
Classi�cation through Hyperplane Fitting

with Feedforward Neural Networks

Georg Dor�ner

Austrian Research Institute for Arti�cial Intelligence

Neural Networks Group

Schottengasse 3, A-1210 Vienna, Austria

georg@ai.univie.ac.at

and

Dept. of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Abstract

This paper introduces and demonstrates a novel (or at least unusual)

way of using feedforward neural networks for classi�cation, inspired by a

technique known from statistics. Usually, hidden units of a network are

considered to de�ne hyperplanes which separate clusters or sub-classes.

The network de�ned in this paper uses the hyperplanes to represent clus-

ters or sub-classes of points by �tting them as in regression. An update

and gradient descent learning rule is de�ned, and results from XOR and

the benchmark sonar data are used for illustration. The resulting network

is reminiscent of some kind of \inverse" competitive learning or LVQ, and

have di�erent qualitative properties than multilayer perceptrons (e.g. lin-

ear separability is replaced by \linear regressability").

Keywords: Feedforward neural networks, hyperplanes, regression, clas-

si�cation, gradient descent, winner-take-all

1 Introduction

Among the many ways of depicting neural networks like multilayer perceptrons

(MLPs), one of the most popular ones is the characterization in terms of hy-

perplanes splitting up the input data space, especially when they are used for

classi�cation (e.g. [Lippmann 1987]). The weighted sum (including bias term) of

a hidden unit clearly de�nes an n � 1-dimensional hyperplane in n-dimensional

1



space. These hyperplanes are seen as decision boundaries, many of which to-

gether can carve out complex regions necessary for classi�cation of complex data.

Only few people question or analyse this assumption. For instance, [Pratt &

Christensen 1994] show that when training an MLP with backpropagation, the

resulting hyperplanes sometimes do in fact separate data points clearly as one

would suspect, but in many cases they do not. They explain this apparently

paradoxical behavior through the continuous sigmoid function which can permit

a distinction of classes even if the hidden units are not perfect separators. [Smieja

1992] analyses the dynamics of hyperplanes during backpropagation in a physical

analogy and does come to the conclusion that they result in optimally separating

data points.

In this paper we demonstrate that there is another quite distinct way of view-

ing and employing simple neural networks. In this method, the units' hyperplanes

are used to represent data points rather than separate them. A learning rule is

given, and some experiments with this learning rule are described. It turns out

that this rather novel (or at least unusual) way of using neural networks enriches

the set of classi�cation methods when one is looking for techniques especially

tuned to a particular application (i.e. a particular data distribution).

2 Hidden units as representing hyperplanes

It is well-known in statistics that classi�cation cannot only be achieved by hy-

perplanes separating the classes, but also through hyperplanes representing the

classes (or sub-classes), pretty much like in regression ([Bock 1974, Mosteller &

Tukey 1977]). A hyperplane representing a sub-class of data points is de�ned

as the hyperplane for which the sum of the quadratic orthogonal distances of all

points is at a minimum. In the two-dimensional case this is identical to the re-

gression line approximating that sub-class. Classi�cation is then achieved by (a)

assigning a class label to each hyperplane, and (b) for each data point choosing

the closest hyperplane. This is in contrast to other ways of classi�cation such

as variations of nearest-neighbor or Voronoi tesselations, where a single point

represents such sub-classes. On the other hand, the case of representing hyper-

planes could be considered a more general case, if one permits hyperplanes of

lesser dimensionality, i.e. de�ned through fewer degrees of freedom (e.g. lines

in three-dimensional space), which would include single points, as well. As is

pointed out in [Bock 1974], in this more general case the decision boundaries be-

tween the sub-classes (i.e., the boundaries where two hyperplanes are equally far

in terms of orthogonal distance) are not necessarily hyperplanes again, but more

general quadratic surfaces such as cones. Thus, this method of classi�cation is

not directly equivalent to classi�cation through separating hyperplanes.

These observations led us to de�ne representing hyperplanes in a neural net-

work unit to construct such a classi�er from a layered network. The di�cult

2



problem in the above approach is to automatically �nd a sub-classi�cation into

clusters of data points and their appropriate representing hyperplanes. Viewing

the method in the context of neural networks, especially through applying a gra-

dient descent rule similar to backpropagation ([Werbos 1974, Rumelhart et al.

