f�ur Anna Magdalena Bach. All three pieces consist of two parts. The second parts of the

pieces were used for training: they were played on an electronic piano by the author, and

recorded through a MIDI interface. After learning, the system was tested on the �rst parts of

the same pieces. In this way, we combined some variation in the training data (three di�erent

pieces) with some uniformity in style (three pieces from the same period and with similar

characteristics; test data from the same pieces as training data, though di�erent).

The training input consisted of 212 examples (notes), of which 79 were examples of

crescendo, and 120 were examples of decrescendo (the rest were played in a neutral way). The

system learned 14 rules and, correspondingly, 14 interpolation tables characterizing crescendo

situations, and 15 rules for decrescendo. Quite a number of instances were covered by more

than one rule.

Applying these rules to new pieces produces expressive performances. The quality of these

9



Figure 6: Beginning of a training piece as played by teacher (dynamics curve).

Figure 7: Beginning of a test piece as played by learner after learning (dynamics curve).

is not easy to measure, as there is no precise criterion to decide whether some performance

is right or wrong. Judging the correctness is a matter of listening. Unfortunately, we cannot

attach a recording to this article so that the reader can appreciate the results. Instead, �gure

6 depicts a part of one of the training pieces (the second part of the �rst minuet in G major as

played by the author), and �gure 7 shows the performance generated by the system for a test

piece (the �rst part of the same minuet) after learning. The �gures plot the relative loudness

with which the individual notes were played; a level of 1.0 represents average loudness.

The reader familiar with standard music notation may appreciate that there are strong

similarities in the way similar types of phrases are played by the human teacher and the

learner. Note, for instance, the crescendo in lines rising by stepwise motion, and the de-

crescendo patterns in measures with three quarter notes. Note also the consistent pattern

of accents (loud notes) at the beginnings of measures. Given the limited amount of training

data, the degree of generalization achieved is quite remarkable. In addition, an inspection of

10



Figure 8: Beginning of test piece as played after learning without domain theory.

the symbolic rules learned in this experiment reveals that the system had re-discovered some

expression principles that had been formulated years ago by music theorists (see section 7).

When we perform the same experiment without the domain theory, we get an impression

of the importance of the musical background knowledge. Without the domain model, IBL-

Smart is reduced to a purely empirical discrimination algorithm.

Figure 8 shows the system's performance of the same test piece after learning from the

Bach minuets in this way. There is a marked deterioration in the resulting performance from

learning with knowledge (�gure 7) to learning without knowledge (�gure 8). The variations

applied by the restricted system are of rather mixed quality. In some cases (e.g., the de-

crescendo patterns in measures 4 and 5), they do make sense, in others (e.g., the stress on the

last notes in measures 1, 3, and 6) the system's decisions run counter to musical intuition.

Obviously, the domain theory contributes signi�cantly to successful learning, especially when

the number of available training examples is rather small, as in the current case.

Apart from such qualitative evaluations, we have also performed some quantitative mea-

surements to establish beyond doubt the bene�ts of the knowledge-based approach. Section

7.1 has more to say on that.

5 Approach II: Learning at the structure level via knowledge-

based abstraction

Despite some encouraging results with the �rst approach, it became clear eventually that the

note level is not really appropriate from a musical point of view. For one thing, though the

performances produced by the system were in large part musically sensible, they lacked a

certain smoothness and a sense of both local and global form. Second, it is psychologically

implausible that performers think and decide on a purely local level in terms of single notes;

rather, they tend to comprehend music in terms of higher-level abstract forms like phrases etc.

And �nally, as observed by Sloboda (1985), expression is amulti-level phenomenon: expressive

shapes, like musical structures, appear at multiple levels. Local expression patterns may be

embedded within larger patterns (e.g., shaping of ornaments within an overall crescendo). A

11
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Figure 9: Structural interpretation of part of Bach minuet.
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Figure 10: Two of the expressive shapes found in Bach recording.

sensible formalization of musical expression should re
ect that.

