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Abstract

The paper describes a recent attempt at reconstructing, by means of machine learning
techniques, expressive performance skills from examples of real musical perfor-
mances. An inductive machine learning algorithm is used to analyze the expressive
timing (rubato) patterns in some actual performances by various famous pianists of
Robert Schumann’s “Traumerei” (from “Kinderszenen”, op.15). Two approaches
based on the same learning algorithm, but using different vocabularies for describing
example performances and formulating the rules are described. The experimental re-
sults are quite interesting and instructive, but they also point to some rather serious
limitations of the available data collection.

1 Introduction

The paper describes a recent attempt at automatically reconstructing, by means of machine
learning techniques, expressive performance skills from examples of real musical performances.
The work represents another step in the “analysis by resynthesis” research programme to the
study of musical expression (Widmer, 1994b). “Analysis by resynthesis” in this context means
that we develop computer programs that analyze examples of human performances, learn gen-
eral expression rules from these, and test the learned rules by applying them to new pieces to
produce expressive performances. In addition to learning about the general learnability of the
skill (or art) of musical expression, one may also hope to gain new musical insight through an
analysis of the explicit expression rules generated by the inductive learning programs. This may
be seen as complementary to Sundberg et al.’s (1983) “analysis by synthesis” approach, where a
set of expression rules are postulated (based on musical intuition, experience, and various in-
sights from music theory), and their behaviour and adequacy is then tested by applying them to
new pieces, and where cycles of testing and analysis can lead to refinement of the rules and
tuning of their parameters.

The focus of the experiments to be reported is Robert Schumann’s romantic piano piece
“Traumerei” (from “Kinderszenen”, op. 15). We will present a machine learning analysis of the
expressive timing (rubato) patterns in some real performances of this piece by various pianists.
Precise measurements of these performances were collected by Repp (1992). Repp himself used
the data for an extensive statistical analysis that attempted to identify commonalities and differ-



ences between the pianists’ performances and styles. The goal of our machine learning analysis,
on the other hand, is to discover music-structural criteria that might govern or ‘explain’ regulari-
ties in expressive timing and that, if formulated explicitly in the form of rules, would allow the
computer to ‘predict’ or determine an appropriate rubato structure for new pieces. Thus, one
could say that while statistical studies like Repp’s are descriptive in nature, machine learning
studies like the one described here aim at constructive or explanatory results.

More precisely, we will present two sets of experiments based on the same inductive learning
algorithm, but using different vocabularies for describing example performances and formulat-
ing the rules. Empirical tests of the learned rules will produce quite interesting musical results,
but eventually we will find that the general results of this preliminary study are rather inconclu-
sive. While the rules extracted from the example performances do allow the system to produce
sensible performances of an unseen test piece, the rules themselves do not seem to capture
principles of expressive timing that are truly general. This result seems due mainly to the specif-
ic limitations of the available data collection. Sections 4 and 5 will discuss this in more detail.

2 The data

Bruno Repp (1992) has assembled a sizeable collection of empirical performance data relating
to Robert Schumann’s Tidumerei. He measured the exact timing (note onset times) in 28 perfor-
mances by 24 well-known pianists, down to a resolution of about 2 milliseconds. A list of the
pianists and the recordings used, as well as the score and a structural (melodic/rhythmic) analy-
sis of the piece can be found in (Repp, 1992). The measurements are in the form of lists of
interonset intervals (IOls) that specify the absolute time in milliseconds between the onset of the
major melody tones (usually the notes of the ‘soprano’). The other voices were largely ignored.

This data set was used as the basis for our experiments. Note that Repp’s data only capture the
dimension of expressive timing (rubato), dynamics was not taken into account. Dynamics data
could have been handled in an analogous way by our system, had they been available. Also,
while Repp’s measurements reflect not only the relative timing deviations, but also the absolute
tempo of the 28 performances (which differed wildly between individual pianists), the dimen-
sion of absolute tempo was disregarded in our experiments. All the tempo curves in the follow-
ing sections relate to a hypothetical ‘average’ global tempo.

