OFAI clp(Q,R) Manual

This Manual documents a Prolog implementation of clp(Q,R),
based on SICStus featuring extensible unification via
attributed variables.

Edition 1.3.3
December 1995

Christian Holzbaur christian@ai.univie.ac.at




Copyright © 1992,1993,1994,1995 OFAI

Austrian Research Institute for Artificial Intelligence (OFAI)
Schottengasse 3
A-1010 Vienna, Austria

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated

in a translation approved by the OFAL



Constraint Logic Programming over Rationals or Reals 1

Constraint Logic Programming over Rationals or Reals

Introduction

The clp(Q,R) system described in this document is an instance of the general Constraint Logic

Programming scheme introduced by [Jaffar & Michaylov 87].

The implementation is at least as complete as other existing clp(R) implementations: It solves
linear equations over rational or real valued variables, covers the lazy treatment of nonlinear equa-
tions, features a decision algorithm for linear inequalities that detects implied equations, removes
redundancies, performs projections (quantifier elimination), allows for linear dis-equations, and

provides for linear optimization.

The full clp(Q,R) distribution, including a stand-alone manual and an examples directory that
is possibly more up to date than the version in the SICStus Prolog distribution, is available from:

http://www.ai.univie.ac.at/clpqr/.

Referencing this Software

When referring to this implementation of clp(Q,R) in publications, you should use the following
reference:

Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09, 1995.

Acknowledgments

The development of this software was supported by the Austrian Fonds zur Foerderung der
Wissenschaftlichen Forschung under grant P9426-PHY. Financial support for the Austrian Research
Institute for Artificial Intelligence is provided by the Austrian Federal Ministry for Science and

Research.

We include a collection of examples that has been distributed with the Monash University
version of clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly permitted
by Roland Yap.



Constraint Logic Programming over Rationals or Reals 2

Solver Interface

Until rational numbers become first class citizens in SICStus Prolog, rational arithmetics has to
be emulated. Because of the emulation it is too expensive to support arithmetics with automatic
coercion between all sorts of numbers, like you find it in CommonLisp, for example.

You must choose whether you want to operate in the field of Q (Rationals) or R (Reals):

| ?- use_module(library(clpq)).
or

7- use_module(library(clpr)).

Notational Conventions

Throughout this chapter, the prompts clp(q) 7- and clp(r) ?- are used to differentiate be-
tween clp(Q) and clp(R) in exemplary interactions.

In general there are many ways to express the same linear relationship. This degree of freedom
is manifest in the fact that the printed manual and an actual interaction with the current version
of clp(Q,R) may show syntactically different answer constraints, despite the fact the same semantic
relationship is being expressed. There are means to control the presentation, see [Variable Or-
dering], page 12. The approximative nature of floating point numbers may also produce numerical
differences between the text in this manual and the actual results of cIp(R), for a given edition of
the software.

Solver Predicates

The solver interface for both Q and R consists of the following predicates which are exported
from module(linear).

{+Constraint}
Constraint is a term accepted by the the grammar below. The corresponding constraint
is added to the current constraint store and checked for satisfiability. If you want to
overload {}/1 with other solvers, you can avoid its importation via: use_module(clpq,
(1.

Constraint --> C
| C

, C conjunction



Constraint Logic Programming over Rationals or Reals 3

C --> Expr =:= Expr equation
| Expr = Expr equation
| Expr < Expr strict inequation
| Expr > Expr strict inequation
| Expr =< Expr nonstrict inequation
| Expr >= Expr nonstrict inequation
| Expr =\= Expr disequation
Expr --> variable Prolog variable
| number floating point or integer
| + Expr unary plus
| - Expr unary minus
| Expr + Expr addition
| Expr - Expr subtraction
| Expr * Expr multiplication
| Expr / Expr division
| abs(Expr) absolute value
| sin(Expr) trigonometric sine
| cos(Expr) trigonometric cosine
| tan(Expr) trigonometric tangent
| pow(Expr,Expr) raise to the power
| exp(Expr,Expr) raise to the power
| min(Expr,Expr) minimum of the two arguments
| max(Expr,Expr) maximum of the two arguments
| #(Const) symbolic numerical constants

Conjunctive constraints {C,C} have been made part of the syntax in order to en-
able grouped submission of constraints, which could be exploited by future versions of
this software. Symbolic numerical constants are provided for compatibility only, see
[Monash Examples], page 18.

entailed(+Constraint)
Succeeds iff the linear Constraint is entailed by the current constraint store. This
predicate does not change the state of the constraint store.
clp(q) 7- {A =< 4}, entailed(A=\=5).

