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Abstract

This work concerns the necessity of statis-

tical evaluation of neural network experi-

ments. This necessity is motivated by ap-

plying fundamental notions of statistical hy-

potheses testing to neural network research.

Minimum requirements concerning statisti-

cal evaluation are developed and the appro-

priate statistical techniques are introduced.

Articles from two leading neural network

journals are examined and critizised for the

lack of statistical evaluation they contain.

1 Introduction

There are only few papers that discuss the founda-

tions of the role of experimentation in neural network

research, although for the general �eld of arti�cial in-

telligence, recently a whole textbook has been devoted

to this problem

[

Cohen 95

]

. However, it has already

been recognized that the quality of the neural network

research practice de�nitely needs improvement.

[

Flexer 95

]

emphasizes the fact that statistical eval-

uation is necessary for neural network experiments as

for any other empirical science and that problems con-

nected with empirical research and experiment design

are wellknown to statisticians, but that there seems

to be little awareness of such issues within the neu-

ral network community.

[

Prechelt 96

]

in his study of

119 articles about neural network learning published

in 1993 and 1994 in wellknown journals observes a
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general lack of comparison with other algorithms and

the use of too few and often arti�cial data sets. 29%

of the articles employ not even a single real or at least

realistic learning problem. One third of them do not

present any quantitative comparison with previously

known algortithms at all.

Whereas

[

Prechelt 96

]

is concerned with the quan-

titative amount of evaluation in neural network stud-

ies, this paper is concerned with the quality of such

evaluations. Minimum requirements for the quality of

statistical evaluation will be established that are nec-

essary but maybe sometimes not su�cient, i.e. if an

experiment does not meet them, its quality will be im-

paired, if it doesmeet them, there are still other things

that can go wrong (e.g. the number of data available

for training is too little, the dimensionality of the in-

put vectors is too high, general errors in the design of

the experiments, etc.).

2 Why statistical evaluation is a must

We do need experiments in neural network research

because the methods we employ and the data we want

to analyse are too complex for a complete formal treat-

ment. I.e. for a given data analysis problem we do not

have the formal instruments to decide which of the

methods is the optimal one. Of course there is a vast

literature in statistics, computational learning theory

and the like that does help us in such decisions. But

the last word in the decision is always spoken by an

empirical check, an experiment, as in any other sci-

ence that needs empirical evaluation of its theories

(see

[

Kibler & Langley 88

]

for a comparison of physics

and machine learning).

The basic structure of neural network experiments

is the same as in any other experimental situation:

the question is whether there are e�ects of the vari-

ation of the independent variables (mainly type and

certain parameter characteristics of the network used

and type and characteristics of the data set in ques-

tion) on the dependent variables (various performance

measures like accuracy, root mean squared error or

training time).

The observations (in terms of dependent variables)

that we make during our experiments are only a por-

tion of the entirety of experiments and observations

that are possible in principle. There are at least three



arguments that motivate this restriction: First, the

data available for our experimentation are usually as-

sumed to be just a, hopefully representative, sample

of a larger number of data. Second, within such data

samples we make divisions into data sets for training

and testing, again not all those possible in principle

but rather those manageable by our restricted com-

puter sources. Third, there are some random inu-

ences (e.g. the random initialization of weights, the se-

quence in which training data are presented) of which

again only a sample can be computed and observed.

But how can we be sure that the portion that we

are able to observe is representative of the whole num-

ber of events in question? \The procedures of statis-

tical inference" allow us \to draw conclusions from

the evidence provided by samples"

[

Siegel 56

]

. Only

by statistical testing can it be ensured that the ob-

served e�ects on the dependent variables are caused

by the varied independent variables and not by mere

chance \that they represent real di�erences in the

larger group from which only a few events were sam-

pled" (ibd.) (i.e. whether the phenomena observed in

our sample are signi�cant in a statistical sense or not).

Therefore, statistical evaluation of neural network re-

search is in fact a must.

3 Minimum Requirements

Minimum guidelines of proper neural network exper-

imentation can be divided into how to select training

and test data and how to statistically evaluate such

experiments, whereas the former is a prerequisite for

the latter.

3.1 Resampling techniques

Resampling techniques enable it to estimate the per-

formance of a classi�er in a fair way, i.e. such that

it is guaranteed that approximately the same level of

performance will be achieved with a new data set of

the same domain.

It is not su�cient to use the so-called resubstitution

method where the performance of a trained classi�er is

measured on the data set used for training. It is widely

known (even within the neural network or machine

learning community, see e.g.

[

Ripley 92

]

,

[

Michie et

al. 94

]

) that the performance measure estimated with

this resubstitution method is usually over-optimistic,

i.e. that the same performance measure computed on

new, previously unknown, data is very likely to yield

worse results. In statistical terms it is said that such

error rates tend to be biased.

