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Abstract

In this paper we introduce a generalized view on feedforward neural networks.

In this view, well-known network types like multilayer perceptrons and radial

basis function networks are just a few of many possibilities in a virtual space

of neural network types, spanned by the three dimensions propagation rule,

transfer function, and learning rule. We list several examples of other combi-

nations of values along these dimensions and discuss the advantages of such a

view. The goal of depicting neural networks this way is to arrive at strategies

to �nd optimal neural network solutions for given data sets, aided by statistical

data analysis to identify the best method.

1 Introduction

Feedforward neural networks are being widely applied to problems in the do-

main of classi�cation, pattern recognition, approximation, forecasting, and

control (see, for instance, [Maren et al. 90, Dagli et al. 92] for overviews).

They are characterized by an architecture consisting of multiple layers of units,

aligned in a cascade from input to output, with full or partial connections in

one direction (input toward output) between adjacent layers. Among the most

prominent models with this architecture are multilayer perceptrons (MLP;

[Rumelhart et al. 86]), radial basis function networks (RBFN; [Broomhead

& Lowe 88]), and competitive learning models employing \winner-take-all"
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([Grossberg 76, Kohonen 84, Rumelhart & Zipser 85]).
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For each of those

models, a large number of extensions and variations exist { such as shortcut

connections between non-adjacent layers in MLPs, variations in backpropaga-

tion learning (usually seen as the learning method of choice for MLPs), varia-

tions in the basis function for RBFNs, variations in the initialization scheme

for RBFNs (usually seen as the weight setting method of choice for those net-

works), etc. Which network is applied depends either on rough guesses as

to which might be more appropriate or an experimental comparison of sev-

eral types used side by side (e.g. [Rosenberg et al. 93, Dor�ner & Porenta

94]). Hardly ever, MLPs and RBFNs are considered as variations of perhaps a

more general underlying network type (for exceptions in literature, see below).

In this paper, we want to suggest that appropriate and optimal application

of neural networks for given data sets can only come from adopting a more

generalized view, which opens up a large number of variations (much larger

than two or three), and permits a more dedicated use of network solutions.

Before we introduce and discuss such a view, we briey discuss an important

motivation behind this proposal and previous attempts at similar endeavors.

2 The relationship between neural networks

and statistics

Recently, more and more arguments and discussions around the relationship

between neural networks and statistical methods for classi�cation, approxima-

tion, regression, or optimization can be heard. Arguments range from \Neural

networks are statistics, but often done badly" ([Sarle 94]), \Neural networks

are statistics for amateurs" ([Ripley 92]), and \Neural network researchers con-

stantly reinvent the wheel known to statisticians for decades", one one hand,

to \Neural networks are asympotically as powerful as other non-linear sta-

tistical techniques, but have a variety of advantages" ([Hutton 92])

2

on the

other. At the bottom line there is no doubt that a serious communication be-

tween neural network researchers and statisticians must take place. For much

too long, neural networks have been applied rather \blindly" by practition-

ers who have not been aware about the underlying mathematical properties

and the applicabilites of certain network types with respect to a given data

distribution. Theorems about MLPs and RBFNs as \universal function ap-

proximators" ([Hornik et al. 89, Kurkova 92, Leonard et al. 92] have given the

1

Another common depiction of competitive learning architectures is one with intra-layer

connections in the competitive layer { see, for instance, [Dor�ner 91]. With those, the

networks would not belong to the feedforward class as characterized above. However, com-

mon implementations of \winner-take-all" mechanisms do not require cross-connections but

assume that the mechanism is applied globally to the whole layer

2

All these quotes have been paraphrased here and must be taken just by their content.
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illusion to many that those methods are something like a \universal solution

approach," where one needs no or only little knowledge about the data the

network is applied to.

The way we like to put it is the following: Feedforward neural networks, as

characterized above, are a modern form of non-linear statistics. There is no use

in depicting neural networks and statistics as di�erent and thus competitors.

