
Implementing HPSG in FUF

An Experiment in the Reusability of

Linguistic Resources

Johannes Matiasek and Harald Trost

Austrian Research Institute for Arti�cial Intelligence

�

Schottengasse 3, A-1010 Vienna, Austria

Email: fjohn,haraldg@ai.univie.ac.at

Keywords: Natural Language Understanding, Text Generation

�

The work reported here has been carried out within the LRE Project GIST (LRE 062-09)

and funded by the Austrian Forschungsf�orderungsfonds der Gewerblichen Wirtschaft, Grant

2/329. Financial support for the Austrian Research Institute for Arti�cial Intelligence is pro-

vided by the Austrian Bundesministerium f�ur Wissenschaft, Forschung und Kunst.



Implementing HPSG in FUF

An Experiment in the Reusability of

Linguistic Resources

Keywords: Natural Language Understanding, Text Generation

Abstract

In practical systems it is often required to reuse existing resources.

Such an approach clearly has advantages: it speeds up the development

process considerably, if one doesn't have to start from scratch. However,

combining resources not designed to work together is not a trivial task.

An HPSG grammar of German has been implemented in FUF, an uni�-

cation-based text generator. Although FUF is largely theory-neutral, some

of its characteristics diverge from the processing requirements imposed by

HPSG in its strict sense. The most prominent discrepancy is, that HPSG,

being a lexically driven formalism lends itself best to a head-driven bottom-

up processing strategy, whereas FUF, at least by default, uses a top-down,

category-driven approach. FUF also lacks a morphological component able

to deal with the rich German inectional system. Therefore a two-level

morphology component, X2MorF, has been added.

We describe the problems arising when integrating these three resources

and the transformations and adaptations made to them, leading to a wide

coverage tactical generator for German.

1 Introduction

The reuse of existing resources is a crucial demand when building natural lan-

guage processing systems. However, this does not only save e�orts but, to a

hopefully much minor extent, creates also new tasks to be solved, i.e. the inte-

gration of resources not having been designed to work together.

The work being described here was done in the context of a multilingual text

generation system. One of the objectives of the project is to reuse existing re-

sources for those subtasks for which appropriate resources exist. For the German

tactical generator

1

an implementation of an HPSG

2

style grammar of German

(used for parsing and generation, but on a di�erent software platform) and a mor-

phology module were available inhouse. A LISP-based generator was available as

public domain software, namely the FUF package [2].

Before we describe the integration task we will briey sketch the main charac-

teristics of these resources, emphasizing those aspects which either cause problems

for integration or provide the means for performing the integration task.

1

The task of a tactical generator is to produce sentential or subsentential phrases corre-

sponding to a semantic input speci�cation and does not include text planning.

2

Head Driven Phrase Structure Grammar [9, 10]

1



2 Characteristics of the available resources

2.1 The FUF Generator

FUF [2] implements a surface generator for natural language. It is based on the

theory of functional uni�cation grammar [5] and employs both phrase structure

rules (being encoded by means of a special category feature) and uni�cation

of feature descriptions. Input to FUF is a partially speci�ed feature description

which constrains the utterance to be generated. Output of FUF is a fully speci�ed

feature description (in the sense of the particular grammar) subsumed by the

input structure, which is then linearized to yield a sentence.

2.1.1 Grammar Speci�cation in FUF

Grammar and lexicon are speci�ed as one large feature description, containing

at least one disjunction (given by the alt keyword) ranging over the phrasal and

lexical categories of the grammar. The feature cat is used to indicate these cat-

egories. Another special feature, lex, associates strings with lexical categories.

The trivial grammar of Fig. 1 exempli�es the layout of grammar speci�cations

within the FUF formalism. Pointers can be used to enforce identity of substruc-

tures and provide a means to percolate information within a feature structure.

FUF provides the means to specify a subsumption ordering of types, which

is useful to express generalizations. A further feature of FUF is the possibility

of using external macros in the grammar. These macros can be de�ned by the

user and return on demand a piece of grammar to be used in that place. This

feature is heavily used in the German grammar and will be explained in more

detail below.