Consequently, we have developed an alternative approach that abandons the note level

and tries to learn expression rules directly at the level of musical structures. The essence of the

approach is a knowledge-based abstraction strategy that transforms the training examples and

the entire learning problem to a musically plausible abstraction level. The induced expression

rules will then also relate to that abstraction level.

The problem transformation proceeds in two stages. The system �rst performs a musical

analysis of the given melody. Analysis routines, based again on selected parts of the theories

by Lerdahl and Jackendo� (1983) and Narmour (1977), identify various structures in the

melody that might be heard as units or `chunks' by a listener or musician. The result is a rich

annotation of the melody with identi�ed structures. Figure 9 exempli�es the result of this

step with an excerpt from a simple Bach minuet. Among the perceptual chunks identi�ed here

are four measures heard as rhythmic units, three groups heard as melodic units or \phrases"

on two di�erent levels, two linearly ascending melodic lines, two rhythmic patterns called

rhythmic gap �lls (a concept derived from Narmour's theory), and several others. Note that

these musical structures can be of widely varying scope | some consist of two or three

notes only, others may span several measures. As training examples will be de�ned by such

structures, the system will learn to recognize and apply expression at multiple levels.

In the second step, the abstract target concepts for the learner are identi�ed. The sys-

tem tries to �nd prototypical shapes in the given expression (dynamics and tempo) curves

that can be associated with these structures. Prototypical shapes are rough trends that can

be identi�ed in the curve. The system distinguishes �ve kinds of shapes: even level (no

recognizable rising or falling tendency of the curve in the time span covered by the struc-

ture), ascending (an ascending tendency from the beginning to the end of the time span),

descending, asc desc (�rst ascending up to a certain point, then descending), and desc asc

(�rst descending, then ascending). The system selects those shapes that minimize the devia-

tion between the actual curve and an idealized shape de�ned by straight lines.
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Figure 10 illustrates this step for the dynamics curve associated with the Bach example

(derived from a performance by the author). We take a look at two of the structures found

in �gure 9: the ascending melodic line in measures 1{2 has been associated with the shape

ascending, as the curve shows a clear ascending (crescendo) tendency in this part of the

recording. And the `rhythmic gap �ll' pattern in measures 3{4 has been played with a

desc asc (decrescendo { crescendo) shape.

The results of the transformation phase are passed on to IBL-Smart.

3

Each pair<musical

structure, expressive shape> is a training example. Each such example is further described

by a quantitative characterization of the shape (the precise loudness/tempo values, relative

to the average loudness and tempo of the piece, of the curve at the extreme points of the

shape) and a description, in terms of music-theoretic features, of the structure and the notes

contained in it (e.g., note duration, harmonic function, metrical strength, : : : ).

The output of IBL-Smart is a set of general rules that decide, given the description of a

musical structure, what kind of expressive shape should be applied to it, and exactly how

much crescendo, accelerando, etc. should be applied.

Applying learned rules to new problems is then rather straightforward: given the score of

a new piece (melody) to play expressively, the system again �rst transforms it to the abstract

structural level by performing its musical analysis. For each of the musical structures found,

the learned rules are consulted to suggest an appropriate expressive shape (for dynamics and

rubato). The interpolation tables associated with the matching rules are used to compute

the precise numeric details of the shape. Starting from an even shape for the entire piece

(i.e., equal loudness and tempo for all notes), expressive shapes are applied to the piece in

sorted order, from shortest to longest. Expressive shapes are overlayed over already applied

ones by averaging the respective dynamics and rubato values. The result is an expressive

interpretation of the piece that pays equal regard to local and global expression patterns,

thus combining micro- and macro-structures.

5.1 An experiment

Here are some results of an experiment with waltzes by Fr�ed�eric Chopin. The training pieces

were �ve rather short excerpts (about 20 measures on average) from the three waltzes Op.64

no.2, Op.69 no.2, and Op.70 no.3, played by the author on an electronic piano and recorded

via MIDI. The results of learning were then tested by having the system play other excerpts

from Chopin waltzes.