1986]), �nding hyperplanes can be done through a learning algorithm. The cru-

cial observation is that the net input y of a multilayer perceptron unit (i.e., the

result of the propagation rule, which is the weighted sum of input values) is pro-

portional to the orthogonal distance of the data point to the hyperplane de�ned

by the weights and the bias of that unit. Thus, choosing the closest hyperplane

can be done by choosing the unit with smallest absolute value of the net input,

i.e., the smallest weighted sum. This somewhat reverses the usual way of picking

a \winner" in a neural network layer, which is based on looking for the largest

dotted product of the weight and input vectors ([Grossberg 1976]) or the smallest

Euclidean distance ([Kohonen 1984]). To turn this into a \real" winner-take-all

procedure, a Gaussian-type of transfer function can be chosen which assign an

activation of 1 to a net input of 0, and asymptotically goes to 0 for increasing

absolute values of the net input.

Learning can then be done in a way very similar to learned vector quantization

(or LVQ,[Kohonen 1984]). The hidden layer of units comprising the hyperplanes

is divided into as many clusters as there are classes to be recognized, and each of

them is assigned to one of the classes. For each point in the training set the cluster

corresponding to its class is considered, and winner-take-all is performed in the

above manner. Then a learning rule (to be described below) is applied to the

weights which turns and shifts the corresponding hyperplane such as to minimize

the summed squared distance of all points leading to the same winner. For this

to work, learning must proceed in the \batch" mode, i.e., weight increments

are summed up and added to the weights after an entire epoch. Otherwise,

minimization would always be done with respect to a single point, ignoring the

structure of the sub-class to be �tted. After learning, novel input points are

presented to the network and winner-take-all is performed on the whole hidden

layer. The input is then assigned the class attached to the cluster the winner

lies in. From this we can see that an output layer degenerates to fusing the

activations of all units of a cluster, i.e. by introducing one unit for each class

with positive weights to its corresponding cluster. Of course, winner-take-all can

also be omitted leading to distributed responses. In this case, hidden-to-output

weights can be trained by a simple delta rule, as is done for many variations of

radial basis function networks (e.g. [Broomhead & Lowe 1988]).

3 The update and learning rules

An n�1-dimensional hyperplane H

j

, de�ned by a unit j (using the weighted sum

as propagation rule, as in the multilayer perceptron) is de�ned in n-dimensional

3



space through the equation

n

X

i=1

w

ij

x

i

+ c

j

= 0 (1)

where c

j

is a constant and the vector (w

ij

); i = 1::n is orthognal to the hyper-

plane. It can be shown easily that the net input y of this unit

y

j

=

n

X

i=1

w

ij

x

i

� �

j

(2)

with bias �

j

= �c

j

is proportional to the orthogonal distance d(H

j

; ~x) of

any point ~x to the hyperplane. To choose a hyperplane H

j

to represent (or

characterize { [Bock 1974]) a sub-class A

kl

� C

k

(where C

k

is one of m classes of

the classi�cation problem) one picks the one with the following property

X

fij~x

i

2A

kl

g

d(~x

i

;H

j

)

2

! min (3)

i.e., one that forms a multivariate regression of the sub-class. With the help

of hyperplanes representing sub-classes, classi�cation can be done for any arbi-

trary point ~x

i

by choosing the hyperplane H

j

with smallest absolute value of its

orthogonal distance d(~x

i

;H

j

) and returning the class k to which sub-class A

kl

has been assigned to. Assuming a Gaussian transfer function for all hyperplane

units, e.g.

x

j

= e

�

y

2

j

�

2

(4)

with a freely chosen � for all units, �nding the closest hyperplane is identical

to winner-take-all among the hyperplane units using activations x

j

. To permit

several sub-classes A

kl

per class C

k

, the layer of hyperplane units must be divided

into m clusters.

The crucial point now is to �nd appropriate hyperplanes through learning. For

this we assume a gradient descent rule which minimizes the squared orthogonal

distances of all points I it represents, as in eq. 3. This is identical to minimizing

the sum of squared net inputs for all those points. Similar to [Rumelhart et al.