2.1.2 Operational Characteristics

Generation with FUF starts from an input feature structure constraining the

utterance to be produced. FUF uni�es the grammar into the input structure, i.e.

(alt (((cat s) ; --- category S (with subject/verb agreement)

(subj ((cat np)))

(pred ((cat vp)

(agr {^ ^ subj agr})))) ; pointer

((cat np) ; --- category NP (covering only proper nouns)

(n ((cat noun) (proper y))))

((cat vp) ; --- category VP (covering only intransitive verbs)

(v ((cat verb) (agr {^ ^ agr}))))

;; --- Lexicon

((cat verb) (lex "laughs") (agr ((person third)(num sg))))

((cat noun) (lex "Mary") (agr ((person third)(num sg))) (proper y))))

Figure 1: A trivial FUF grammar

2



enriches and further constrains it. Alternatives are explored sequentially until

one branch succeeds. Thus the input structure never contains disjunctions.

When uni�cation at the current level is complete, i.e. nothing further can

be added to the input structure, recursion on the subconstituents is performed.

Every substructure of the enriched input structure which represents a category is

recursively uni�ed with the grammar. This process is repeated in a breadth �rst

fashion until all constituents are leaves, i.e. have no subconstituents.

To determine which substructures correspond to constituents needing recur-

sion, FUF employs two methods. The default strategy collects all substructures

of the current level bearing the category feature cat. The second strategy re-

quires explicit speci�cation of the subconstituents in the grammar by means of

the special feature cset (constituent set). If such a feature is present, FUF does

not resort to its default strategy but only performs recursion on these explicitly

given substructures. To illustrate this behavior, the default strategy operates

on category s in Fig. 1 as if (cset (subj pred)) had been speci�ed. When

specifying (cset (pred)) only, no recursion would be performed on subj. Fur-

thermore, the cset feature provides control of the order in which constituents

are uni�ed and thus may be used to enhance e�ciency.

In order to e�ciently process a grammar, various methods of pruning the

search tree are provided in FUF. The most simple one is to use the :index

<path> keyword within a disjunction, telling FUF to use the value found in

the input structure at <path> as an index and to ignore all alternatives in the

grammar whose values do not match. Thus indexing forces a more deterministic

processing and prevents a considerable amount of computations bound to fail.

Indexing does not help very much if the value of the index in the input struc-

ture is unknown. To avoid blind search in such a situation, the decision which

branch to take can be delayed using the :wait <path> declaration. Then uni-

�cation proceeds ignoring the disjunction at hand and puts the delayed choice

point onto an agenda. Processing of the delayed disjunctions continues if either

the value waited for is present or if nothing else is left to do.

FUF also provides special values, which may induce a nonmonotonic behavior

of the generator. These values are NONE, GIVEN and ANY. The interpretation of

GIVEN and ANY depends on the current status of the input structure. Thus these

values have to be used with procedural considerations in mind.

2.1.3 Linearization

The recursive uni�cation process handles only the dominance relations of the

grammar. In order to account for linear ordering of the resulting tree shaped

feature structure, FUF performs a linearization process after uni�cation has �n-

ished. Linear precedence of constituents must be speci�ed in the grammar using

the special feature pattern. Only constituents mentioned in a pattern are real-

ized during linearization. Thus, the simple grammar in Fig. 1 has to be enriched

3



in order to produce correct results: (pattern (subj pred)) has to be added at

(cat s), (pattern (n)) has to be added at (cat np) and (pattern (v)) is

needed at (cat vp). Lexical categories don't need a pattern feature.

Patterns need not specify an absolute ordering. E.g., (: : : a : : :b : : :) spec-

i�es that constituent a has to precede b. More such partial patterns may be

speci�ed, pattern uni�cation leads to all legal constituent combinations.

Linearization traverses the tree, extracts the strings found in the lex feature of

the leaves, and attens this structure according to the pattern directives found.

FUF also provides a morphology component (for English only) taking care of

producing the correct word forms including capitalization and punctuation.