As [Sarle 94] has pointed out, many feedforward neural network models can be

equated with or directly compared to more classical methods like linear regres-

sion, logistic regression, nearest neighbor classi�cation, etc. He also correctly

points out (see the quote above) that in spite of this identity or similarity, neu-

ral network researchers have largely not made the same careful assumptions

about probability distributions of the data, the limits of the method, and other

important factors, as statisticians have been used to for decades. We would,

however, still claim (along with [Hutton 92]) that neural networks possess a

number of advantages that give them exibility in applications, many of which

are not of the \mathematical equivalence of power" type (see our summary

section below).

As a result, neural networks must be analysed in the same way classical

statistical algorithms are analysed and compared (see, for instance, [Duda &

Hart 73]). The view we present in this paper is designed as an important step

toward identifying

� which network type can be applied to what kind of data,

� which network type does correspond to an algorithm traditionally known

from statistics (in orer to make use of research results in statistical lit-

erature),

� what do known neural network types have in common, and what sepa-

rates them,

� and what are the range and limits of the applicability of each network

type.

The suggested view rests on the observation that MLPs and RBFNs have

a lot more in common than usually admitted by their depiction in literature.

Thus, in the next section, we briey overview previous attempts of comparing

these two architectures.

3 Previous attempts at a more general view

An extension to the prototype networks MLP and RBFN can be achieved by

combinations of layers with di�erent units, or by combining units of di�erent
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type in one layer. For instance, the viablity of two RBF layers in cascade

(replacing the linear associator between hidden and output layer of an RBFN

with another Euclidean/Gaussian layer) has been shown ([Robinson et al. 88,

Dor�ner 92]). Also the combination of MLP and RBF units in one hidden

layer can lead to improved results ([Weymaere & Martens 91]). This latter

extension is a way of making MLPs and RBFNs complement each other with

respect to decision regions, as suggested above. A learning (or \optimization")

procedure is introduced that incrementally extends the hidden layer by further

MLP or RBF unit candidates until optimum performance with minimum net-

work complexity (de�ned as number of degrees-of-freedom) is achieved. This

procedure can include both bounded and unbounded decision regions and thus

be more exible with regard to input distributions.

Several people have pointed out prinicpal equivalences of either the propa-

gation rules or the transfer functions of MLPs and RBFNs. [Maruyama et al.

92] and [Denoeux & Lengelle 93] have shown that by writing the Euclidean

distance as

n

X

i=1

(x

i

� w

ij

)

2

= jj~x� ~w

j

jj

2

= jj~xjj

2

� 2~x~w

j

+ jj~w

j

jj

2

(1)

and by assuming normalized input (jj~xjj = 1) the propagation rule of the

RBFN (Euclidean distance) can in principle be mapped onto the propagation

rule of an MLP unit (dot product ~x~w plus a bias, in this case jj~w

j

jj

2

+1), with

the exception of its sign. In [Maruyama et al. 92] it is shown that any MLP

unit can implement RBF units this way (in that for any RBFN an MLP with

the same number of units can be found that computes the same function), while

RBF units can implement MLP units only under certain conditions, mainly

due to the missing extra bias (threshold) parameter, for which a dummy extra

input has to be introduced. Also in [Maruyama et al. 92], as well as in [Geva

& Sitte 92], ways of approximating Gaussians with sigmoids and vice versa are

shown. They are based on the observation that the bell shape of a Gaussian

(or better still, the positive half of it) resembles an inverted sigmoid (we will

come back to that aspect below).

An interesting way of viewing the propagation rules of MLP and RBFN

and their decision regions in the same light is pointed out in [Omohundro 89].

