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Abstract

Discretization of continuous attributes into ordered discrete attributes

can be bene�cial even for propositional induction algorithms that are ca-

pable of handling continuous attributes directly. Bene�ts include possibly

large improvements in induction time, smaller sizes of induced trees or rule

sets, and even improved predictive accuracy. We de�ne a global evalua-

tion measure for discretizations based on the so-called Minimum Descrip-

tion Length (MDL) principle from information theory. Furthermore we

describe the e�cient algorithmic usage of this measure in the MDL-Disc

algorithm. The new method solves some problems of alternative local mea-

sures used for discretization. Empirical results in a few natural domains

and extensive experiments in an arti�cial domain show that MDL-Disc

scales up well to large learning problems involving noise.
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1 Introduction

Discretization groups continuous numeric values into discrete intervals. Origi-

nally the motivation for discretization was the inability of handling continuous

values exhibited by early propositional learning algorithms. Even though most

propositional algorithms nowadays can handle continuous values, discretization

can still be bene�cial for various reasons:

1. E�ciency: handling (lots of) continuous values tends to slow down induc-

tion considerably.

2. Intelligibility: especially when faced with a large number of noisy training

examples, decision trees involving continuous attributes tend to be rather

complex.

3. Accuracy: in the presence of noise good discretizations can sometimes im-

prove predictive accuracy.

Simple discretization methods are class-blind , i.e. they group training ex-

amples into intervals without taking into account the respective classes of the

training examples. [Chiu et al. 91] compares three such methods: equal-width

discretization, equal-frequency discretization and maximum marginal entropy dis-

cretization. Even though these methods seem to produce reasonable abstractions

for many learning cases, there are situations where they perform poorly due to

their class-blindness.

2

To address these problems, a few new discretization methods using class in-

formation have recently been described in the literature [Catlett 91, Kerber 92,

Lee & Shin 94, Richeldi & Rossotto 95]. They make use of either statistical or

information-theoretical measures. These algorithms either work bottom-up, re-

peatedly merging intervals or work top-down, recursively splitting intervals until

some stopping criterion is satis�ed. All of those methods su�er from at least two

problems (as most of their authors explicitly note):

1. They lack global evaluation. All used measures are only local in the sense

that they estimate the value of merging two neighboring intervals taking

into account no other ([Kerber 92, Lee & Shin 94]) { or only a small num-

ber of ([Richeldi & Rossotto 95]) { surrounding intervals, or that they es-

timate the value of splitting a single interval into exactly two intervals

([Catlett 91]). This restricted local analysis, which is motivated by e�-

ciency reasons, sometimes misses the opportunity of forming larger uni-

form intervals. Consequently these algorithms may produce super
uous

intervals, which may have a detrimental in
uence on both e�ciency and

accuracy.

2

See [Kerber 92] or [Lee & Shin 94] for both convincing examples and some comparisons of

class-blind methods to more sophisticated methods for discretization.
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2. They also cannot distinguish truly uncorrelated (irrelevant) attributes from

what [Kerber 92] calls second-order correlated attributes, i.e. attributes

correlating only in the presence of some other condition.

In this paper we will introduce a new global information-theoretical measure

for judging discretizations as a whole. The measure is an application of the Mini-

mum Description Length (MDL) principle [Rissanen 78] as an objective function

for evaluating the global goodness of a speci�c discretization. This measure will

be described in the next section. Section 3 will outline e�cient use of the new

measure for discretizing even large sets of examples. Section 4 will report on

extensive experiments in one arti�cial domain and in a few natural domains.

Section 5 discusses open problems and further research directions.

2 An MDL Measure for Discretized Attributes

The basic assumption used here is as follows. If some discretization was syn-

thesized taking class information into account, then such a discretization of a

single attribute can be viewed as a { rather crude and approximate { set of rules

classifying examples. To classify new examples determine the interval that covers

the example's respective attribute value and just return that interval's majority

class.