Therefore it is at least necessary to use di�erent sets

of data for training and testing. The simple method

of dividing the available data into one training and

one test set (2/3 and 1/3 of the data which are mutu-

ally exclusive) is called the holdout method. Since the

neural network cannot use all data for training, per-

formance measures are often pessimistic. Addition-

ally, if such a division into a training and a test set is

undertaken, it is necessary to compute multiple runs

of the experiment in order to avoid random inuences

(e.g. weight initialization, speci�c division of the data,

sequence of training data). The computation of mul-

tiple runs also gives you a better estimate of the true

performance.

A simple modi�cation to the holdout method is a

rotation estimator. The whole data set is divided into

K equally sized parts, and each part is used as a test

set for a network trained with the remaining data.

The observed performance measures for the K dif-

ferent runs are averaged. This procedure is usually

known as K-fold cross-validation. This technique is

still biased in its estimation of performance and there

are other techniques like bootstrap

[

Efron 82

]

that are

able to reduce this bias further at even greater compu-

tational cost by using resampling with replacement.

Another important issue, often neglected within

neural network research, is the fact that sometimes

another third independent data set is needed for fair

performance estimation. Since it is usually necessary

to tune some parameters (e.g. learning rate, number

of layers, numbers of units, etc.) to get the best net-

work performance, a division of the available data into

three di�erent sets is recommended.

[

Michie et al. 94

]

recommend to hold back approximately 20% of the

data and divide the remaining data in a set for train-

ing and a set for testing, and then tune the parameter

using those two sets and an appropriate resampling

technique. The �nal network should use both train-

ing and test data for learning with the now optimized

parameters and should then be �nally tested with the

remaining, never before used, 20% of the data. If the

use of such a third independent data set is omitted,

the obtained error rates will again be biased and over-

optimistic because the test set used for repeated tun-

ing in fact becomes a training set.

[

Mosteller & Tukey

77

]

(p.37) distinguish between the \form" of a method

(i.e architecture of a network including learning pa-

rameters) and the \numerical values" of its coe�cients

(i.e. weight values) and calls the threefold division of

data described above \double cross-validation".

3.2 Statistical testing

All statistical tests are only valid under certain con-

ditions and can be divided into parametric and non-

parametric methods (see e.g.

[

Siegel 56

]

). Paramet-

ric methods have a variety of strong assumptions (e.g.

that of normal distribution of the data) and are there-

fore more powerful (i.e. it is easier to come to sig-

ni�cant results) than nonparametric methods. From

what has been outlined above, it should be clear that

multiple runs are necessary for classi�er experiments

and that usually means over the multiple runs are

to be evaluated. The use of parametric methods

for the evaluation can be justi�ed with the central-

limit theorem which suggests that sample means are

normally distributed no matter what distribution the

samples themselves form. Therefore, parametric tests

can be used for both categorial (e.g. accuracy, sensi-

tivity, speci�city) and continuous measures (e.g. root

mean squared error, training time) of performance. If

parametric tests are being used and the assumption

of normality does not hold, it can only happen that

instances are being judged as \not signi�cant" that



otherwise would have been judged as \signi�cant" but

not vice versa (see e.g.

[

Mosteller & Tukey 77

]

, p.16).

If this actually happens, one can still try appropriate

nonparametric tests. Therefore, and because of the

ease of their computation, we recommend the use of

parametric methods like those discussed below as a

�rst approach.

It is by no means justi�ed to report just the best

result of the multiple runs of a classi�er. Instead, at

least the mean of the performance measures (e.g. ac-

curacy) over all those runs and the corresponding vari-

ance �

2

should be reported to give a better estimate of

the true performance.

It is even better to report the mean over the multiple

runs and the corresponding con�dence interval which

can be computed from the standard deviation �. With

a probability of 99% the true value

�

X of the observed

mean �x will be within the intervall �x � 2; 58�̂

�x

, with

a probability of 95% within �x � 1; 96�̂

�x

, where �̂

�x

=

s=

p

N is the standard error estimated from the sample

standard deviation s. If the sample is rather small

(i.e. number of runs N << 100, say less than 30),

it is no longer justi�ed to assume normality of the

distribution of performance measures. Instead, the

distribution forms a Student- or t-distribution and the

appropriate t-values have to be used for computation

of the con�dence intervals which hence become larger.

Con�dence intervals allow us to express the amount

of uncertainty that comes with every experiment.

They also enable use to compare the outcome of ex-

periments under di�erent conditions, e.g. to compare

the accuracy means of two di�erent neural networks

applied to one data set by computing the con�dence

intervals for both of them. If the whole intervals do

not overlap, there is a statistically signi�cant di�er-

ence between the two accuracy means. But if only

each of the sample means falls outside the con�dence

intervall around the other mean, a statistically signif-

icant di�erence is not guaranteed.