He shows that by introducing an additional dimension to the n-dimensional

input space, and setting this n+ 1-st unit identical to the sum of the squares

of the other n inputs, the resulting MLP units behave like RBF units with

localized receptive �elds (i.e. decision regions) with respect to the original n

dimensions. Thus, an in�nite decision region can be mapped to a bounded

one.
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4 A virtual space of feedforward networks

In this section we introduce the more general view on feedforward neural net-

works hinted upon above. Based on the work discussed in the previous section

the basic idea is that the main dimensions distinguishing between di�erent

feedforward network models are propagation rule (i.e. the input or \net input"

[Rumelhart et al. 86] to a unit), the transfer function, and the learning rule.

These three dimensions can be seen as spanning a virtual 3D space of possible

network types, as depicted in �g. 1. If, for the moment, three layer networks

(i.e. one input, one hidden, and one output layer) are considered, each network

actually consists of a combination of points in two such virtual spaces { one

for the input-to-hidden connections, and one for the hidden-to-output connec-

tions. A common multilayer perceptron, for instance, corresponds roughly to

the two points:

� (prop. rule = dot product (weighted sum),

transfer function = sigmoid,

learning rule = gradient descent on error in weight space)

in space I (input-to-hidden)

� (prop. rule = dot product (weighted sum),

transfer function = sigmoid or linear,

learning rule = gradient descent on error in weight space)

in space II (hidden-to-output)

A simple type of radial basis function network ([Broomhead & Lowe 88])

roughly corresponds to

� (prop. rule = Euclidean distance,

transfer function = Gaussian,

learning rule = initialization (weight vector := training sample))

in space I (input-to-hidden)

� (prop. rule = dot product (weighted sum),

transfer function = linear,

learning rule = gradient descent on error in weight space (delta rule))

in space II (hidden-to-output)

We do not want to give the impression that this is all there is to MLPs

and RBFNs. Nor do we want to depict this as a formal speci�cation of these

network types (see [Dor�ner et al. 94a] for general problems with formal

neural network speci�cations). We do, however, want to suggest that these

dimensions are crucial aspects in distinguishing the types, in identifying their

properties and limits in dealing with certain data distributions, and { above
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Figure 1: A virtual space of feedforward neural networks, spanned by the

dimensions propagation rule, transfer function, and learning rule, for a three-

layer network (one hidden layer).
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all { in pointing out a variety of other, di�erent, types. The latter is the main

topic of this paper.

Therefore, in the next few subsections we discuss other points in the vir-

tual space of feedforward networks. Some of these are known from statistical

literature, some have been published before in neural network literature but

have gone virtually unnoticed by practitioners, and some appear to be novel.

4.1 Alternative weight adaptation inMLPs and RBFNs

An obvious variation of the two \classical" types MLP and RBFN is to ex-

change their \learning" method in space I.

3

This leads to an MLP the input-

to-hidden weights of which are initialized based on training samples, and an

RBFN that is fully trained with a gradient descent procedure. The latter has,

among others, been suggested by [Robinson et al. 88, Dor�ner 92] but seems

to be feasible only as a \�ne-tuning" method, since the sensible areas of ran-

domly initialized radial hidden units tend to lie too far from the input data

(note that using Euclidean distance and Gaussian decision regions are bounded

and con�ned to rather small protions of the input space). The former has been

introduced several times independently in neural network literature ([Smyth

92, Weymaere 93]) but has also been known for years in statistics (e.g. [Duda

& Hart 73, Bock 74]). The idea is a direct analogy to simple RBFNs (ini-

tializing the center of the decision regions by setting it identical to a training

sample), namely initializing a hyperplane (the decision boundary of an MLP

unit) such as to be a Voronoi tesselation of two training samples, one being

a positive and one being a negative exemplar of a given class. This, together

with the initialization equations, is depicted in �g. 2. In other words, the

hyperplane is set such as to be on the midpoint of the line connecting the two

samples, and orthonormal to it. Best results are achieved when cluster centers

(from a prior cluster analysis) are taken as exemplars.

It must be noted that this method is valid only for classi�cation problems

(as opposed to approximation) and does not take the data distribution into

account. However, adaptations to these cases appear straightforward. For

instance, if cluster centers (after preceding cluster analysis) are taken as pos-

itive and negative samples, the hyperplane can be shifted from midpoint in

proportion to the standard deviations within each cluster.