2.2 The HPSG Grammar for German

In HPSG [9, 10], the fundamental objects of linguistic analysis are signs modeled

by typed feature structures and constrained by global principles (e.g. the Head

Feature Principle). The basic attributes for signs include phon for phonologi-

cal information and synsem for syntactic and semantic information. synsem in

turn is highly structured including local and nonlocal features. local features

comprise content, containing semantic information and the category complex,

which includes the head features and the subcat list to model subcategorization

information. nonloc features are used to model nonlocal dependency construc-

tions such as topicalization, questions and relative clauses.

HPSG does not employ phrase structure rules. Instead, very general dom-

inance schemata are given. Which arguments a lexical head takes is lexically

speci�ed in its subcat list. Also adjunction is speci�ed lexically; the adjunct is

seen as the semantic head which selects the kind of signs it modi�es, the modi�ed

sign remains the syntactic head of the resulting phrase. Long distance dependen-

cies are handled in HPSG not in terms of movement but via structure sharing of

the values of a slash feature percolating the \moving" constituent.

The grammar for German follows the version of HPSG given in [10] rather

strictly, deviating from it only in the following aspects:

� The Subcategorization Principle is given in a binary branching fashion.

� The argument structure of lexical heads is enriched. Thus generalizations

concerning case assignment and argument reduction phenomena (occurring,

e.g., in passivization) can be captured in a principled fashion (see [3]).

� Verb second position is handled by a mechanism resembling the notion of

head movement of GB-theory.

The German grammar and the processing modules for parsing and generation

have been implemented in a direction-independent manner using a CLP extension

of SICStus Prolog (the implementation techniques used are described in [7, 8]).

4



2.3 X2MorF

X2MorF [11] is a morphological component based on two level morphology [6].

The basic idea behind two-level morphology is the treatment of morphophonol-

ogy by means of rules that map between the lexical representation of a word and

its surface form (as it appears in text). Rules can be applied in parallel (either

directly or in the form of �nite automata) leading to a very e�cient implementa-

tion. Morphology proper on the other hand is viewed as a simple concatenation

process governed by a regular grammar, implemented using a continuation class

mechanism.

X2MorF augments standard two level morphology in two ways. First, it

replaces the continuation class lexicon with a feature-based word grammar and

lexicon. This is an important requisite for its use as a morphological component

in a feature-based sentence-level processing system (see [12]). Second, it allows

for interaction between the two-level rules and the word grammar which makes it

easier to formulate rules for non-concatenative morphotactics like umlaut. Up to

now the system has been used to describe German inectional and derivational

morphology and Italian and Turkish inectional morphology.

3 The Integration Task

Integration of the existing resources into a uni�ed system could only be achieved

after suitably adapting each of these resources. The FUF system itself needed a

replacement of its morphological component by the appropriate calls to the two-

level rules of X2MorF and a revision of the linearizer. The word level grammar

of X2MorF was rewritten to use FUF as uni�cation engine.

More substantial changes were required to adapt the HPSG grammar. Not

only syntactic adaptations to another feature formalism were needed, but also

the operational characteristics of FUF had to be accounted for. In order to make

the system as e�cient as possible, the grammar had to respect the processing

strategies of FUF. Also some of the phrase structure information generalized in

the form of principles could be \compiled" into phrase structure rules.

3.1 HPSG in FUF

First experiments to implement HPSG in FUF in a rather direct way, preserving

the deeply structured shape of feature structures indicated, that { although pos-

sible { this strategy led to ine�cient runtime behavior. Since most grammatical

constraints in HPSG are expressed by means of structure sharing, and FUF uses

pointers to indicate such coreferences, most of the processing time was spent in

following pointer chains through deeply nested feature structures.

Thus the structures have considerably been attened and some aspects (most

notably the subcat list and the content) have been encoded di�erently.

5



3.1.1 The Representation of Signs

The process of recasting the original HPSG structures in the FUF formalism can

best be described by examples. In Fig. 2 the lexical entry of the German verb

geht (walks) as it appeared in the original HPSG grammar is shown.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phon "geht"

synsem

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

6

6

6

6

6

6

6

6

6

6

4

head

2

4

vform �nit

tense present

person third

num sg

verb

3

5

subcat

*

2

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

4

head

"

case nom

person third

num sg

noun

#

subcat hi

3

7

5

cont

�

index 1

nom obj

�

3

7

7

7

7

5

synsem

3

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

7

7

7

5

cont

�

rel walk

actor 1

psoa

�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

nonloc nonloc

synsem

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

word

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 2: Lexical Entry for \geht" in HPSG

The following decisions regarding the mapping onto FUF have been made:

� The subtyping of the head is represented by the cat feature of FUF.