From a machine learning point of view, it would have been more desirable to have perfor-
mances of several different pieces rather than different performers playing the same piece. The
data are well suited to the kind of statistical similarity/difference investigations performed by
Repp. But the nature of our learning task, which is to discover rules that make timing decisions
based on structural aspects of musical situations, requires that a large and diverse collection of
musical situations be available for learning, if the resulting rules are to be general and reliable.
The set of distinct musical patterns contained in just one (rather short) piece of music is very
limited, so the rules that can be extracted from these examples will tend to be highly specific to
the particular training piece. We will return to this problem later.

3 Experimental setting

3.1 The machine learning scenario

The general scenario in our approach is as follows: Expressive performances by musicians are
collected, represented in the computer in some symbolic form, and submitted to an inductive



machine learning algorithm as examples of ‘correct’ or ‘sensible’ interpretations. More precise-
ly, input to the learning algorithm are the notes of pieces (currently only the melodies) as given
in the score, along with tempo curves representing the expressive timing deviations applied by a
performer. Each note is described in terms of various intrinsic properties (such as name, pitch,
duration), simple relations between the note and its predecessor and successor notes (e.g., in-
terval, direction of interval), and some higher-level descriptors that describe the roles that the
note plays in various structural dimensions (e.g., metrical strength, relative position in the
grouping or phrase structure, etc.).

The learner’s task is to extract from these examples a set of general rubato or timing rules that
specify general conditions for when to apply, say, an accelerando or a ritardando. In addition,
the algorithm must learn to determine the precise numeric degree of accelerando or ritardando
to be applied. The learned rules can be used to compute tempo curves for new pieces. These
can then be analyzed graphically, played and listened to, and the rules themselves are also open
to inspection and analysis.

3.2 The learning algorithm

A new learning algorithm by the name of IBL-Smart had to be developed for this type of learn-
ing scenario. The algorithm basically integrates a symbolic and a numeric generalization strate-
gy. The symbolic component learns explicit rules that determine the appropriate classification
of some note or unit in some piece of music (e.g., whether a particular note should be played
longer or shorter than notated), and the numeric part is an instance-based learning algorithm
(Aha et al., 1991) that in effect builds up numeric interpolation tables for each learned symbolic
rule to predict precise numeric values. The details of the algorithm cannot be discussed here,
the reader is referred to (Widmer, 1993) for a detailed presentation.

Output of the learning algorithm is then a set of symbolic decision rules, each associated with
numeric interpolation tables that determine the exact expression values for each specific situa-
tion.

For the present experiments, the inductive learning algorithm FOIL (Quinlan, 1990) was used
for the symbolic learning part. The rules produced by FOIL are standard PROLOG clauses and
can be directly applied to new pieces by the problem solving component.

3.3 Training and test data

Common machine learning practice dictates that the available data be split into a training set,
which is given to the inductive learning algorithm as the basis for learning, and an independent
test set, on which the quality and accuracy of the learned concepts or rules is then evaluated. At
the highest level, the Trdumerei is composed of two parts of length 8 and 16 bars, respectively,
where the first part is obligatorily repeated. In the experiments, we used various pianists’ per-
formances of the second part for learning. The first part of the piece was then used for testing:
the learned rules were applied to it to produce an expressive interpretation.

In each experiment, we only used a small number of selected performances for the training
phase, rather than all 28. Given the nature of our learning task, increasing the number of exam-
ple performances would not increase the number of different musical patterns that the learner
can look at, as the music is the same for every performance.