As an example, �gure 11 shows the system's performance, in terms of both loudness and

tempo variations, of the beginning of the waltz Op.18 after learning from the �ve training

pieces. Again, values of 1.0 mean average loudness or tempo, higher values mean that a note

has been played louder or faster, respectively. The arrows have been added by the author

to indicate various structural regularities in the performance. Note that while the written

musical score contains some explicit expression marks added by the composer (e.g., commands

like cresc, sf or p and graphical symbols calling for large-scale crescendo and decrescendo),

the system was not aware of these; it was given the notes only.

In a qualitative analysis, the results look and sound musically convincing. The graphs

suggest a clear understanding of musical structure and a musically sensible shaping of these

structures, both at micro and macro levels. At the macro level (arrows above the graphs),

3

Since there is no explicit domain theory any more in this approach, we have used FOIL (Quinlan, 1990)

as the symbolic learning component of IBL-Smart in all the experiments described below.
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Figure 11: Waltz op.18, E[ major, as played by learner: dynamics (top) and tempo (bottom).

for instance, both the dynamics and the tempo curve mirror the four-phrase structure of the

piece. In the dynamics dimension, the �rst and third phrase are played with a recognizable

crescendo culminating at the end point of the phrases (the B[ at the beginning of the fourth

and twelfth measures | see positions (beats) 9 and 33 in the plot). In the tempo dimension,

phrases (at least the �rst three) are shaped by giving them a roughly parabolic shape |

speeding up at the beginning, slowing down towards the end. That agrees well with theories

of rubato published in the music literature (e.g., Todd, 1989).

At lower structural levels, the most obvious phenomenon is the phrasing of the individual

measures, which creates the distinct waltz `feel': in the dynamics dimension, the �rst and

metrically strongest note of each measure is emphasized in almost all cases by playing it

louder than the rest of the measure, and additional melodic considerations (like rising or
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falling melodic lines) determine the �ne structure of each measure. In the tempo dimension,

measures are shaped by playing the �rst note slightly longer than the following ones and then

again slowing down towards the end of the measure.

The most striking aspect is the close correspondence between the system's variations

and Chopin's (or the score editor's) explicit expression marks (which were not visible to the

system!). The reader trained in reading music notation may appreciate how the system's

dynamics curve closely parallels the various crescendo and decrescendo markings and also

the p (piano) command in measure 5. Two notes were deemed particularly worthy of stress

by Chopin and were explicitly annotated with sf (sforzato): the B['s at the beginning of the

fourth and twelfth measures. Elegantly enough, our program came to the same conclusion

and emphasized them most extremely by playing them louder and longer than any other note

in the piece; the corresponding places are marked by arrows with asterisks in �gure 11.

6 A machine learning analysis of real artistic performances

All experiments so far used performances by the author himself as training examples. One

might be concerned about a possible bias in these data, intentional or inadvertent. (Though,

given the author's far from perfect piano technique and the rather poor keyboard on which

the examples were recorded, whatever bias there may be in the data is de�nitely dominated

by involuntary errors and noise).

This section brie
y describes experiments performed with real data, that is, performances

of a complete piece by a number of internationally famous pianists. The results shed some

light into signi�cant di�erences in personal performance styles between di�erent artists. The

experiments have also helped us pinpoint a number of weaknesses of the current apprach.

Appropriate re�nements of the strategy and the music-theoretic vocabulary are currently

under way. We cannot present a detailed discussion here | the following is only intended

to give the reader an impression of the complexity of the phenomenon and a glimpse of the

results we have achieved so far. Further details can be found in (Widmer, 1995b).