{A=<4}
yes

clp(q) 7- {A =< 4}, entailed(A=\=3).

no

inf (+Expr, -Inf)
Computes the infimum of the linear expression Expr and unifies it with Inf. Failure

indicates unboundedness.

sup (+Expr, -Sup)
Computes the supremum of the linear expression Expr and unifies it with Sup. Failure
indicates unboundedness.
clp(q) 7- { 2%X+Y =< 16, X+2%¥ =< 11,
X+3*%Y =< 15, Z = 30*%xX+50*Y
}, sup(Z, Sup).

Sup = 310,
{Z=30%X+50%Y},
{X+1/2%Y=<8},



Constraint Logic Programming over Rationals or Reals 4

{X+3*%Y=<15},
{X+2*xY=<11}
minimize(+Expr)
Computes the infimum of the linear expression Expr and equates it with the expression,
i.e. as if defined as:
minimize(Expr) :- inf(Expr, Expr).
maximize (+Expr)
Computes the supremum of the linear expression Expr and equates it with the expres-
sion.

clp(q) 7- { 2*X+Y =< 16, X+2%Y =< 11,
X+3*%Y =< 15, Z = 30*%X+50%Y
}, maximize(Z).

X=1,
Y =2,
Z = 310

bb_inf (+Ints, +Expr, -Inf)
Computes the infimum of the linear expression Expr under the additional constraint
that all of variables in the list Ints assume integral values at the infimum. This allows
for the solution of mixed integer linear optimization problems, see [MIP], page 20.

ordering(+Spec)
Provides a means to control one aspect of the presentation of the answer constraints,

see [Variable Ordering], page 12.

Unification

Equality constraints are added to the store implicitly each time variables that have been men-

tioned in explicit constraints are bound - either to another such variable or to a number.

clp(r) 7- {2%A+3*B=C/2}, C=10.0, A=B.

A=
B =
C =

.0,
.0,
0.0

= e

Is equivalent modulo rounding errors to

clp(r) 7- {2*A+3%B=C/2, C=10, A=B}.

A=1.0,
B = 0.9999999999999999,
C =10.0

The shortcut bypassing the use of {}/1 is allowed and makes sense because the interpretation of
this equality in Prolog and clp(R) coincides. In general, equations involving interpreted functors,

+/2 in this case, must be fed to the solver explicitly:



Constraint Logic Programming over Rationals or Reals 5

clp(r) 7- X=3.0+1.0, X=4.0.

no

Further, variables known by clp(R) may be bound directly to floats only. Likewise, variables known
by clp(Q) may be bound directly to rational numbers only, see [Rationals], page 22. Failing to do

so is rewarded with an exception:

clp(q) 7- {2*A+3%B=C/2}, C=10.0, A=B.
{ERROR: not_normalized(10.0)}

This is because 10.0 is not a rational constant. To make clp(Q) happy you have to say:

clp(q) 7- {2*A+3*B=C/2}, C=rat(10,1), A=B.

A=1,
B=1,
C =10

If you use {}/1, you don’t have to worry about such details. Alternatively, you may use the

automatic expansion facility, check [Syntactic Sugar], page 17.

Feedback and Bindings

What was covered so far was how the user populates the constraint store. The other direction
of the information flow consists of the success and failure of the above predicates and the binding
of variables to numerical values and the aliasing of variables. Example:

clp(r) ?- {A-B+C=10, C=5+5}.

B =4,
C 10.0

The linear constraints imply A=B and the solver consequently exports this binding to the Prolog
world, which is manifest in the fact that the test A==B will succeed. More about answer presentation

in [Projection], page 11.

Linearity and Nonlinear Residues

The clp(Q,R) system is restricted to deal with linear constraints because the decision algorithms
for general nonlinear constraints are prohibitively expensive to run. If you need this functionality
badly, you should look into symbolic algebra packages. Although the clp(Q,R) system cannot
solve nonlinear constraints, it will collect them faithfully in the hope that through the addition of

further (linear) constraints they might get simple enough to solve eventually. If an answer contains



Constraint Logic Programming over Rationals or Reals 6

nonlinear constraints, you have to be aware of the fact that success is qualified modulo the existence

of a solution to the system of residual (nonlinear) constraints:

clp(r) ?- {sin(X) = cos(X)}.

nonlin:{sin(X)-cos(X)=0.0}

There are indeed infinitely many solutions to this constraint (X = 0.785398 + n*Pi), but
clp(Q,R) has no direct means to find and represent them.

The systems goes through some lengths to recognize linear expressions as such. The method is
based on a normal form for multivariate polynomials. In addition, some simple isolation axioms,
that can be used in equality constraints, have been added. The current major limitation of the

method is that full polynomial division has not been implemented. Examples:

This is an example where the isolation axioms are sufficient to determine the value of X.

clp(r) 7- {sin(cos(X)) = 1/2}.