Adopting this interpretation we can straightforwardly use the so-called

Minimum Description Length (MDL) principle to assign a numerical measure

of quality to any single discretization. We only need to adapt one of the

known MDL schemas applicable to e.g. decision trees [Quinlan & Rivest 89,

Wallace & Patrick 93, Forsyth 93] or propositional rule sets [Pfahringer 95].

To motivate the formulas introduced below, a short introduction to the generic

MDL principle seems appropriate. The MDL principle tries to measures both the

simplicity and the accuracy of a particular theory in a common currency, namely

in terms of the number of bits needed for encoding theory and data. A very good

introduction to MDL and also its close relation to Bayesian theory can be found

in [Cheeseman 90].

We de�ne the cost (bit size) of a discretization as follows (for the sake of

simplicity we restrict ourselves to two-class problems, but all formulas can be

straightforwardly generalized to multi-class problems, or alternatively multi-class

problems can also be cast as two-class problems [Dietterich & Bakiri 95]):

cost(Disc) = cost(DiscDef) + cost(Examples) (1)

cost(DiscDef) = cost(Split) + cost(MajorityClasses) (2)

cost(Split) = cost(choose(UsedSplits; PossibleSplits)) (3)

cost(MajorityClasses) = cost(choose(Positive; Intervals)) (4)
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cost(Examples) = �cost(Examples=Interval

i

) (5)

cost(Examples=Interval

i

) = cost(choose(Ex

Majority

i

; Ex

Int

i

)) (6)

cost(choose(E;N)) = N � entropy(E;N) (7)

entropy(E;N) = �(plog(E=N) + plog(1 � E=N)) (8)

plog(P ) = P � log(P ) (9)

So total cost (1) is the sum of the cost for de�ning the discretization (the

model) and of the cost for encoding example classes with the use of the dis-

cretization (encoding the data in terms of the model).

A discretization (2) is de�ned by the list of split-points and the majority class

for each interval. The cost for de�ning the split-points (3) can be estimated as

the cost of encoding which split-points are actually used out of all possible split-

points. Analogously we can estimate the cost for encoding majority classes (4)

of each interval by judging the cost of encoding which of all the intervals have

positive (remember we assume two-class problems) as their majority class.

The cost for encoding classi�cation of examples (5) is the sum over all intervals

of the cost of encoding examples with respect to their interval's majority class.

For each interval we encode which examples agree with the classi�cation assigned

by the interval (6).

For estimating the cost of encoding the selection of E elements out of N pos-

sible elements two formulas are available from information theory. One is the

so-called Hu�man coding using variable-length strings for encoding messages of

di�ering prior probabilities. The other one is the so-called arithmetic coding (as

used e.g. in [Quinlan & Rivest 89]), which yields slightly smaller (i.e. better)

estimates. Still we use Hu�man coding here for practical reasons: we found no

signi�cant di�erences between the two possibilities with respect to size or accu-

racy of induced theories. But Hu�man coding estimates can be computed much

more e�ciently (only 2 logarithms need to be computed versus 2�E logarithms).

Formulas 7 to 9 de�ne the cost for the selection of E elements (split-points, posi-

tive classi�cations, or examples agreeing with the majority class of their respective

interval) out of N possible elements based on Hu�man coding.

Note that this formula for computing bitcost for a discretization is perfectly

symmetric (exchanging \+" and \{" classes yields exactly the same formula) and

that this formula can be generalized to multi-class problems in a straightforward

way.

Now according to the MDL principle the one attribute discretization which

minimizes the above cost-function, i.e. the one with the smallest bitcost (also-

called the most compressive theory) is the most probable theory given the class

distribution of the training examples.
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3 Algorithmic Usage: MDL-Disc

Discretization of continuous attributes can be a very costly endeavor. In the worst

case, if there is always one positive example between two negative examples and

vice versa, N training examples can de�ne N � 1 split-points. As any subset

of the set of possible split-points forms a valid discretization, there exist 2

N�1

di�erent discretizations in principle. So enumerating all discretizations and just

choosing the one with minimal MDL cost is clearly out of the question.