� synsemjlocjcatjhead is mapped to a toplevel feature head, similarly the

feature synsemjlocjcontjrel is mapped to concept.

� Instead of subcategorizing only for synsem values as proposed in [10] the

convention of [9] is adopted and the whole sign is subcategorized for.

� The constituents subcategorized for are placed under a feature args at the

toplevel of the FUF structure and no longer constitute a list. The corre-

spondence between (syntactic) arguments and semantic roles is established

by placing the constituent under a feature corresponding to its semantic role.

Thus list manipulation is avoided and the structure corresponds more closely

to the input speci�cation (given in a language based on SPL [4]).

� The nonlocal feature is dropped. Slash extraction is handled di�erently.

The resulting FUF representation of the same verb is given in Fig. 3. It should

be noted, however, that this entry does not correspond exactly to the way it is

actually represented in the generator, it serves simply to illustrate the basic ideas

underlying the transformation of HPSG to FUF. The main di�erences are

� the speci�cation of arguments via external macros, accounting for a more

principled treatment of case assignment, argument reduction and movement;

� a di�erentiation between lexemes and stems to account for a treatment of

inection by the morphology component (Fig. 3 corresponds to a full form

lexicon).

6



((cat verb)

(lex "geht")

(head ((vform finit)

(tense present)

(person third)

(num sg)))

(concept walk)

(args ((actor ((cat np)

(head ((case nom)

(person third)

(num sg))))))))

Figure 3: Lexical Entry for \geht" in FUF

The representation of phrasal signs in HPSG parallels the one of lexical signs;

an additional feature dtrs carries the subconstituents of the phrase. One of the

daughters is the head of the phrase (head-dtr), its head features are token-

identical to the head features of the phrase (Head Feature Principle). The other

daughter may be either a complement, an adjunct, a marker or a �ller (realizing

the slash feature of the head daughter). Each kind of constituent structure is

constrained by an associated set of dominance schemata and principles.

HPSG distinguishes between substantive categories (such as nouns or verbs)

and functional categories (e.g., determiners). Since functional categories corre-

spond to closed word classes, in the FUF implementation these categories are

compiled into phrase structure rules.

The same approach, i.e. factoring subcategorization information into phrase

structure rules, is taken with auxiliary and modal verbs and with phenomena

which may well be regarded as the manifestation of a functional category, but

which are not expressed by lexical items but by special constituent ordering (e.g.,

verb second position in declarative main clauses).

The treatment of adjunction in the FUF implementation reects the way in

which modi�ers are represented in the input language. The HPSG view of an

adjunct as the semantic head selecting the sign it modi�es, is changed to the view

that adjuncts act as \optional" arguments of the syntactic head.

3.1.2 Encoding of Principles

Many constraints expressed in HPSG by means of principles (e.g.,the dominance

schemata) are already built into the phrase structure rules compiled out of the

original grammar. There remain, however, the most central principles of HPSG

constraining all phrases, which ensure the proper sharing of information between

the mother and the head daughter. They are inserted into the grammar at

the level (cat phrasal-category). The branches dispatching to the particular

phrase types are speci�ed in an embedded disjunction afterwards.

However, one important principle of HPSG, the Subcategorization Principle

7



(defparameter *phrasal-principles*

'(;;; HEAD FEATURE PRINCIPLE

(head {^ head-dtr head})

;;; SEMANTICS PRINCIPLE: (syntactic head is always the semantic head)

(concept {^ head-dtr concept})

(args {^ head-dtr args})

(index {^ head-dtr index})

;;; SLASH INHERITANCE PRINICIPLE: percolate slash of head-dtr

(slash {^ head-dtr slash})))

Figure 4: HPSG Principles in FUF

ensuring the proper relationship between the arguments subcategorized for and

the constituent structure of the phrase still needs to be accounted for. How this

constraint is met will be discussed in the next section.