1986] we can thus de�ne the weight increment for learning as

�w

ij

/ �

@

@w

ij

0

B

@

X

fIj~x

(I)

i

2A

kl

g

n

X

i=1

w

ij

x

(I)

i

� �

j

1

C

A

2

(5)

= ��

0

B

@

X

fIj~x

(I)

i

2C

k

g

n

X

i=1

w

ij

x

(I)

i

� �

j

1

C

A

x

i

(6)

= ��y

j

x

i

(7)

4



with a learning rate � (subsuming the factor 2 from the derivative). What

results is a kind of anti-Hebbian rule using the net input of the postsynaptic unit

and the activation of the pre-synaptic one. Similarly, it can be derived that

��

j

= �y

j

(8)

These rules must be applied to the winner l in the k-th cluster representing

sub-class A

kl

. The assumption is that each hyperplane is changed so as to form

a regression of all the points that are currently closest to it. This is a crucial

assumption which might lead to non-optimal results if, through unfortunate ini-

tial weights, the hyperplane attempts to �t points that would rather be �tted by

a di�erent plane. This appears to be akin to local minima problems in regular

backpropagation. In any case, learning must be done in the \batch" mode adapt-

ing weights only after computing increments for an entire epoch. Since the size

of the weight vector in
uences the proportional dependency between orthogonal

distances and the net input, normalization of the weight vectors after each epoch

is advisable.

Of course, other methods to arrive at appropriate hyperplanes are conceiv-

able, as well. Any estimation technique from regression theory (e.g. [Mosteller &

Tukey 1977, Bock 1974]) can be used directly, before hyperplanes are translated

into network weights. If appropriate sub-classi�cations are known, prinicipal

component analsysis for each sub-class can lead to good approximations.

4 An example: XOR

The XOR mapping of two binary inputs onto one output is the simplest paradig-

matic example to illustrate the function of a certain network type. It is interesting

to view the network type described above in this context. This is done for in-

structive reasons and not as a proof for the power of this type of network.

With regular multilayer perceptrons, the well-known observation is that XOR

is not linearly separable, therefore requiring hidden units and a non-linear transfer

function. In the context of representing hyperplanes, the question instead is,

whether points of one class can be linearly �tted well enough to distinguish them

from points of the other class. In the case of XOR, the question can be answered in

the positive. The points (1,0) and (0,1) of the class 1 can be perfectly represented

by the straight line connecting them. A unit, whose weights form this line, with

a (steep) Gaussian transfer function can thus respond maximally to these two

points, and output a 0 (or a value very close to it) for the complementary class.

It is clear, that non-linearity is also need here { in this case the Gaussian transfer

function { but the interesting aspect is that the XOR can be solved without

hidden units.

The next question that arises in this context is whether XOR is learnable with

this network. It is well known that multilayer perceptrons trained with backprop-

5



2

(1,0)

(1,1)

(0,1)

(0,0)

0

20

40

100
200

500

0

20
40

100

200

500

Figure 1: The evolution of hyperplanes (lines) during learning of the XOR prob-

lem. The �gure next to each line indicates the number of epochs to reach this

position

agation can consume extremely long learning times to approximate XOR. To test

the learnability, a network with representing hyperplanes was implemented. A

layer of two units was used, one for each class. (It should be noted that one

unit would be su�cient, but this is the straight-forward application of the above-

mentioned learning strategy. No additional output units are needed, since there

is only one unit per class.) The network was trained with the above rule and a

learning rate of � = 0:01 and converged within about 500 learning steps to a near

to optimal representation of the problem. Figure 1 shows how the lines evolved

through training.

5 A real-world example: Sonar data

To test the presented network type with real-world data, the well-known bench-

mark of [Sejnowski & Gorman 1988] was used. 208 sonar readings, encoded

through 60 numbers, are to be classi�ed into two groups (\mines" and \rocks").

A training set of 102 readings (angle dependent case), was taken here to train

several networks with representing hyperplanes. The learning rate was varied

between 0.001 and 0.5 and revealed erratic behavior at rates above 0.2 (constant

increase of weights). The number of hidden units was varied between 4 and 20

(i.e., between 2 and 10 possible sub-classes per class). Both learning with and

without normalization was tested, revealing little a de�nite advantage for nor-

malization. Figure 2 depicts results (in terms of percentage correct as a function

of epochs) for a network with 10 hidden units. While the training set could be �t-

ted with up to 90 %, generalization hardly reached levels of 65 % (slightly better

than naive guessing). Especially cases of class 2 (mines) were hard to predict.

6



Figure 2: Percentage of correct classi�ed cases for training set (upper curve) and

test set (lower curve) of the sonar data as a function of epochs

6 Discussion

The results from the sonar data show that the learning rule indeed �nds hyper-

planes to �t the data, but also that generalization is very poor. We suggest that

the reason for this might be one of the following.

� the sonar data might not be suited for this method

� the parameters might not have been tuned well enough yet.