A thus initialized network can subsequently be trained by regular back-

propagation ([Smyth 92]). However, this often does not lead to any improve-

ments in performance or training speed, mainly because it can be shown that

backpropagation does not always tend to follow the so-called \hyperplane as-

sumption" ([Pratt & Christensen 94]), i.e. the assumption that hyperplanes

3

I put `learning' in quotes here, since initialization of input-to-hidden weights can hardly

be called such.
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Figure 2: Initialization of MLP units as a Voronoi tesselation of a positive and

a negative class exemplar.

are moved in input space such as to actually separate positive from negative

samples. This, by the way, points to some possible general problems of back-

propagation for classi�cation problems. An alternative would be { in another

direct analogy to the RBFN { to train hidden-to-output weights by a simple

delta rule, while leaving input-to-hidden weights �xed. Several practical ex-

amples (e.g. [Dor�ner & Porenta 94, Dor�ner et al. 94b]) show that this can

lead to equal performance as backpropagation (in some cases even better) but

with much smaller learning times. In addition, such a procedure (initializa-

tion plus subsequent delta rule) is not prone to be stuck in local minima (as

pointed out by [Broomhead & Lowe 88]) and involves much fewer degrees of

freedom (the weights) during learning. The latter is very important for ap-

plications with a rather limited number of training samples, in order to not

under-determine the estimation problem. (A problem is under-determined if

it contains more degrees of freedom than training samples. This is an aspect

that is very perspicuous in statistical literature, but has often been overlooked

by neural network practitioners. Consider, for instance, the often-heard argu-

ment \If in doubt take more input variables than fewer, since network learning

will �nd the relevant ones anyway").

An example from [Dor�ner et al. 94b] is illustrated in �g. 3. In the

application of neural networks in controling so-called rotary blood pumps, the

task was to predict the state of \danger of suction" in the ventricle, based on

thirteen physiological measurements. A simpel prinicpal component analysis

was applied to the thirteen-dimensional data, revealing the fact that the �rst

three components covered about 85 % of the variance. These three components
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Data sequence:

    8:suction

    7:danger

    6:no suction

    5:no suction

    4:no suction

    3:no suction

    2:no suction

    1:no suction

-,5

0,0

,5

1,0

1,5

PC1

-1,5

2,0

2,5

PC3

-1,0

1,0

,5

-,5

0,0

PC2
-,5

-1,0

0,0

Figure 3: A single data sequence in a control application (rotary blood pumps)

depicting states going from no suction to suction. Visualization was made

possible through principal component analysis.

were used to visualize the data, as depicted for a particular time series of system

states going from \no danger" via \danger of suction" (black dot in �g. 3) to

\suction". This visualization permitted easy initialization of hyperplanes by

using the \danger" point and the point one time step before as positive and

negative class exemplars. Again, only hidden-to-output weights were trained

(by a delta rule), leading to equal performance than a tedious backpropagation

procedure.

4.2 Hyperplane �tting with feedforward networks

Another possible point in virtual network space is this:

� (prop. rule = dot product (weighted sum),

transfer function = Gaussian,

learning rule = competitive (winner-take-all + anti-Hebbian))

for space I (input-to-hidden)

This combination appears rather absurd at �rst sight. The combination

of the dot product with the Gaussian function leads to \ridges" as decision

regions, which are unbounded in one direction, and bounded in others. In

[Dawson & Schopocher 92] this combination was introduced, together with

a gradient descent learning rule, but without any real motivation of why it

should be used and why it can perform better than the original MLP.
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Here is a quick demonstration that the above network type (with a rather

simpli�ed hidden-to-output layer) implements a classi�cation technique known

in statistics.