4 Approach 1: Learning at the structure level

4.1 Structure-level learning

The first approach tested was the one that we had already used in previous experiments with
other types of music, notably, Chopin waltzes (Widmer, 1994a). Learning proceeds not at the
level of individual notes (e.g., by learning rules that would determine whether a particular note
should be played longer or shorter than notated), but rather at the level of musical structures.
The melody of a training piece is first subjected to a rough structural analysis, which identifies
various structural units, such as groups, phrases, and musical “surface patterns” like linearly
ascending or descending melodic lines, arpeggiated chords (triadic melodic continuations, in the
terminology of (Narmour, 1997)), and other types of melodic or rhythmic structures that tend to
be heard as distinct units by listeners. Most of these structures were derived (in a very loose
way) from Narmour’s (1977) Implication—Realization Model. The tgiven empo curve associated
with the piece is then analyzed to find rough prototypical expressive shapes that can be associated
with each of the structures found. Currently, the repertoire of shapes is limited to only five
types made up of straight lines: even_level (no recognizable rising or falling tendency of the
curve in the time span covered by the structure), ascending (an ascending tendency from the
beginning to the end of the time span), descending, asc_desc (first ascending, then de-
scending), and desc_asc. The system selects those shapes that minimize the deviation be-
tween the actual curve and an idealized shape defined by straight lines. The result of this analy-
sis step are pairs <musical structure, expressive shape> that are passed to the learner as train-
ing examples.

The output of the learner is a set of rules that specify conditions under which a certain type of
expressive shape should be applied to a specific musical structure in a piece. The rules can then
directly be applied to new pieces to produce expressive performances. Where musical structures
overlap or are contained within each other, the respective shapes suggested by the rules are
combined by simple averaging to produce the final expression curve. This strategy had given
quite good results in experiments with performances of Chopin waltzes. See (Widmer, 1994a)
for more details.

4.2 Experiment 1: Arrau, Ashkenazy, Brendel

For the first experiment, we chose three pianists from the top of Repp’s list, namely, Claudio
Arrau, Vladimir Ashkenazy, and Alfred Brendel. Their performances of the second part of the
Triumerei were given to the learner as training examples.!)

Figure 1 shows the tempo curves of the three pianists performing the second part of the piece
(ms. 9—24). The labels on the x axis indicate the absolute distance from the beginning of the
piece in terms of quarter notes (“score time”). The curves plot the relative tempo at each point
as the ratio of played vs. notated duration (relative to the average tempo of the entire perfor-
mance, which would be a straight line at y = 1.0); that is, the higher the curve, the faster the
local tempo. Also, the grouping structure, as explicitly given to the system as part of its structur-

1) Actually, these pianists are numbers 2 to 4 on Repp’s list. Number one, Martha Argerich,
was excluded because her performance is somewhat unusual. In fact, Bruno Repp said it
struck him as “mannered” and “eccentric and distorted”, a characterization which was also
partially supported by his statistical analyses.
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Figure 1: Second part of the Trdumerei, as played by three pianists (tempo curves)

al information, is indicated by curly brackets below the plot. The finer level of grouping corre-
sponds more or less directly to Repp’s (1992, p.2549) structuring into ‘melodic gestures’. The
second level makes explicit the obvious high-level phrase structure of the piece.

It is quite evident from the plot that there is significant agreement between the performances at
a global level, but also a lot of differences in the fine details. All three pianists observed the
major ritardandi dictated by important structural boundaries — e.g., major phrase endings —
and/or prescribed by expression markings in the score. The extreme ritardando in the third to
last bar, marked by an asterisk in figure 1, is due to a fermata in the score.

Ideally, one would expect the learning algorithm to correctly extract the major common trends,
and to learn some average strategy for those situations where the pianists’ performances di-
verge. However, it must be made very clear at this point that by its very design, our learning
algorithm (like any other standard inductive machine learning method) is not prepared to dis-
tort the training examples given to it, for instance by averaging over them. It searches for de-
scriptions (generalizations) that cleanly separate examples of one class from examples of anoth-
er. Thus, if the same musical passage is played with an accelerando by one pianist, but with a
ritardando by another, that will be interpreted as a conflicting situation, and nothing will be
learned from it. That is another reason for using only a few performances as training examples,
rather than all 28.