3.1.3 Control Strategy

FUF employs a top-down processing scheme driven by the syntactic category of

the mother. This control strategy is inadequate when the constituent structure

is speci�ed lexically by the head and thus unknown until the head is expanded.

HPSG lends itself best to head-driven, bottom-up processing, at least for genera-

tion. Since the control regime of FUF cannot be changed in principle (only delay

methods are available), the grammar itself has to account for adequate processing

characteristics. This means, that the lexicon driven approach has to be emulated

within the grammar, taking the operational behavior of FUF into account.

The basic idea for realizing head driven processing behavior is to use the cset

and pattern special attributes of FUF in an asymmetrical fashion. Generation

of a phrase starts by realizing its head-dtr. Therefore only the head daughter

is speci�ed in the constituent set of the phrase, i.e. (cset (head-dtr)). Once

the lexical head of the phrase is generated, its argument list is activated using

the default recursion strategy of FUF (since no cset attribute is present). The

lexically speci�ed arguments are now generated in a (virtually) bottom up fashion.

Structure sharing percolates the args upwards to the phrasal level, where they are

then realized via the pattern feature (e.g., (pattern (args head-dtr))). The

basic mechanism of encoding this processing strategy in the grammar is given in

Fig. 5. If functional categories are present in a phrase, then the appropriate slots

((cat phrase)

(head-dtr ((cat lex-cat) ... ))

(args {^ head-dtr args}) ; percolate arguments

(cset (head-dtr)) ; recurse only on head daughter

(pattern (args head-dtr))) ; realize head and arguments

Figure 5: Head driven generation in FUF

8



have to be speci�ed and added to cset and pattern.

Thus the shape of the resulting phrase largely depends on the kind of argu-

ments its lexical head admits. In order to realize its arguments, every word able

to act as the head of a phrase has to provide a syntactic and semantic speci�cation

of its arguments. This speci�cation also has to account for possible long distance

phenomena, i.e. extraction of an argument (e.g., wh-movement). Furthermore,

variations of case assignment (e.g.,in passivization) have to be accounted for.

3.1.4 Argument Structure Encoding

Although a large amount of information has to be stored in the lexicon, a compact

and easily maintainable structure of the lexicon is a crucial requirement for a

practical system. Therefore extensive use has been made of the externalmacros

provided by FUF, which are expanded only on demand.

Fig. 6 shows the actual encoding of the lexical entry for \warten" (\wait"),

subcategorizing for an actor and a patient. Syntactic restrictions on the argument

((cat lex-verb)

(lxm "wart")

(concept wait)

(args ((actor #(external np-ext-da))

(patient #(external pp-auf-acc)))))

Figure 6: Lexical Entry for \warten" in FUF

are given by macros. pp-auf-acc expands to a PP with preposition auf and

accusative case, the realization of the structural argument np-ext-da depends

on whether argument reduction (i.e. passivization) has to be performed or not

(for a theoretical background see [3]). In active contexts it becomes the subject

and receives nominative case, in passive contexts it may be optionally realized as

a PP

von

(see Fig.7).

A mechanism common to all arguments and thus incorporated into every

macro expanding to an argument speci�cation is the extraction mechanism re-

quired to handle movement (see Fig. 8). At the phrasal level the argument which

has to be extracted (e.g., in wh-questions the constituent asked for) has to be

((alt ((({^ ^ reduction} no)

(cat np)

({^ actor} {^ subj})) ; promote to subject

(({^ ^ reduction} yes)

;; optional role when passivized, realize only on demand

(alt (((concept GIVEN) (cat pp)(adpos ((lxm "von"))))

;; --- otherwise no cat to prevent realization

((concept NONE) (cat NONE))))))))

Figure 7: Expansion of #(external np-ext-da)

9



((alt (;; try to fill slash by unifying it with argument

(({^ <slot>} {^ slash}))

;; argument does not unify --> just add pattern

(({^ pattern} (... <slot> ...))))))

Figure 8: Slash extraction (slightly simpli�ed)

speci�ed as the slash feature of the args. Each argument must be checked dur-

ing generation if it is uni�able with the slash speci�cation, and, if so, it has to

be made coreferential with slash. Otherwise, an appropriate pattern feature

has to be produced to ensure the realization of the argument at the args level.