Searching the space of all split-point combinations with either hill-climbing

or best-�rst search proved also impractical in initial experiments when dealing

with lots of examples involving hundreds or thousands of possible split-points.

With regard to e�ciency nothing is gained if the preprocessing step itself takes

more time than the induction algorithm directly applied to the raw data. But

luckily most of the possible split-points are bad split-points anyway that lead to

inferior discretizations. So one can choose a heuristic method for selecting a sub-

set of promising split-points. This subset then can be searched more thoroughly

without incurring too much runtime cost.

Any of the above mentioned class-driven discretization algorithms could be

chosen for such a heuristic pre-selection of split-points, especially as they all

tend to produce too �ne a discretization. For e�ciency reasons we employ a

simpli�ed version of D-2 [Catlett 91], as it is the only top-down method. The

other three methods basically all merge intervals bottom-up, starting from the

smallest possible intervals. Therefore their complexity is O(N

2

) for N being the

total number of possible split-points. Contrary, if we limit D-2 to a �xed depth

D, its complexity is only O(N).

3

The original D-2 recursively splits the training examples using the info-gain

heuristic of ID3 (or its successorC4.5 [Quinlan 93]) until one of a set of prede�ned

stopping criteria is ful�lled. Our simpli�cation replaces this set of criteria by a

simple depth limit. For all experiments reported here we used D = 5 which

leads to the selection of at most 31 split-points (2

5

� 1). The conjecture that

this is a reasonable �ne-grained limit is supported by the experimental results

reported below. The original D-2 had 7 as the approximate limit for the number

of split-points as one of its stopping criteria.

The set of promising split-points returned by D-2 then de�nes the space for a

best-�rst search that tries to �nd the best discretization according to the MDL

estimate de�ned in the last section. Typically this search results in a discretiza-

tion using only very few split-points which are most of the time in accordance

with the correct discretization where such a discretization is known at all.

The use of the MDL estimate e�ectively solves problem 1 of class-sensitive

discretization methods: due to the global nature of the MDL estimate most co-

3

We neglect the e�ort of sorting the attribute values �rst, which is of course O(N � log(N ))

for N being the total number of training examples.
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incidental split-points, that local methods would keep, are discarded. Problem

2 is also partially solved. Whereas local methods cannot even recognize such

possibly problematic attributes, the MDL measure reliably identi�es attributes

that are either unrelated or second-order related : the result of discretization is

one large interval covering all training examples! This means that their is no

signi�cant correlation between this single attribute and the classi�cation. Un-

fortunately there is no simple way to decide between the two cases, only costly

search involving other attributes could uncover second-order correlations. Obvi-

ously such a search would to some degree duplicate the e�orts of the induction

algorithm proper. There are at least three di�erent alternative ways of handling

such attributes:

1. Drop the attribute: This would be sensible if the attribute is truly irrel-

evant. But it is also unsafe, as we might drop an essential second-order

related attribute.

2. Keep the raw attribute: This is safe but ine�cient. When dealing with

lots of training examples, even one non-discretized attribute can double

induction runtimes.

3. Use a class-blind method: As class-membership does not seem to convey

useful information for discretizing the respective attribute, using a class-

blind method will produce at least a reasonable discretization.

As our aims are both accuracy and e�ciency, we choose alternative 3 for our

discretization method MDL-Disc. Speci�cally we use a slight modi�cation of

the equal-frequency method . The number of intervals is automatically chosen by

the algorithm depending on the total number of possible split-points with an

upper limit of 30. This is a kind of compromise between e�ciency considerations

(have as few intervals as necessary) and provisions for reasonable �ne-grainedness

(have enough intervals so that the induction algorithm is able to detect potential

second-order correlations at all).