The piece in question is Robert Schumann's romantic piano piece \Tr�aumerei" (from

\Kinderszenen", op. 15). Figure 12 shows the score of the entire piece. Bruno Repp (1992)

has measured the tempo deviations in 28 performances of this piece by 24 well-known pianists.

This data set was used as the basis for a suite of experiments. Repp's data only capture the

dimension of expressive timing (tempo), dynamics was not taken into account.

At the highest level, the Tr�aumerei is composed of two parts of length 8 and 16 bars,

respectively, where the �rst part is obligatorily repeated. In the experiments, we used various

pianists' performances of the second part for learning. The �rst part of the piece was then

used for testing.

Three pianists from the top of Repp's list | Claudio Arrau, Vladimir Ashkenazy, and

Alfred Brendel | were chosen for the �rst experiment. Their performances of the second part

of the Tr�aumerei were used as training examples. The respective tempo curves are shown

in �gure 13. (To facilitate an easier comparison of several curves, we are using a slightly

di�erent plot style here). As before, the labels on the x axis indicate the absolute distance

from the beginning of the piece in terms of quarter notes (\score time"). The plot represents

the relative tempo variations | the higher the curve, the faster the local tempo.

It is quite evident that there is signi�cant agreement between the performances at a global

level, but also a lot of di�erences in the �ne details. All three pianists observed the major
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Figure 12: \Tr�aumerei" by Robert Schumann (from the `Urtext Edition', W. Boetticher (ed.),

G. Henle Verlag, Munich, 1977).
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Figure 13: Second part of Tr�aumerei as played by three pianists (tempo curves).
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Figure 14: Comparison learner { Brendel on test piece (�rst part of \Tr�aumerei").

ritardandi dictated by important structural boundaries (e.g., major phrase endings) and/or

prescribed by expression markings in the score. The extreme ritardando in the third to last

bar is due to a fermata in the score.

Figure 14 shows the system's performance of the test piece (the �rst part of the Tr�aumerei)

after learning from these three examples and compares it to one of its teachers' (Brendel's)

performances of the same piece.

The plot shows considerable agreement in the overall, high-level trends, but also some

discrepancies in the �ner details (e.g., the �ner phrasing structure in measures 3 and 7).

Some of these discrepancies point to shortcomings of our current system. For instance, the

system fails to replicate Brendel's way of phrasing the small melodic motifs in measures 3 and

7. Deeper analysis revealed that this is due to the limited set of abstract expressive shapes

(see section 5) that the learner can identify in a given performance curve. We are planning

to introduce more complex abstract patterns into the learner's shape vocabulary. Generally,

however, we consider the result very satisfactory, especially given that the performances of

the three teachers, though fairly similar at a high level, are quite di�erent at lower levels.
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Figure 15: Comparison learner { Horowitz on test piece (�rst part of Tr�aumerei).

Another interesting dimension that can be explored with the help of machine learning is

personal style di�erences between individual artists. Repp's data collection also includes three

performances by Vladimir Horowitz, who is known for his very distinctive interpretations. In

another experiment, the three performances by Horowitz (again only of the second part of the

piece) were used as training examples. Figure 15 shows the system's performance of the test

piece after learning from the three Horowitz examples, and compares it to one of Horowitz's

performances.

It is quite obvious that Horowitz's performance is indeed very di�erent from, say, Alfred

Brendel's (cf. �gure 14). The learner does seem to manage to replicate part of the Horowitz

style, but not as well as that of more `standard' interpretation styles such as Brendel's. We

cannot give a conclusive explanation at this point, but one may conjecture that Horowitz's

style is more idiosyncratic, his performance decisions cannot be so easily related to or `ex-

plained' by obvious structural features of the music. We do expect that further analysis of

the learned rules and more detailed experiments will provide insights into speci�c aspects of

performance di�erences that may be of interest to musicology in general. In any event, we

can show experimentally that the two knowledge-based approaches to learning are superior

to learning without musical knowledge (see the next section).