Therefore it is advised to use a t-test, which should

be computed to test the signi�cance of the di�erence

between means (see

[

Feelders & Verkooijen 95

]

or

[

Egmont-Petersen et al. 94

]

for a discussion related to

neural nets and classi�ers in general). The formulas

for the computation of the t-test are given in (1), (2)

and (3). Assume we have two neural networks A and

B and we perform N

A

runs with A and N

B

runs with

B. �x

A

and �x

B

are the means of the N

A

and N

B

runs

and s

2

A

and s

2

B

are the corresponding variances.

t

�x

A

��x

B

=

�x

A

� �x

B

�̂

�x

A

��x

B

(1)

�̂

�x

A

��x

B

=

s

�̂

2

pooled

�

1

N

A

+

1

N

B

�

(2)

�̂

2

pooled

=

(N

A

� 1)s

2

A

+ (N

B

� 1)s

2

B

N

A

+N

B

� 2

(3)

We compute the t-value and examine the observed

performance di�erence �x

A

� �x

B

at an appropriate

level of signi�cance � = 0.01 or 0.05 (i.e. a prob-

abilty of 95 or 99%) and with degrees of freedom

df = N

A

+ N

B

� 2 for signi�cance with the help of

a t-table (for the two-tailed test). Since in the stan-

dard comparative experiment the performance mea-

sures are all estimated from the same test sample,

which makes them highly correlated, a paired sam-

ple t-test should be used which gives a more powerful

test statistic

[

Feelders & Verkooijen 95

]

. This makes

it necessary to actually parallelize the samples that

are being drawn for neural networks A and B, i.e.

to use the same data for training and testing for the

networks during the multiple runs. See

[

Siegel 56

]

or

any standard statistical text book for more details on

hypotheses testing and related issues.

It is possible to try to come to signi�cant results

by computing more and more runs of an experiment,

since higher values for N

A

and N

B

implymore degrees

of freedom and a decrease of the variance �̂

�x

A

��x

B

. But

as

[

Cohen 95

]

(p.116) points out, this decrease in vari-

ance gets rather small when more than 20 runs are

being computed.

If more than two means of performances are com-

pared via repeated pairwise t-testing one will end with

a high probability to �nd one or more `signi�cant' dif-

ferences when in fact there are none (e.g. for 20 tests

with � = 0:05, the probability of such an error is 0.64).

The simplest approach to deal with this multiplicity

e�ect is to divide � through the number of tests that

are being performed, which makes it rather hard to

come to signi�cant results). Some pointers to more

sophisticated solutions can be found in

[

Feelders &

Verkooijen 95

]

or

[

Cohen 95

]

(pp.189).

4 Current Practice

To sum up the previous section, the following can be

seen as minimum requirements for proper neural net-

work experimentation:

� the use of di�erent training and test sets

� the computation of multiple runs using an appro-

priate resampling technique

� the use of a third independent data set in the case

of parameter tuning

� to report mean, variance and con�dence intervals

� to compute a statistical test (e.g. a t-test) for the

comparison of performances

Following the approach in the related study by

[

Prechelt 96

]

, articles from two leading journals, Neu-

ral Networks (numbers 1-5 of 1994, Elsevier) and Neu-

ral Computation (numbers 1-6 of 1994, numbers 1 and

2 of 1995, MIT Press), have been examined as to

whether they meet those requirements. Only articles

concerned with empirical studies of algorithms applied

to practical problems were considered (61 in total).



requirement yes no ?

di�. train and test set 72:2% 1:6% 26:2%

multiple runs 57:3% 36:1% 6:6%

3

r

d independent data set 4:9% 0:0% 95:1%

mean, var. con�dence int. 27:7% 72:3% 0:0%

statistical test 4:9% 93:5% 1:6%

First we want to express our frustration concerning

how little care the authors of the examined articles

spend on the evaluation of their experiments. Often

it is impossible to decide whether the requirements

are met by a certain study because the information is

simply not in the text. The percentages given in the

table above should therefore be seen as very crude but

rather over optimistic measurements of the current re-

search practice.

Almost all authors use di�erent data sets for train-

ing and testing with the exception of rather question-

able theoretical studies, which just want to proove

that a certain relation (`exclusive or' is a favourite)

is learnable in principle by a certain neural network.

The computation of multiple runs seems to be fairly

familiar to most authors as well. Because of lack of

information, resampling techniques have not been con-

sidered explicitly. The use of a third independent data

set is only reported in 3 papers (4:9%), for the rest it

is often totally unclear if and how parameter tuning

was achieved. Only less than one third of the papers

do contain computation of mean and variance (or con-

�dence intervals) and only 4:9% of them involve a sta-

tistical test.

It should be noted that lots of the authors do report

means over multiple runs but do not provide standard

deviations. Some of the papers contain claims that

would need support by empirical simulations but do

not include any experimental work at all. Such papers

have not been considered in our study and would shift

the results even further to the worse.

5 Conclusion

In this work we have motivated the necessity of sta-

tistical evaluation of neural network experiments and

have given minimum requirements to be met. Our

study of articles of two leading journals has shown

that concerning our requirements, the quality of the

studies in question is rather low. Two possible causes

come to mind: Either people working in the �eld of

connectionism are not aware of the necessity of statis-

tical evaluation. Or they are, but are still reluctant to

take the consequences since even top journal publica-

tions are possible without meeting even the simplest

statistical standards of experimentation. In both cases

this work should be of help to enhance the quality of

connectionist experimentation.
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