To summarize,MDL-Disc is a two-step discretization method. First a sub-

set of promising split-points is heuristically determined by an e�cient top-down

procedure. Second this set is searched thoroughly by a best-�rst search for the

most compressive discretization possible according to the MDL estimate de�ned

in the previous section. Special provisions (escape to a class-blind method) are

made for the degenerate case of a resulting discretization of just a single interval.

4 Experiments and Empirical Results

For empirical testing of MDL-Disc we have coupled it with C4.5 [Quinlan 93],

a well-known induction algorithm for decision trees. According to our aims for
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MDL-Disc (e�ciency, accuracy, and intelligibility) we report for all experiments

average C4.5 runtimes, average error rates on unseen examples, and the average

number of nodes of the resulting decision trees. For comparison we give �gures

for C4.5 using the raw data, for C4.5 using data discretized by our simpli�ed

version of D-2

4

, and for C4.5 using data discretized by MDL-Disc. All results

reported are averages of ten runs each using di�erent random samples for learning;

we give the mean value and the standard deviation. Regarding the cost of the

preprocessing step itself, we note that MDL-Disc's runtimes are typically less

than twice the runtimes of D-2. For large training sets the total runtime of

MDL-Disc combined with C4.5 can be more than 10 times better than the

runtime of C4.5 alone.

All the domains used in this empirical evaluation are 2-class problems (but see

above comments regarding N-class problems). The main test-bed is a simple arti-

�cial domain introduced by [Catlett 91]. Its arti�cial nature allows for extensive

experiments with various sizes of training sets and levels of class noise. Addition-

ally we also performed some experiments with so-called natural domains mostly

available from the UC Irvine Machine Learning Repository [Murphy & Aha 94].

5

These experiments also support our claims, but to a lesser degree, as these

databases tend to be rather small.

4.1 An Arti�cial Domain

[Catlett 91] introduces the arti�cial Demon domain as a kind of worst case sce-

nario. Every example has three continuous attributes A1, A2, and A3 drawn

randomly from the interval [0; 1). A1 acts as a kind of switch (and as such A1 is

not directly correlated to an example's class). An example belongs to class \+",

if the following expression holds:

(A1 < 0:5 ^A2 < 0:8 ^A3 > 0:2) _ (A1 > 0:5 ^A2 > 0:2 ^A3 < 0:8)

We have done experiments for training set sizes between 100 and 50000 and

class noise levels of 0%, 10% and 20%. N% class noise means that the class-label

of N% of the training examples is switched from \+" to \{" or vice versa. Tables

1, 2, and 3 give average runtimes, average predictive error, and average decision

tree sizes measured in number of nodes for all experiments respectively.

4

Such a comparison might seem unfair, as the original D-2 used a more sophisticated set

of explicit stopping criteria: don't split small example sets, have a tight limit for the maximal

number of split-points, stop if all split-points yield equal gain, and don't split pure intervals.

But some of the conditions are implicitly present in our simpli�ed version anyway (e.g. splits

must yield non-zero gain, therefore pure intervals will not be split, etc.). The only signi�cant

di�erence seems to be the larger upper limit of 31 instead of only 7 for the total number of

split-points.

5

Exceptions are the Thallium Scan domain which comes from a local clin-

ics, and the Heart domain which is available from the StatLog project (URL =

ftp://ftp.ncc.up.pt/pub/statlog/).
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We can see that MDL-Disc clearly outperforms C4.5 in terms of runtime,

the ratio varies between 1.5 and more than 30. C4.5's runtime increases sharply

for large numbers of noisy examples. But this higher runtime does not lead to

any better results: the predictive error rate of MDL-Disc is never signi�cantly

(according to a t-test) worse than that of C4.5 on the raw data. For small and

medium sized noisy training sets MDL-Disc can even be signi�cantly better.