7 Discussion of experimental results

In the introduction to this chapter, it was claimed that, as an interdisciplinary project, our

work should produce results of interest to both disciplines involved. The example results

presented in the previous sections have hinted at some of these. Here, we will look at the

results a bit more closely, both from a machine learning and a musicology perspective.

7.1 Quantitative analysis

From the viewpoint of machine learning, the main contribution of this project is the intro-

duction and comparison of two di�erent approaches to knowledge-based learning: the �rst

consists in making incomplete and very imprecise domain knowledge explicit in the form of a

qualitative domain theory and devising an inductive learning algorithm that uses the theory
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naive approach approach 1 approach 2

(no knowledge) (qual. domain theory) (abstraction)

matches/accelerando 58.46 % 61.54 % 55.38 %

matches/ritardando 50.91 % 54.55 % 78.18 %

Total matches 55.00 % 58.33 % 65.83 %

Table 1: Percentage of agreement between learner and teachers (unweighted).

naive approach approach 1 approach 2

(no knowledge) (qual. domain theory) (abstraction)

matches/accelerando 61.93 % 58.88 % 57.87 %

matches/ritardando 40.83 % 55.03 % 76.92 %

Total matches 52.19 % 57.10 % 66.67 %

Table 2: Percentage of agreement (weighted by metrical strength).

to guide its heuristic search. The alternative approach uses domain knowledge to transform

the training examples and the entire learning problem to musically plausible abstraction lev-

els. Our results with Bach minuets, brie
y hinted at in section 4.4, weakly indicated that the

introduction of additional knowledge (in that case through the �rst approach) does indeed

improve the learning results. However, one would like to obtain quantitative results that

clearly prove that hypothesis.

A fundamental problem with our application domain, at least from a machine learning

point of view, is that a precise quantitative evaluation of the results is not possible. The

musical quality of an expressive performance cannot be quanti�ed. There is no one `cor-

rect' interpretation, aesthetic judgements can depend on many extra-musical factors, and

global qualities like the coherence or balance of a performance are very di�cult to formalize.

Nonetheless, we have performed some simple measurements in order to at least get some weak

indications as to the relative merits of our learning approaches.

For instance, we experimentally compared three algorithms on the Schumann learning

task: algorithm 0 (the `naive' algorithm) is IBL-Smart without any domain knowledge, thus

restricted to purely empirical learning. Algorithm 1 is the same system with the qualita-

tive domain theory, learning at the note level as described in section 4, and algorithm 2 is

IBL-Smart with knowledge-based abstraction as described in section 5. Each of the three

algorithms was trained on the performances of the second piece of the Tr�aumerei by the three

pianists Claudio Arrau, Vladimir Ashkenazy, and Alfred Brendel. The learned rules were

then applied to the �rst part of the piece, and the resulting performances were compared to

the respective performances by the three `teachers' by counting the number of agreements of

categorical decisions (i.e., how often both the pianist and the learner applied a ritardando

or an accelerando to a note). Table 1 summarizes these `predictive accuracy' measurements,

averaged over all three pianists. The reader should keep in mind that an agreement of 100%

is strictly impossible, as the three pianists' performances di�er in a lot of details.

The summary line (the total percentage of matches) indicates signi�cant advantages of

the knowledge-based systems over the learner without domain knowledge. And among the
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former, approach 2 (knowledge-based abstraction) clearly outperforms approach 1 (learning

at the note level). That con�rms our previous qualitative evaluations (by musical analysis

and listening tests) and also supports the theoretic hypothesis that structure abstraction is

musically more plausible than direct application of knowledge at the level of individual notes.

But such quantitative results should be taken with a grain of salt. Simply counting the

number of matching decisions is far too simplistic. Not every note in a piece is equally

important, and some errors are far more critical than others. All that depends in a complex

way on aspects of the musical context. A musically meaningful comparison should take all

the relevant factors into account, but that would presuppose a complete theory of `correct'

interpretation, a thing which obviously does not exist (which is why we started our empirical

research in the �rst place).