With that in mind, we now take a look at figure 2, which shows how the system performed the
test piece (the first part of the Tidumerei) after learning from the three example performances.
Below the plot, the figure sketches four of the expressive shapes the system decided to apply,
along with the musical structures by which they were motivated. For instance, a descending
shape (a ritardando from beginning to end) was applied to the ‘triadic melodic continuation’ in
measure 1 (the arpeggiated chord F-A-C-F). The shape was suggested by the following learned
rule:
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Figure 2: First part of the Tidumerei, as played by the system after learning

descending( triadic_melodic_continuation( FIRST, LAST)) :—
rel_position_in_phrase( FIRST, Pos),
Pos < 0.25,
in_process( FIRST, rhythmic_gap _fill).
(‘Apply a descending shape to a ‘triadic melodic continuation’ (identified by its first and last notes) if
the first note is relatively early in the current phrase (its relative position within the phrase is < 0.25)
and if the note also occurs in a ‘rhythmic gap fill’ figure (a certain type of rhythmic pattern).”)?

The final shape of the tempo curve was computed by starting from a straight line at y = 1.0 and
applying the shapes suggested by the rules one by one, always integrating new shapes into the
existing curve by averaging the two.

The quality of the result can be more easily judged if we compare it to a musician’s perfor-
mance. Figure 3 compares the system’s interpretation to one of its teachers’ (Brendel’s) perfor-
mances of the same piece. The plot shows considerable agreement in the overall, high-level
trends: a pronounced accelerando —ritardando shape over the main melodic gesture of the piece,
the ascending sequence E-F-A-C-F-F (1); speeding up again towards the end of measure 2,
which starts a descending chain of three four-note groups (2); these groups are played with a
general ritardando tendency (3) in measure 3, followed by a pronouced speeding up towards the
end of the sequence (4), which is marked by the half-note G in measure 4. The variation of the
opening gesture in measure 5 is again associated with a clear accelerando —ritardando shape (5),
though the system does not replicate Brendel’s tendency to play the penultimate eighth-note A
slower than the final dotted-quarter A, but rather decides to end the ritardando on the last note
of the group (*). Brendel’s phrasing of the rest of the first part is not well replicated by the

2) 1t is doubtful whether this particular rule reflects any general rubato principle; it is prob-
ably highly specific to the particular piece it was learned from. Section 5 has more to say on
this general problem.
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Figure 3: Comparison learner — Brendel on test piece

system, though the general trend (starting fast, gradually slowing down towards the end) is still
quite noticeable (6). The finer phrasing of this passage, however, is rather different from Bren-
del’s (though it does not sound too bad when played).

There are some problems with the system’s performance that are evident from the plotted
curve:

» The absolute tempo of the accelerando—ritardando shape at the beginning of the piece (1) is
too high (at least it is significantly faster than Brendel’s tempo). That is not the fault of the
general shapes suggested by the rules, but rather an effect of the numeric inter- and extrapo-
lation strategy employed by the learner to determine specific values for the height of the
curve. Two possible explanations suggest themselves, which together might account for the
effect: (1) one of the ‘teachers’ (Arrau) also applied an extreme accelerando to (variants of)
this melodic gesture, both in relative and absolute terms (see figure 1), and (2) the perfor-
mance curves of the second part of the piece, which were used for learning, are dominated by
four or five very extreme ritardandi, which may have had a distorting effect on the numeric
learning process.

* The system does not do a very good job in replicating the finer phrasing structure in mea-
sures 3 and 7. A preliminary analysis of the learning process revealed that this is due, at least
in part, to the limited set of abstract expressive shapes (see above) that the learner can identi-
fy in a given performance curve. Patterns in the curve that are more complex than, say, an
up-down shape, will be grossly approximated to fit one of the available linear prototypes. We
are planning to introduce more complex abstract patterns into the learner’s shape vocabu-
lary (though that would probably not help in the current study, because the introduction of
more complex target concepts increases the amount of training data needed to obtain stable
learning results).