It is well-known in statistics that classi�cation cannot only be achieved by

hyperplanes separating the classes, but also through hyperplanes representing

the classes (or sub-classes), pretty much like in regression ([Bock 74, Mosteller

& Tukey 77]). A hyperplane representing a sub-class of data points is de�ned

as the hyperplane for which the sum of the quadratic orthogonal distances of

all points is at a minimum. In the two-dimensional case this is identical to the

regression line approximating that sub-class. Classi�cation is then achieved

by (a) assigning a class label to each hyperplane, and (b) for each data point

choosing the closest hyperplane. This is in contrast to other ways of classi-

�cation such as variations of nearest-neighbor or Voronoi tesselations, where

a single point represents such sub-classes. On the other hand, the case of

representing hyperplanes could be considered a more general case, if one per-

mits hyperplanes of lesser dimensionality, i.e. de�ned through fewer degrees

of freedom (e.g. lines in three-dimensional space), which would include single

points, as well. As is pointed out in [Bock 74], in this more general case the

decision boundaries between the sub-classes (i.e., the boundaries where two

hyperplanes are equally far in terms of orthogonal distance) are not neces-

sarily hyperplanes again, but more general quadratic surfaces such as cones.

Thus, this method of classi�cation is not directly equivalent to classi�cation

through separating hyperplanes.

These observations led us to de�ne representing hyperplanes in a neural net-

work unit to construct such a classi�er from a layered network. The di�cult

problem in the above approach is to automatically �nd a sub-classi�cation into

clusters of data points and their appropriate representing hyperplanes. View-

ing the method in the context of neural networks, especially through applying

a gradient descent rule similar to backpropagation ([Werbos 74, Rumelhart et

al. 86]), �nding hyperplanes can be done through a learning algorithm. The

crucial observation is that the net input y of a multilayer perceptron unit (i.e.,

the result of the propagation rule, which is the weighted sum of input values)

is proportional to the orthogonal distance of the data point to the hyperplane

de�ned by the weights and the bias of that unit. Thus, choosing the closest hy-

perplane can be done by choosing the unit with smallest absolute value of the

net input, i.e., the smallest weighted sum. This somewhat reverses the usual

way of picking a \winner" in a neural network layer, which is based on looking

for the largest dotted product of the weight and input vectors ([Grossberg 76])

or the smallest Euclidean distance ([Kohonen 84]). To turn this into a \real"

winner-take-all procedure, a Gaussian-type of transfer function can be chosen

which assign an activation of 1 to a net input of 0, and asymptotically goes to

0 for increasing absolute values of the net input.
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Learning can then be done in a way very similar to learned vector quan-

tization (or LVQ; [Kohonen 84]). The hidden layer of units comprising the

hyperplanes is divided into as many clusters as there are classes to be rec-

ognized, and each of them is assigned to one of the classes. For each point

in the training set the cluster corresponding to its class is considered, and

winner-take-all is performed in the above manner. Then a learning rule (to

be described below) is applied to the weights which turns and shifts the cor-

responding hyperplane such as to minimize the summed squared distance of

all points leading to the same winner. For this to work, learning must pro-

ceed in the \batch" mode, i.e., weight increments are summed up and added

to the weights after an entire epoch. Otherwise, minimization would always

be done with respect to a single point, ignoring the structure of the sub-class

to be �tted. After learning, novel input points are presented to the network

and winner-take-all is performed on the whole hidden layer. The input is then

assigned the class attached to the cluster the winner lies in. From this we can

see that an output layer degenerates to fusing the activations of all units of a

cluster, i.e. by introducing one unit for each class with positive weights to its

corresponding cluster. Of course, winner-take-all can also be omitted leading

to distributed responses. In this case, hidden-to-output weights can, again, be

trained by a simple delta rule.