As a �rst approximation to a more elaborate comparison, table 2 lists the results of the

same experiment if we apply a simple weighting scheme to the counts: each match/mismatch

between system and teacher is weighted by the relative metrical strength of the underlying

note. This is meant to be a very rough measure of the relative importance of notes. In the

weighted analysis, the di�erences between the three learners come out even more clearly, with

the abstraction-based approach winning by a big margin. Whatever the ultimate musical

validity of these measurements, they do provide strong evidence for the utility of the musical

background knowledge and the e�ectiveness of our knowledge-based learners.

7.2 Useful qualitative results for musicology

From the perspective of musicology, the qualitative aspects of our results are more informative.

Generally, since the domain knowledge | be it in the form of a domain theory or in the form

of abstraction operators | is based on two recent theories of tonal music, the musical quality

of our learners' expressive performances (and the superiority over learning without knowledge)

provides additional empirical evidence for the relevance of these music theories.

More detailed insights can be gained by directly inspecting the learned expression rules.

For instance, an analysis of rules learned from di�erent types of music have revealed di�erent

structural dimensions of the music to be relevant (Widmer, 1995a). Also, experiments have

shown that while abstraction to the structure level generally provides better results for various

types of classical music, for other styles like jazz the note level is more adequate | note level

rules perform better and have more explanatory potential.

A very interesting result was that the system in e�ect re-discovered variations of some

expression rules that were postulated by music theorists some years ago (e.g., Sundberg et

al., 1983; Friberg, 1991), based mainly on musical intuition and experience. For instance, one

of the rules discovered by our learner reads:

ritardando( Note, X) :-

interval_prev( Note, I),

at_least( I, maj6),

dir_prev( Note, up).

which may be paraphrased as \Increase the duration (by a certain amount X) of all notes

that terminate an upward melodic leap of at least a major sixth." This is a specialization of

rule 4 from (Sundberg et al., 1983), which increases the duration of all notes that terminate

a melodic leap (in either direction). Several other variants of Sundberg rules were discovered
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through learning. Our experiments have thus produced additional empirical support for the

appropriateness of the Sundberg rules. These results are also the starting point for new

investigations with various music-theoretic vocabularies that we are currently performing in

cooperation with Johan Sundberg and colleagues.

8 Conclusion

This chapter has shown how machine learning can pro�tably be applied to the study of real

problems in the �eld of tonal music. Compared to `hard' sciences like physics and chemistry,

music is in many ways `softer' | many aspects are not quanti�able, and that makes it

di�cult to perform the kinds of precise experiments and analyses that are considered the norm

in inductive learning research. Nonetheless, machine learning can make useful qualitative

contributions, for instance to the empirical evaluation of existing theories of the domain.

Prerquisites for the success of such projects are a thorough analysis of the application domain

and existing theories thereof, and a conscious approach to domain modelling. That includes

the careful design of vocabulary and representation language, which can contain (and hide)

a lot of domain-speci�c knowledge and implicit assumptions.

Our projects have yielded a number of interesting musical results, and we view our

\analysis-by-resynthesis" approach (i.e., having machine learning programs reproduce ob-

served phenomena and analyzing the results) as a viable alternative or addition to more

traditional methods in musicology (Widmer, 1994b).

From a machine learning perspective, such interdisciplinary projects can be bene�cial

as well: new application domains can motivate the development of new learning models and

algorithms, which need not at all be domain-speci�c. Our algorithm IBL-Smart, for instance,

is a general inductive learner that may well be useful for other classes of applications.

Future work in this project will concentrate primarily on aspects of domain modelling.

Experiments with di�erent music-theoretic vocabularies and di�erent types of music will give

us a more detailed insight into the regularities and possible explanations of performance styles.

The compilation of a large collection of real performance data turns out to be di�cult (mainly

for copyright reasons), but it will be essential to the success of this enterprise.
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