* There is no final ritardando in the last measure. Here, the system simply did not know what
to do, it had not learned any rule that applied to this passage. Again, that is primarily an
effect of the limited training data available.

Generally, however, we consider the result to be quite satisfactory, especially given that the per-
formances of the three ‘teachers’, though fairly similar at a high level, are quite different in
some of the finer details.

4.3 Experiment 2: Horowitz

Repp’s data collection also includes three performances by Vladimir Horowitz. His statistical
analyses revealed quite clearly that Horowitz’s performance style is strikingly different from
that of most of the other pianists. In a second experiment, the three performances by Horowitz
(again only of the second part of the piece) were used as training examples, in order to see how
well his style could be captured and replicated by the learner.

Figure 4 shows the system’s performance of the test piece (the first part of the Trdumerei) after
learning from the three Horowitz examples. For comparison, we also plot the timing curve of
one of Horowitz’s performances on the test piece.

First of all, we note that Horowitz’s performance is indeed very different from, say, Brendel’s
(cf. figure 3). The most striking differences are the shortened upbeat at the beginning of the
piece (the quarter note C is reduced almost to a dotted eighth), the extreme tempo changes at
the end of the first and the beginning of the second major melodic motif (positions 5 and 7 on
the x axis), and the phrasing of the next to last measure. The learner did pick up the extreme
way of playing the material of measure 2 — in fact, its rendition of this passage is even more
extreme than Horowitz’s; that is a parallel of the effect we had already seen in the first experi-
ment — but it failed to replicate the shortening of the upbeat, and it failed rather miserably on
the musical material of measures 3 and 7.
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Figure 4: Comparison learner — Horowitz on test piece



The upbeat mismatch is easily explained: of the four similar upbeats that appear in part two of
the piece (of which two are eighth-note upbeats, one is notated as a grace note only, and the last
one is a quarter note), all are lengthened by Horowitz (in all three performances), so this partic-
ular way of playing the very beginning of the piece could not be predicted from looking at the
second part.

As for the serious discrepancies in measures 3 and 7, they are again partly explained by the
above-mentioned limitation of abstract expressive shapes that the learner can recognize and ap-
ply (that is a problem especially with measure 7). In addition, an analysis of the Horowitz per-
formances reveals that he played comparable sections in the second part of the piece quite dif-
ferently than in the first part (though he is extremely consistent across the three performances).

In summary, this case study is too limited to allow us to draw general conclusions. It does indi-
cate that the learning system may be able to acquire performer- or style-specific rules, but it
also reveals serious limitations of our current representation scheme that prevent the system
from learning more refined expression principles.

5 Approach 2: Note-level learning with the KTH vocabulary

5.1 Target concepts and representation language

An alternative approach was tested in a second set of experiments. Given the current limita-
tions of the structure-based approach, we wanted to compare it to a learning system that learns
expression rules directly at the note level. That is, each individual note in a performance is in-
terpreted as an example of accelerando (if it was played faster than its predecessor) and ritar-
dando. In addition, each example is associated with a numeric value that represents the precise
degree of accelerando or ritardando applied. The desired output of the learning system would be
a set of rules for note-level accelerando and ritardando, respectively. That is the same level on
which most of the KTH expression rules are formulated (see, e.g., Friberg, 1991). For the learn-
ing algorithm proper, the abstract task is the same as above — learn symbolic decision rules plus
numeric interpolation tables for deciding the precise degree of tempo change — so the same
learning algorithm was used as in the previous experiments.