3.1.5 Verb Second and a Sentence Generation Example

German is commonly regarded as an SOV language. However, the standard word

order { a sentence �nal verbal complex with the �nite verb as the last element

{ is encountered only in subordinate clauses. In declarative sentences and wh-

questions the �nite element of the verbal complex occupies the second position

in the sentence. Sentence initial position of the the �nite verb is encountered in

imperative clauses and yes-no questions.

In our grammar, the verbal complex is always generated in the standard

order, i.e. with the �nite verb in sentence-�nal position. To account for V1

and V2 phenomena, a mechanism resembling the GB notion of head movement

is implemented. This mechanism functions analogously to the slash mechanism

presented above. If a feature head-slash is passed to the verbal complex, the

�nite verb is not generated in place but instead extracted, allowing the governing

phrase to realize it in �rst or second position. The morphology component ensures

that separable pre�xes are left in place. The verbal complex is generated top

((cat s)

(s-type declarative)

(head-dtr ((cat vk)

(head ((vform fin)))

(head-slash ((cat lex-verb)))))

(v2 {^ head-dtr head-slash})

(subj ((head ((case nom) ; case assignment and agreement

(num {^ ^ ^ head num})

(person {^ ^ ^ head person})))))

(args ((subj {^ subj})))

;; force extraction of one constituent (defaulting to subject)

(alt (((focus GIVEN) (focus {^ args slash}))

((focus {^ subj}) (subj {^ args slash}))))

(cset (head-dtr))

(pattern (focus v2 args head-dtr)))

Figure 9: FUF Grammar for Declarative Main Clause (slightly simpli�ed)

10



down. The arguments of the main verb are generated lexicon driven, once the

lexical head of the phrase has been established.

Subject-verb agreement and nominative case assignment is handled via the

subj slot which is coreferential with args:subj and { after argument generation {

contains the subject of the sentence (cf. Fig. 7). Verb second position can only be

ensured, if the constituent in sentence initial position is nonempty. The slot focus

is designed to hold that constituent. If no constituent to be topicalized is speci�ed

in the input, it defaults to subj. This extraction uses the slash mechanism

described above (see Fig. 8). The interaction between top down category driven

and \bottom up" lexicon driven processing is illustrated in Fig. 10, showing also

the e�ects of the two slash extraction mechanisms.

Der Beamte hat den Brief erhalten

der Beamte

focus v2 args vk

erhalten hat
head-slash

actor

head-dtr

args

den Brief
patient

= slash

TOP DOWN
syntax driven

"BOTTOM UP"
lexicon driven

Figure 10: Generating a Declarative Main Clause

3.2 X2MorF in FUF

For the integration of X2MorF into FUF the uni�cation engine used in X2MorF

was replaced by FUF itself, and the existing word grammar and morph lexicon

had to be reformulated in the FUF formalism. While X2MorF is used for both

parsing and generation, only the generating task is relevant here, thus the whole

word form generation task is now performed by the standard FUF procedure.

Two-level rules could be taken over in their original form from the X2MorF

implementation, only the morphological �lters had to be translated.

The structure of phrases within the morph grammar is much simpler than

in the sentence level grammar. A simple functor/argument scheme is su�cient.

What types of combinations between argument categories and functor categories

are permitted is determined by the phrase structure rules of the morph grammar.

The a�xes (being the functors) may further restrict the arguments they may be

applied to. Fig. 11 shows an example of morphological categories responsible

for nominal inection. A noun stem has to be followed by a case su�x which

determines the head features of the resulting noun form. The head features of

11



((cat noun-form)

(functor ((cat case-suffix)

(head {^ ^ head})

(arghead {^ ^ arg head})))

(arg ((cat noun-stem)

(stem {^ ^ stem})))

(cset (arg functor))

(pattern (arg functor)))

((cat case-suffix)

((lex "")

(head ((umlaut aou-umlaut)

(case not-dat)

(num pl)))

(arghead ((noun-paradigm null)))))

Figure 11: Nominal Inection

the argument are made available to the functor via the arghead feature, thus

enabling the functor to lexically restrict the argument it is applied to (e.g., by

requiring a certain inection paradigm). One of the possible case su�xes is a null

morph inducing plural in a certain class of nouns with (noun-paradigm null).