Also the average tree size clearly favors the usage of MDL-discretized data over

raw data. In the extreme case we get 20 versus almost 700 nodes on average. It is

also interesting to see that the number of nodes remains constant (even slightly

decreases) when going from medium to large training sets for MDL-Disc.

The bad results ofD-2 in this domain are not surprising. Even for the original

D-2 reported results are signi�cantly worse compared to using just raw data

[Catlett 91]. Allowing for a more �ne-grained discretization does not seem to

solve the basic problem: discretizations for the switch attribute A1 tend to be

poor. The search is misled by small localized random perturbations of an ideally

equal class distribution. AsMDL-Disc is able to identify such switch attributes

reliably even in the presence of noise, and as it has a heuristic means for dealing

with such attributes, MDL-Disc can perform considerably better than D-2 in

this domain.

4.2 Natural Domains

The natural domains we have chosen either use only continuous attributes or some

combination of nominal and continuous attributes. All these databases consist

of only a few hundred examples. Table 4 summarizes relevant characteristics

of these databases. Average results (runtime, error, and size) of ten test runs

randomly using two thirds of the examples for training and the remaining third

for testing are given in table 5.

We see that the results are not as pronounced as for the arti�cial domain (a

fact that we attribute to the rather small number of examples in these domains),

but we can notice the same trends when comparing raw C4.5 toMDL-Disc: for

the credit-app runtime is 50% better and trees are half as big; in the diabetes

domain runtime and tree size are reduced to a half, furthermore the error rate is

signi�cantly (t-test level 95%) better; for both heart and liver disorder the

tree size is signi�cantly smaller; and for ionosphere the runtime is reduced to

50%. Only for thallium scan there is no signi�cant di�erence in any measure.

This might be explainable by the abundance of attributes in this smallest of all

domains, which leads to a higher probability of incidental correlations.

When comparingMDL-Disc to simpleD-2 in these natural domains, we no-

tice equal runtimes, slightly better predictive error rates and signi�cantly smaller

trees resulting from MDL-Disc. We conclude that MDL-Disc is able to im-

prove discretizations computed by D-2 for two reasons. The global nature of the

MDL evaluation allows for the formation of large intervals, which sometimes even

7



cover several neighboring subtrees of D-2's original search tree. The MDL eval-

uation also allows for the reliable identi�cation of possibly second-order related

attributes. Such attributes are discretized in a class-blind manner byMDL-Disc.

To summarize, MDL-Disc empirically performs at least as well as C4.5

applied directly to the raw data in terms of predictive error. Especially in the

presence of noise MDL-Disc can outperform C4.5 signi�cantly. This is a direct

consequence of the MDL principle that e�ectly distinguishes between true and

chance regularities given enough data. Up to tenfold improvement can be found

for both runtime and �nal tree size. Once again improvements are especially

strong for large and noisy training sets.

5 Conclusions and Further Research

We have de�ned an MDL measure for globally evaluating discretizations of con-

tinuous attributes. This new measure is information-theoretically plausible in

the way it encodes discretizations and the training examples in terms of the

discretizations. The MDL-Disc algorithm using the new measure yields good

results in the experiments reported above.

Further research will have to compare MDL-Disc to bottom-up methods

discussed in the introduction in terms of e�ciency, accuracy, and intelligibility.

Preliminary experiments suggest these methods will be inferior regarding both

runtime and intelligibility.

A further open question is whether resorting to class-blind methods is really

the best solution for attributes that are not directly correlated to classi�cation

outcome. Maybe feature subset selection algorithms could help determining truly

irrelevant attributes.