� the gradient descent rule might be insu�cient for �nding hyperplanes which

are good for generalization

Our intent was not to introduce a novel learning algorithm and prove that it is

better than other ones. Our intent was to introduce another way of using neural

network to implement traditional statistical techniques, in accordance with the

analysis in the other direction by [Sarle 1994] and [Ripley 1992]. We do this in

the realm of suggesting that for di�erent types of data distribution di�erent types

of estimation techniques, and thus di�erent types of neural networks, might be

appropriate. Even though it can be proven that the well-known types multilayer

perceptron and radial basis function network are universal function approxima-

tors ([Hornik et al. 1989, Kurkova 1992]), there is no proof as of yet as to which

type is e�cient in practical applications, is learnable, or generalizes well for given

data distributions. Therefore, the larger the choice of di�erent methods, the

greater the probability of �nding an appropriate method for a given application.

The network presented in this paper enriches this set of possible methods.

7



7 Conclusion

In this paper, we demonstrated how neural networks can be trained so as to make

the units' hyperplanes represent sub-classes in data space, rather than separate

them. We devised a simple learning rule to minimize the summed orthogonal dis-

tance of all data points represented by a hyperplane. We illustrated the procedure

with the famous XOR mapping, and empirically proved its validity by applying

it to the benchmark sonar data. Even though for those data generalization is

very poor, this new method appears to o�er itself for e�cient classi�cation if the

data distribution can be found to meet criteria of linear regressability.

8 Acknowledgements

The Austrian Research Institute for Arti�cial Intelligence is supported by the

Austrian Federal Minsitry for Science, Research, and the Arts.

References

[Bock 1974] Bock H.H.: Automatische Klassi�kation, Vandenhoeck & Ruprecht,

Goettingen, 1974.

[Broomhead & Lowe 1988] Broomhead D.S., Lowe D.: Multivariable Functional

Interpolation and Adaptive Networks, Complex Systems, 2,321-355, 1988.

[Grossberg 1976] Grossberg S.: Adaptive pattern classi�cation and universal re-

coding, I: Parallel development and coding of neural feature detectors, Bio-

logical Cybernetics, 21, 145-159, 1976.

[Hornik et al. 1989] Hornik K., Stinchcombe M., White H.: Multi-layer Feed-

forward Networks are Universal Approximators, Neural Networks 2, 359-

366,1989.

[Kohonen 1984] Kohonen T.: Self-Organization and Associative Memory,

Springer, Berlin, 1984.

[Kurkova 1992] Kurkova V.: Universal Approximation Using Feedforward Neu-

ral Networks with Gaussian Bar Units, in Neumann B.(ed.), Proceedings of

the Tenth European Conference on Arti�cial Intelligence (ECAI92), Wiley,

Chichester, UK, pp.193-197, 1992.

[Lippmann 1987] Lippmann R.P.: An Introduction to Computing with Neural

Nets, IEEE ASSP Magazine, 4(2)4-22., 1987.

8



[Mosteller & Tukey 1977] Mosteller F., Tukey J.W.: Data Analysis and Regres-

sion - a second course in statistics, Addison-Wesley, Reading, MA, 1977.

[Pratt & Christensen 1994] Pratt L.Y., Christensen A.N.: Relaxing the Hyper-

plane Assumption in the Analysis and Modi�cation of Back-propagation

Neural Networks, in Trappl R.(ed.), Cybernetics and Systems '94, World

Scienti�c Publishing, Singapore, pp.1711-1718, 1994.

[Ripley 1992] Ripley B.D.: Statistical Aspects of Neural Networks, Department

of Statistics, University of Oxford, 1992.

[Rumelhart et al. 1986] Rumelhart D.E., Hinton G.E., Williams R.J.: Learning

Internal Representations by Error Propagation, in Rumelhart D.E., McClel-

land J.L.(eds.), Parallel Distributed Processing, MIT Press, Cambridge, MA,

1986.

[Sarle 1994] Sarle W.S.: Neural Networks and Statistical Models, Proceedings of

the Nineteenth Annual SAS Users Group International Conference, 1994.

[Sejnowski & Gorman 1988] Sejnowski T.J., Gorman R.P.: Analysis of Hidden

Units in a Layered Network Trained to Classify Sonar Targets, Neural Net-

works, 1(1)pp.75-88, 1988.

[Smieja 1992] Smieja F.: Hyperplane "Spin" Dynamics, Network Plasticity and

Back-Propagation Learning, GMD, Institut fuer Angewandte Information-

stechnik, Arbeitspapier Nr.634, 1992.

[Werbos 1974] Werbos P.: Beyond regression: New tools for prediction and anal-

ysis in the behavioral sciences, Harvard University, Ph.D. Dissertation, 1974.

9