The update and learning rules An n � 1-dimensional hyperplane H

j

,

de�ned by a unit j (using the weighted sum as propagation rule, as in the

multilayer perceptron) is de�ned in n-dimensional space through the equation

n

X
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ij

x

i

+ c

j

= 0 (2)

where c

j

is a constant and the vector (w

ij
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any point ~x to the hyperplane. To choose a hyperplane H

j

to represent (or

characterize { [Bock 74]) a sub-class A

kl

� C
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(where C

k

is one of m classes

of the classi�cation problem) one picks the one with the following property

X

fij~x
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g
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i.e., one that forms a multivariate regression of the sub-class. With the

help of hyperplanes representing sub-classes, classi�cation can be done for any

arbitrary point ~x

i

by choosing the hyperplane H

j

with smallest absolute value
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of its orthogonal distance d(~x

i

;H

j

) and returning the class k to which sub-

class A

kl

has been assigned to. Assuming a Gaussian transfer function for all

hyperplane units, e.g.
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with a freely chosen � for all units, �nding the closest hyperplane is identical

to winner-take-all among the hyperplane units using activations x

j

. To permit

several sub-classes A

kl

per class C

k

, the layer of hyperplane units must be

divided into m clusters.

The crucial point now is to �nd appropriate hyperplanes through learning.

For this we assume a gradient descent rule which minimizes the squared or-

thogonal distances of all points I it represents, as in eq. 4. This is identical

to minimizing the sum of squared net inputs for all those points. Similar to

[Rumelhart et al. 86] we can thus de�ne the weight increment for learning as
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with a learning rate � (subsuming the factor 2 from the derivative). What

results is a kind of anti-Hebbian rule using the net input of the postsynaptic

unit and the activation of the pre-synaptic one. Similarly, it can be derived

that

��

j

= �y

j

(9)

These rules must be applied to the winner l in the k-th cluster representing

sub-class A

kl

. The assumption is that each hyperplane is changed so as to form

a regression of all the points that are currently closest to it. This is a crucial

assumption which might lead to non-optimal results if, through unfortunate

initial weights, the hyperplane attempts to �t points that should rather be

�tted by a di�erent plane. This appears to be akin to local minima problems

in regular backpropagation. In any case, learning must be done in the \batch"

mode adapting weights only after computing increments for an entire epoch.

Since the size of the weight vector inuences the proportional dependency

between orthogonal distances and the net input, normalization of the weight

vectors after each epoch is advisable.

12



2 � � �

X�

X�


����� ������ �������

���

���
�
�� �����
���
�� ����
�� 	����
��

yj � �
n�1

i�1

(xi � sij)aij � cos�j
�
n�1

i�1

�xi � sij
�2�

“MLP part” “RBF part”

Figure 4: A conic section function network. A cone intersects the input space

by di�erent functions dependening on the opening angle !, with hyperplane

(MLP) and hypersphere (RBFN) as extremes.

4.3 Conic section function networks (CSFN)

In another paper ([Dor�ner 94]), we have demonstrated that the virtual space

given above can even be continuous along parts of its axes. In particular, we

introduced a network type that realizes a continuum between the propagation

rules and thus decision borders of MLPs (hyperplanes) and simple RBFNs

(hyperspheres). The idea is based on the observation that the two known deci-

sion borders are special cases of general (hyper-) conic section functions. Fig.

4 depicts a two-dimensional input space with positive and negative training

samples, and a cone in three-dimensional space, the opening angle ! of which

can be changed such as to intersect the input plane by a line, a circle, or a

conic section function in between. The propagation rule (rather complicated

on �rst sight) is also depicted, consisting of an \MLP part" (a weighted sum

with weight parameters a

ij

) and an \RBF part" (a Euclidean distance with

separate parameters s

ij

). The suggested strategy for using this network type

is to (a) initialize input-to-hidden weights as an MLP, like above; (b) adapt

one parameter per hidden unit (the opening angle) to adjust decision borders;

and (c) train hidden-to-output weights by a simple delta rule. For more details

and examples, see [Dor�ner 94, Dor�ner & Porenta 94].

This network type ful�lls several criteria considered important in statistics.