The vocabulary, i.e., the set of descriptors or features used to describe each individual note and
its role in the musical context, consisted of intrinsic note attributes (name, pitch, duration), in-
formation about the immediate context, i.e., the immediate predecessor and successor notes
(duration of the neighboring notes and intervals between them and the current note), a few at-
tributes expressing the position of the note in some obvious structural dimensions (like the met-
rical strength of the note and its relative position within the current phrase), and finally of two
concepts that were adopted from the vocabulary of the KTH rule set: the melodic and harmonic
charge, as defined in (Friberg, 1991) and (Sundberg, 1993), with additional information about
the difference in harmonic charge (and the distance) between the harmony underlying the cur-
rent note and the previous and following harmonies. With respect to the phrase attributes, we
defined two levels of grouping, in analogy to (Sundberg et al., 1991), namely, subphrases and
phrases, where the subphrases in the Trdumerei correspond to Repp’s melodic gestures, while the
phrases are the four-measure groups that naturally describe the high-level structure of the piece
(cf. figure 1).
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Figure 5: Performance of test piece after note-level learning with KTH vocabulary

Given this particular vocabulary and the fact that learned rules would be formulated at the note
level, we were also interested in whether the learning algorithm would actually rediscover some
of the KTH rules, or at least some similar general principles.?)

5.2 Experiment: Arrau, Ashkenazy, Brendel

Learning experiments with various sets of pianists were performed. Here, we show one typical
result, derived from the same data as in section 4.2 above: the performances by Arrau, Ashke-
nazy, and Brendel of the second part of the Tidumerei were used as training examples, and the
rules learned from that were then tested on the first part.

Figure 5 shows the result and again compares it to Brendel’s performance. A comparison with
the result of the structure-based learner (see figure 3) reveals significant differences and sug-
gests that the structure-based learner is superior, at least on this task: the differences between
the system’s and Brendel’s performance are markedly larger in the note-level learning case, and
the system’s variations generally tend to be rather extreme. However, these are preliminary re-
sults that should be taken with a grain of salt. For one thing, the training material that was avail-
able for the experiments is too limited to permit us to draw conclusions that go beyond this par-
ticular piece of music. And secondly, a quantitative analysis of the results — we computed the
degree of agreement between the system’s solution and the three pianists’ performances —
showed that for the note-level learner the error in terms of the absolute difference between the
curves is indeed larger, but that the number of “correct” classification decisions (i.e., the num-
ber of notes where both a pianist and the system made the same categorical decision: acceleran-
do or ritardando) is in fact a bit higher for the note-level learner than for the structure-based

3) We had already observed that effect in previous experiments with other types of music,
where our learning system had discovered rules that turned out to be variants of some of the
expression principles postulated by Sundberg and co-workers (see Widmer, 1995).
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one. Experiments with larger and more diverse example sets and much more detailed analyses
will be needed to establish with reasonable confidence which of the two approaches is better,
and in which situations.

As for the interpretability of the learned rules, our hopes that the system might discover general
principles akin to the KTH rules were not really fulfilled. A few of the learned rules are indeed
interesting and have, at least in part, a relatively straightforward musical interpretation. Here
are two examples:

ritardando( Note) : —
rel_position_in_phrase( Note, Pos),
Pos > 0.5183871,
harmonic_charge_diff_next( Note, NHCDiff),
NHCDiff > 3.
(“Play the current note slower if the note is in the second half of the current phrase (its relative
position in the phrase is > 0.51) and the difference in harmonic charge between the current harmony
and the following one is larger than 3.0 (i.e., the next chord has higher harmonic charge.”)
That is reminiscent of Friberg’s principle of increasing the duration of notes when a chord of
higher harmonic charge is approaching.
ritardando( Note) : —
rel_position_in_phrase( Note, Pos),
Pos > 0.75875,
int_prev( Note, Pint),
at_most( PInt, min3).
("Slow down if the current note is toward the end of the current phrase (within the last quarter of the
phrase’s duration) and the interval between the note and its predecessor is not larger than a minor
third.”)