X = 1.0197267436954502

If we change the equation into an inequation, clp(Q,R) gives up:

clp(r) 7- {sin(cos(X)) < 1/2}.

nonlin:{sin(cos(X))-0.5<0.0}

The following is easy again:

clp(r) ?- {sin(X+2+2)/sin(4+X) = Y}.

Y=1.0

And so is this:

clp(r) 7- {(X+V)*(Y+X)/X = Y*Y/X+99%}.

{Y=49.5-0.5*X}

An ancient symbol manipulation benchmark consists in rising the expression X+Y+Z+1 to the 15th

power:

clp(q) 7- {exp(X+Y+Z+1,15)=0}.
nonlin:{Z"15+Z"~14*%15+Z~13%105+Z" 12%455+Z~11%1365+Z~10%3003+. . .
. polynomial continues for a few pages ...

=O}



Constraint Logic Programming over Rationals or Reals 7

Computing its roots is another story.

How Nonlinear Residues are made to disappear

Binding variables that appear in nonlinear residues will reduce the complexity of the nonlinear

expressions and eventually results in linear expressions:
clp(q) 7- {exp(X+Y+1,2) = 3*X+kX+V*Y}.
nonlin:{Y*2-X"2%2+Y*X*2+X*2+1=0}

Equating X and Y collapses the expression completely and even determines the values of the two

variables:

clp(q) 7- {exp(X+Y+1,2) = 3*X*X+¥*Y}, X=Y.

X =-1/4,
Y =-1/4

Isolation Axioms

These axioms are used to rewrite equations such that the variable to be solved for is moved to
the left hand side and the result of the evaluation of the right hand side can be assigned to the
variable. This allows, for example, to use the exponentiation operator for the computation of roots

and logarithms, see below.

A=B*x C Residuates unless B or C is ground or A and B or C are ground.

A=B/C Residuates unless C is ground or A and B are ground.

X =min(Y,Z)
Residuates unless Y and Z are ground.
X = max(Y,Z)

Residuates unless Y and Z are ground.

X = abs(Y)
Residuates unless Y is ground.

X =pow(Y,Z2), X = exp(Y,2)
Residuates unless any pair of two of the three variables is ground. Example:

clp(r) 7- { 12=pow(2,X) }.
X = 3.5849625007211565

clp(r) ?- { 12=pow(X,3.585) }.



Constraint Logic Programming over Rationals or Reals 8

X = 1.9999854993443926
clp(r) 7- { X=pow(2,3.585) }.

X = 12.000311914286545

X = sin(Y)
Residuates unless X or Y is ground. Example:
clp(r) ?- { 1/2 = sin(X) }.
X = 0.5235987755982989
X = cos(Y)
Residuates unless X or Y is ground.
X = tan(Y)

Residuates unless X or Y is ground.

Numerical Precision and Rationals

The fact that you can switch between clp(R) and clp(Q) should solve most of your numerical
problems regarding precision. Within clp(Q), floating point constants will be coerced into rational
numbers automatically. Transcendental functions will be approximated with rationals. The preci-
sion of the approximation is limited by the floating point precision. These two provisions allow you
to switch between clp(R) and clp(Q) without having to change your programs.

What is to be kept in mind however is the fact that it may take quite big rationals to accommo-
date the required precision. High levels of precision are for example required if your linear program
is ill-conditioned, i.e., in a full rank system the determinant of the coefficient matrix is close to
zero. Another situation that may call for elevated levels of precision is when a linear optimization

problem requires exceedingly many pivot steps before the optimum is reached.

If your application approximates irrational numbers, you may be out of space particularly soon.
The following program implements N steps of Newton’s approximation for the square root function

at point 2.

h
% from file: library(’clpqr/examples/root’)
h
root(N, R) :-
root(N, 1, R).

root(0, S, R) :- !, S=R.
root(N, S, R) :-
N1 is N-1,
{81 =258/2+1/3},
root(N1, S1, R).



Constraint Logic Programming over Rationals or Reals 9

It is known that this approximation converges quadratically, which means that the number of correct
digits in the decimal expansion roughly doubles with each iteration. Therefore the numerator and

denominator of the rational approximation have to grow likewise:

clp(q) ?- use_module(library(’clpqr/examples/root’)).

clp(q) ?- root(3,R),print_decimal(R,70).