The �rst could be dubbed \localization principle" (e.g. [Omohundro 89]),

i.e. the aspect that each sub-space in data space should be covered only by

one or a few \basis functions" (one or a few hidden units). This permits

easier adaptation and transfer of solutions. Secondly, the CSFN implements
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Figure 5: Di�erent types of decision regions in a data space and their abil-

ity to extrapolate. Hyperplanes tend to extrapolate to novel points (such as

1) without being able to give an estimation of the error if that point is not

close to any training point. CSFNs, by using their RBFN part (hypersphere)

can extrapolate (e.g. to point 2), while estimating the possible error of this

extrapolation (distance to the hypersphere).

\marginalization" as would be required by classi�cation techniques applied to

unknown data ([Roberts 94]): One of the disadvantages of MLPs is that they

cannot distinguish between a correct output and a classi�cation that is highly

likely to be incorrect since the data point is far away from any seen training

sample (see �g. 5). In other words, MLPs tend to extrapolate to in�nite

portions of data space and do not possess the \competence" to know about

their own error probability. RBFNs, on the other hand, do not extrapolate

as easily, since their unit decision regions are bounded. But it also means

that they hardly ever extrapolate at all. A CSFN can do both. It is able to

extrapolate, but since a bounded region is contained in its propagation rule

(the \RBF part" of the rule) that part can be used to estimate the likely error,

by computing the distance to that part.

5 A systematic strategy for choosing neural

network solutions

The view on feedforward neural networks given above can be considered a �rst

step toward more dedicated and pin-pointed applications of neural network to

given data. Although many combinations (points in virtual network space) are

still unexplored, the examples above already shed light on how each network

type behaves and how di�erent types compare to each other.
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5.1 Propagation rules

The propagation rule mainly determines the decision boundary of single hid-

den units. We have seen that most common network types use one special case

of conic section function, which can vary between bounded and unbounded de-

cision regions. We have demonstrated that the continuum between extreme

cases can be exploited as well. Bounded regions appear appropriate when data

is con�ned to subspaces of the possible space, and when error estimation for

outliers is crucial. Unbounded regions, besides the fact that they correspond

to linear propagation rules, seem appropriate when at least some kind of ex-

trapolation onto subspaces outside the training set is warranted, or when large

(e.g. approximately hyperbolic) data regions exist, where approximation with

small bounded regions would be too demanding on unit resources.

5.2 Transfer functions

In literature, much emphasis has been put on transfer functions, almost over-

shadowing the role of propagation rules. For instance, talk about \Gaus-

sians vs. sigmoids" can be found frequently, meaning the comparison between

RBFNs and MLPs. The above view suggests a somewhat reduced role of

transfer functions. For many problems the exact shape of the function is not

so crucial (compare [Hornik et al. 89], where the universal approximation the-

orem is proved for a more general class of transfer functions). What matters

for particular neural network types, are the function's

� sign, i.e. whether the function is increasing or decreasing with increasing

net input

� non-linearity (e.g. for the theoretical power of MLPs)

� continuity and di�erentiability (e.g. for gradient descent rules)

� saturation toward minimum and maximum values

� gradient 0 at the origin (this is important to make many gradient descent

rules stable)

The positive half of a Gaussian

4

, for instance, resembles an inverted sigmoid

in its general characteristic. Examples are [Geva & Sitte 92, Maruyama et al.

92] { where this property is exploited to show possible equivalences between

MLPs and RBFNs {, or the CSFN, where one transfer function { a sigmoid {

can handle both MLP and RBFN parts (since the sign for the RBFN part is

already inverted by the particular propagation rule). One should also not forget

that it is the Euclidean (or other) distance that makes an RBFN \radial," and

not the Gaussian.