Furthermore it might be possible to adapt the de�ned MDL measure for clus-

tering nominal attributes with a large number of possible values into a few useful

subsets. MDL-Disc could also be applied recursively to single intervals/subsets

of the global discretization. This would yield a hierarchy of interval/subset ap-

proximations for a given attribute. Such hierarchies could be used by induction

methods that handle hierarchically de�ned attributes. It might prove valuable to

add this capability to decision tree inducers like C4.5: large training sets could

probably be handled much more e�ciently with hopefully even improved error

rates.
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Size Method 0% Noise 10% Noise 20% Noise

100 C4.5 1.6�0.4 1.5�0.0 1.5�0.1

D-2 0.9�0.0 0.9�0.1 0.9�0.0

MDL 0.9�0.0 0.9�0.0 0.9�0.0

250 C4.5 1.7�0.1 1.8�0.1 1.9�0.1

D-2 1.0�0.0 1.0�0.0 1.0�0.0

MDL 0.9�0.0 0.9�0.0 1.0�0.0

500 C4.5 2.0�0.1 2.4�0.3 2.5�0.1

D-2 1.1�0.1 1.1�0.2 1.1�0.0

MDL 1.1�0.2 1.1�0.1 1.2�0.1

1000 C4.5 2.7�0.2 3.7�0.1 4.3�0.3

D-2 1.3�0.1 1.5�0.1 1.6�0.3

MDL 1.2�0.2 1.5�0.0 1.5�0.1

2500 C4.5 4.3�0.2 8.3�0.3 10.3�0.5

D-2 1.8�0.1 2.2�0.2 2.3�0.3

MDL 1.6�0.1 2.6�0.4 2.6�0.1

5000 C4.5 7.9�0.2 20.5�1.1 26.1�1.2

D-2 3.1�0.2 4.1�0.7 4.0�0.4

MDL 2.5�0.2 4.5�0.1 4.8�0.2

10000 C4.5 15.4�1.0 62.0�0.5 75.9�0.5

D-2 5.5�0.9 8.2�0.8 8.7�0.2

MDL 4.1�0.2 8.8�0.2 8.7�0.2

25000 C4.5 38.6�1.2 405.4�7.3 488.9�22.7

D-2 17.0�2.7 20.3�2.8 20.4�5.8

MDL 11.3�0.9 30.1�4.1 26.0�0.3

50000 C4.5 75.9�5.7 1507.6�42.1 2063.7�100.9

D-2 31.2�0.9 45.3�8.1 40.9�2.3

MDL 24.2�2.8 58.8�1.5 59.4�0.6

Table 1: Demon: Average runtimes (in seconds) and standard deviations C4.5

using the raw data, using data discretized by D-2 and using data discretized by

MDL-Disc, for various training set sizes and levels of class noise.
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Size Method 0% Noise 10% Noise 20% Noise