However, many of the rules produced by the generalization algorithm were rather complex and
do not appeal to our musical intuition, like the following:

accelerando( Note) : —
metrical_strength( Note, MS),

MS <=3,
duration_of_phrase( Note, PhrDur),
PhrDur <= 16,

rel_position_in_phrase( Note, PhrPos),

PhrPos <= 0.612903,

dur_next( Note, NDur),

NDur <= 0.5,

int_next( Note, Nint),

int_prev( Note, PInt),

wider_interval( Nint, PInt).
Such rules describe musical situations and expression patterns that do appear in this particular
piece, but they are not likely to be very general. We conclude from this that the data sample
available for learning was too limited, not in terms of the number of example performances, but
in terms of the diversity of the musical material. Examples from other pieces would be needed
to be able to learn general principles that apply to an entire genre and abstract away from the
peculiarities of a single piece or the style of a particular pianist.

There is a second, independent phenomenon that contributes to this effect. Experiments with
larger numbers of example performances have shown that the number and complexity of rules
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produced by the learner increases with the amount of training data. That is a clear sign of what
is known in the machine learning literature as overfitting: the learning algorithm attempts to find
a set of rules that explain every single observed tempo deviation in each of the performances,
even those that are very rare and idiosyncratic. The result is poor generalization. Machine
learning has developed a wealth of techniques that go under the name of pruning. Their com-
mon goal is to enable the learner to find simpler rule sets by distinguishing between strong, rele-
vant regularities and coincidental patterns or even errors (noise) in the data. We plan to repeat
the Schumann experiments with the inductive learning algorithm FOSSIL, developed at our
institute (Firnkranz, 1994). FOSSIL provides a variety of mechanisms for explicit pruning con-
trol, which might allow us to discover more general and robust expression patterns.

A final problem with the rediscovery of KTH-type expression rules is that the KTH rules are
additive in nature, whereas the rules that a standard machine learning algorithm looks for are
exclusive: each observed effect is to be completely explained by orne rule. It is not at all obvious
at this point how the machine learning approach could be modified to discover additive, or even
partially conflicting, influence patterns.

6 Conclusions

To summarize, the paper has described two approaches to learning rules of expressive perfor-
mance from examples of human performances. Experiments with expressive timing data from
performances by various pianists of Robert Schumann’s Tidumerei were presented. Though
some of the results are quite interesting and encouraging, the experiments point to a number of
open problems that need to be addressed.

Apart from the limitations of the data available for our experiments, which were discussed in
detail in various sections of this paper, the learning system itself suffers from a number of short-
comings. The most obvious limitations are the limited repertoire of expressive shapes that can be
recognized in expression curves and the fact that the structural analysis of given pieces is done
in a rather crude way (and only for the melody). Extending these components would increase
the expressiveness of the system’s representation language and would make it possible to at
least describe (and hopefully also find) more refined expression principles.

General questions that are of great importance to the eventual success of the general approach
concern mainly the appropriate level of modelling. For instance, if we adopt the structure-level
approach to learning (see section 4), what are the structural units in the music that are relevant
to expression, that is, how do we segment the observed performance curves into meaningful
chunks that can be explained? What is the appropriate vocabulary to describe musical situations
and structures? And would it be fruitful to pursue a combination of structure-level and note-lev-
el learning? And finally, in our experiments we ignored the aspect of absolute tempo, because
that could not be learned from the examples, but one must also be aware of the effect that fac-
tors like global tempo have on the details of a performance (see, e.g., Desain and Honing,
1991). More global factors will have to be taken into account in a full model of expression.

Specific efforts in the immediate future will be devoted to assembling a large collection of real
data (measurements of recordings of a diverse set of pieces) and extensive experiments with
different music-structural vocabularies; experience in machine learning shows that the choice of
vocabulary has an enormous impact on the results achievable by a particular learning algorithm
and also on the general learnability of the concepts of a domain.
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Considering all this, there is ample room for further research within the “analysis by resynthe-
sis” approach. Despite the mixed results of the present experiments, we have reasons to believe
in the general utility of the approach, and we hope that experiments with richer data sets will
lead to general results that may be of interest to the study of musical expression, both in a prac-
tical and in a theoretical sense.
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