4

For RBFNs only the positive half is relevant, since distances cannot be negative.
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5.3 Learning rules

We have seen two major classes of learning rules: One that directly initializes

weights based on training samples, and one that �ne-tunes solutions by gradi-

ent descent over some criterion (summed squared error of network, or summed

squared distance from a regression hyperplane). A more uni�ed view on di�er-

ent learning rules, including Hebbian rules and instar/outstar rules, would still

have to derived. (We only saw how an anti-Hebbian rule can arise from a kind

of gradient descent rule.) It is clear, however, that for reasons of theoretical

learnability (compare [Baum & Haussler 89, Maass 94]) initialization methods

should be an integral part of setting weights, wherever possible.

5.4 Heuristics for network design

In summary, we can easily see that these analyses suggest a data-speci�c design

of network architectures. The design should always be preceded by a careful

data analysis revealing the basic structure and distribution of the data. If

that is not possible (e.g. due to their high dimensionality), distributions and

characteristics will have to be estimated. We see that this points toward one

assumption generally held in neural network literatur as being partly false.

Even though many neural network methods can be seen as non-parametric

(compare [Sarle 94]) they can or should not be applied without prior assump-

tions about the data (e.g. whether bounded or unbounded decision regions

appear more appropriate, whether the data can be clustered, etc.). The im-

portant aspect of most neural network applications is generalization to novel

data, and to optimize that goal such assumptions are crucial. In the above

examples we have hinted upon a few tools to aid in determining the underlying

data characteristics:

� cluster analysis to determine whether training data can be grouped into

distinct clusters, which can be exploited in initialization and in devising

decision regions,

� principal component analysis or related techniques to reduce the dimen-

sionality of the data in order to analyse their complexity,

� projection pursuit to determine the ability of classes to be regressed by

hyperplanes.

Much more research remains to be done in order to extend this list and to

arrive at truly helpful heuristics for network design.
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6 Summary and conclusion

In this paper we have argued for more data-speci�c applications of feedforward

neural networks, instead of \blind" uses of one or two common techniques like

multilayer perceptrons or radial basis function networks. We have presented

a general view of feedforward neural networks, depicted in a virtual space of

neural networks spanned by the dimensions propagation rule, transfer function,

and learning rule. With a few examples we have demonstrated that this space

contains many more network types than are usually known or accessible to the

practitioner. Finally we have argued that this view is a �rst important step

toward a more pinpointed use of neural networks, and have given a few �rst

heuristics as to how and when to best apply which network type.

The discussion in this paper has touched upon the important issue of the

relationship between statistics and neural networks in at least two ways:

� It has pointed out important parallels or equivalences between classical

statistical methods and neural networks.

� It has pointed out the importance of taking assumptions about data and

the limit of the methods into account, as it is prevalent in traditional

statistics.

Both ways suggest that neural network researchers should get acquainted

with traditional statistics muchmore than they have in the past. A cooperation

between the two �elds, instead of a heated discussion, can help guarantee

optimum engineering results in the future. If, as we suggested above, neural

networks are but non-linear statistics, one might still ask what the use of neural

networks as such will actually be. For this question we can give the following

arguments speaking in favor of realizing a statistical method (traditional or

novel) as a neurally inspired network architecture:

� The architecture gives the method a great exibility in devising pin-

pointed solutions, in fusing di�erent methods, and in making the results

somewhat accessible. (Despite the fact that neural networks generally do

not contain easy \explanation capabilities," they provide the practitioner

with an important model and metaphor to reason about the underlying

information processing { much more than is possible with algorithms

represented as closed formulae or software packages.)

� Also due to their network architecture, insertion of rule-based and other

knowledge is easy and straight-forward to achieve (compare, e.g., [Towell

et al. 90]). This is again very important in the context of learnability

and the complexity of learning problems.
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� Neural networks possess the capability to remain adaptive in on-line use,

since their learning methods are mostly incremental. This property, al-

though obvious, is not trivial to achieve and has only rarely been inves-

tigated, but is nevertheless a major potential of neural networks.

So, as much as neural network researchers can learn form statistics, statisti-

cians can gain much from viewing some of their algorithms as neural networks.
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