It applies in all cases except dative

3

setting the umlaut feature, which triggers

the two level rule forcing umlaut. An example is \Garten" with plural \G�arten".

The interface between syntactic and word level processing is provided by the

lemma lexicon. It contains the argument structure of the lexemes and links them

to (possibly pre�xed) stems. The required syntactic features (such as case,

person, num etc.) of a particular word form are determined by the sentence

level syntactic generation. The lemma lexicon passes these features to the mor-

phological level and the word level grammar takes care of selecting the appropri-

ate a�xes. During the �nal linearization the extended two level rules map the

concatenated stems and a�xes to the appropriate surface strings.

4 Conclusion

In this paper we have shown how existing resources can be adapted to new ap-

plications thereby saving considerably on development e�orts. In particular we

have demonstrated integration tasks on two di�erent levels:

� by combining FUF with X2MorF we have extended the functionality of FUF.

While the original morphology component of FUF is geared towards English

only, X2MorF can be used with a wide range of languages.

� by adapting our existing HPSG grammar for German to FUF we have shown

that a declaratively written linguistic resource can be used in a new processing

environment with modest e�ort.

This is an important step in bringing natural language processing techniques

closer to real-world applications, where the minimizing of adaptation cost and

the maximal use of existing resources is crucial for success.

3

The boolean combinations of certain features have been spelled out in the type hierarchy.

12



References

[1] Buchberger, E., E. Garner, W. Heinz, J. Matiasek, and B. Pfahringer. 1991.

VIE-DU|Dialogue by Uni�cation. In H. Kaindl, editor, 7.

�

Osterreichische

Arti�cial-Intelligence Tagung, pages 42{51, Berlin. Springer.

[2] Elhadad, M. 1991. FUF: The Universal Uni�er User Manual, Version 5.0.

Technical report, Dept.of Computer Science, Columbia University.

[3] Heinz, W. and J. Matiasek. 1994. Argument Structure and Case Assignment

in German. In John Nerbonne, Klaus Netter, and Carl Pollard, editors, Ger-

man in Head-Driven Phrase Structure Grammar. CSLI Publications, Stan-

ford, pages 199{236.

[4] Kasper, R. T. 1989. A exible interface for linking applications to Pen-

man's sentence generator. In Proceedings of the DARPA Speech and Natural

Language Workshop, Philadelphia.

[5] Kay, Martin. 1979. Functional Grammar. In Proceedings of the Fifth Annual

Meeting of the Berkeley Linguistics Society. Berkeley Linguistics Society,

Berkeley, CA.

[6] Koskenniemi, K. 1983. Two-Level Model for Morphological Analysis. In Pro-

ceedings of the 8th International Joint Conference on Arti�cial Intelligence,

Los Altos, CA. Morgan Kaufmann.

[7] Matiasek, J. and W. Heinz. 1993. A CLP Based Approach to HPSG. Techni-

cal Report TR-93-26, Austrian Research Institute for Arti�cial Intelligence.

[8] Matiasek, Johannes. 1994. Conditional Constraints in a CLP-based HPSG

Implementation. In H. Trost, editor, Konvens 94, pages 230{239. Springer.

[9] Pollard, C. and I. Sag. 1987. Information-Based Syntax and Semantics, Vol.

1: Fundamentals. CSLI Lecture Notes 13. CSLI, Stanford, CA.

[10] Pollard, C. and I. Sag. 1994. Head-Driven Phrase Structure Grammar.

University of Chicago Press, Chicago and CSLI Publications, Stanford, CA.

[11] Trost, Harald. 1991. X2MORF: A Morphological Component Based on

Augmented Two-Level Morphology. In Proceedings of the 12th International

Joint Conference on Arti�cial Intelligence (IJCAI-91), Sydney, Australia.

[12] Trost, Harald and Johannes Matiasek. 1994. Morphology with a Null-

Interface. In Proceedings of the 15th International Conference on Computa-

tional Linguistics (COLING-94), Kyoto, Japan, August 5-9.

13