100 C4.5 11.4�3.8 21.1�5.3 27.7�6.1

D-2 17.8�5.9 25.6�6.7 30.9�8.0

MDL 14.6�4.5 21.8�4.3 25.6�4.8

250 C4.5 4.4�2.1 10.9�4.3 19.8�4.1

D-2 20.0�7.7 22.3�6.6 21.7�5.8

MDL 8.3�7.8 11.1�2.9 15.4�5.5

500 C4.5 1.8�0.9 4.7�1.8 17.5�3.9

D-2 12.6�11.1 16.5�10.5 19.7�7.9

MDL 2.3�1.4 5.4�2.4 10.4�4.0

1000 C4.5 1.1�0.4 3.7�2.0 11.6�3.0

D-2 13.5�8.1 15.8�9.9 19.5�8.9

MDL 1.7�0.7 1.8�0.8 4.4�2.8

2500 C4.5 0.3�0.2 1.0�0.5 8.0�1.0

D-2 12.7�11.1 17.0�11.1 12.7�8.6

MDL 0.9�0.5 0.8�0.4 1.6�0.6

5000 C4.5 0.1�0.1 0.7�0.3 7.2�2.0

D-2 20.2�4.7 10.6�7.2 15.7�7.2

MDL 0.5�0.3 0.8�0.3 1.0�0.4

10000 C4.5 0.1�0.1 0.3�0.2 4.1�0.8

D-2 13.0�9.8 12.8�8.3 15.8�10.7

MDL 0.2�0.0 0.7�0.5 0.5�0.2

25000 C4.5 0.1�0.1 0.1�0.0 1.8�1.0

D-2 17.3�10.5 11.5�8.6 23.3�6.2

MDL 0.2�0.2 0.5�0.1 0.2�0.2

50000 C4.5 0.0�0.0 0.1�0.1 1.0�0.4

D-2 19.0�4.3 14.1�2.1 21.5�3.5

MDL 0.1�0.0 0.1�0.1 0.1�0.1

Table 2: Demon: Average predictive errors (percentages) and standard deviations

for C4.5, D-2, and MDL-Disc, for various training set sizes and levels of class

noise.
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Size Method 0% Noise 10% Noise 20% Noise

100 C4.5 17�2 20�3 28�7

D-2 18�3 18�3 16�5

MDL 16�2 16�4 18�8

250 C4.5 21�2 33�10 47�14

D-2 28�5 26�6 24�6

MDL 18�3 20�3 26�8

500 C4.5 23�5 31�8 87�24

D-2 25�6 28�7 32�7

MDL 21�2 21�2 30�12

1000 C4.5 23�5 48�19 127�29

D-2 33�12 38�8 42�10

MDL 20�2 22�3 26�5

2500 C4.5 21�6 38�12 204�50

D-2 31�10 39�15 38�13

MDL 20�1 21�2 22�2

5000 C4.5 23�6 47�18 412�126

D-2 33�8 25�7 34�9

MDL 21�2 20�1 21�1

10000 C4.5 25�4 38�20 452�35

D-2 41�26 40�13 37�11

MDL 21�0 20�1 21�3

25000 C4.5 24�7 39�15 368�179

D-2 38�17 24�4 40�10

MDL 20�1 20�1 19�0

50000 C4.5 18�2 51�10 694�152

D-2 40�8 21�0 34�4

MDL 20�1 20�1 20�1

Table 3: Demon: Average tree sizes (number of nodes) and standard deviations

for C4.5, D-2, and MDL-Disc, for various training set sizes and levels of class

noise.
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Domain Examples Nominal Attrs Continuous Attrs Base Acc

Credit App (crx) 690 9 6 55.5

Diabetes 768 0 8 65.1

Heart 270 6 7 55.6

Ionosphere 351 0 34 64.1

Liver disorder 345 0 6 58.0

Thallium scan 160 0 45 65.0

Table 4: Characteristics of the various natural domains used. Baseline accuracy

(Base Acc) is the percentage of examples belonging to the majority (default)

class.

Domain Method Runtime Error Size

CRX C4.5 1.6�0.1 13.5�2.3 42�11

D-2 1.2�0.2 15.1�1.3 39�14

MDL 1.1�0.1 14.0�1.5 28�11

Diabetes C4.5 2.1�0.1 27.7�1.8 96�13

D-2 1.4�0.0 28.0�1.5 81�10

MDL 1.2�0.1 25.5�2.7 44�16

Heart C4.5 1.0�0.0 25.5�5.7 34�5

D-2 0.9�0.0 26.3�5.6 34�4

MDL 0.8�0.0 23.9�4.1 25�7

Ionosphere C4.5 3.7�0.2 10.6�1.3 22�3

D-2 1.4�0.0 11.0�2.4 18�4

MDL 1.4�0.1 10.9�2.8 20�5

Liver C4.5 1.0�0.1 37.3�4.1 55�12

D-2 0.9�0.0 36.3�3.2 49�8

MDL 0.8�0.0 36.0�4.1 34�8

Scan C4.5 1.4�0.2 24.6�6.2 19�3

D-2 1.1�0.0 22.1�6.4 19�3

MDL 1.0�0.0 22.1�6.5 18�4

Table 5: Results for various natural domains for C4.5, D-2, and MDL-Disc.

Runtimes are in seconds, predictive error are percentages, and size is the size if

the decision tree in number of nodes.
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