1.4142156862 7450980392 1568627450 9803921568 6274509803 9215686274
5098039215

R = B77/408

clp(q) ?- root(4,R),print_decimal(R,70).
1.4142135623 7468991062 6295578890 1349101165 5962211574 4044584905
0192000543

R = 665857/470832

clp(q) ?- root(5,R),print_decimal(R,70).
1.4142135623 7309504880 1689623502 5302436149 8192577619 7428498289
4986231958

R = 886731088897/627013566048

clp(q) ?- root(6,R),print_decimal(R,70).
1.4142135623 7309504880 1688724209 6980785696 7187537723 4001561013
1331132652

R = 1572584048032918633353217/1111984844349868137938112

clp(q) ?- root(7,R),print_decimal(R,70).
1.4142135623 7309504880 1688724209 6980785696 7187537694 8073176679
7379907324

R = 4946041176255201878775086487573351061418968498177 /
3497379255757941172020851852070562919437264212608

Iterating for 8 steps produces no further change in the first 70 decimal digits of sqrt(2). After
15 steps the approximating rational number has a numerator and a denominator with 12543 digits

each, and the next step runs out of memory.

Another irrational number that is easily computed is e. The following program implements an

alternating series for 1/e, where the absolute value of last term is an upper bound on the error.

A

% from file: library(’clpqr/examples/root’)

A

e(N, E) :-
{ Err =:= exp(10,-(N+2)), Half =:= 1/2 },
inv_e_series(Half, Half, 3, Err, Inv_E),
{E =:=1/Inv_E }.

inv_e_series(Term, SO, _, Err, Sum) :-
{ abs(Term) =< Err }, !,
SO = Sum.



Constraint Logic Programming over Rationals or Reals

inv_e_series(Term, SO, N, Err, Sum) :-
N1 is N+1,
{ Terml =:= -Term/N, S1 =:= Terml1+SO },
inv_e_series(Termi, S1, N1, Err, Sum).

The computation of the rational number E that approximates e up to at least 1000 digits in
its decimal expansion requires the evaluation of 450 terms of the series, i.e. 450 calls of inv_e_
series/5.

clp(q) ?- e(1000,E).

E = 71490562289232760213666809592072842334290744221392610955845565494
3708750229467761730471738895197792271346623089326102132000338192
01318741878339854209226888042201678403191929699494193852403223700
58538327415441916287470521364021769419638255435659200589161585723
4023097417605004829991929283045372355639145644588174733401360176
9953973706537274133283614740902771561159913069917833820285608440
3104966899999651928637634656418269027076629082888742481392304807
9484725489080844360397606199771786024695620205344042765860581379
3538290451208322129898069978107971226873160872046731879753034549
3130492167474809196348846916421782850086985668680640425192038155
4902863298351349469211627292865440876581064873866786120098602898
8799130098877372097360065934827751120659213470528723143805203554
7928682131082164366007016698761261066948371407368962539467994627
1374858249110795976398595034606994740186040425117101588480000000
0000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000
/
2629990810403002651095959155503002285441272170673105334466808931
6863103901346024240326549035084528682487048064823380723787110941
6809235187356318780972302796570251102928552003708556939314795678
1978390674393498540663747334079841518303636625888963910391440709
0887345797303470959207883316838346973393937778363411195624313553
8835644822353659840936818391050630360633734935381528275392050975
7271468992840207541350345459011192466892177866882264242860412188
06521127446424504046257630196390869445588929249788084559753723892
1643188991444945360726899532023542969572584363761073528841147012
2634218045463494055807073778490814692996517359952229262198396182
1838930043528583109973872348123806830382584040536394640895148751
0766256738740729894909630785260101721285704616818889741995949666
6303289703199393801976334974240815397920213059799071915067856758
6716458821062645562512745336709063396510021681900076680696945309
3660590933279867736747926648678738515702777431353845466199680991
73361873421152165477774911660108200059

The decimal expansion itself looks like this:

clp(q) ?- (1000, E), print_decimal(E, 1000).

2.

7182818284 5904523536 0287471352 6624977572 4709369995 9574966967
6277240766 3035354759 4571382178 5251664274 2746639193 2003059921
8174135966 2904357290 0334295260 5956307381 3232862794 3490763233
8298807531 9525101901 1573834187 9307021540 8914993488 4167509244
7614606680 8226480016 8477411853 7423454424 3710753907 7744992069
5517027618 3860626133 1384583000 7520449338 2656029760 6737113200



7093287091
4637721112
9316368892
6680331825
3012381970
7825098194
5988885193
4841984443
3043699418
7683964243
1718986106

2744374704
5238978442
3009879312
2886939849
6841614039
5681530175
4580727386
6346324496
4914631409
7814059271
8739696552

7230696977
5056953696
7736178215
6465105820
7019837679
6717361332
6738589422
8487560233
3431738143
4563549061
1267154688

Constraint Logic Programming over Rationals or Reals

2093101416
7707854499
4249992295
9392398294
3206832823
0698112509
8792284998
6248270419
6405462531
3031072085
9570350354

9283681902
6996794686
7635148220
8879332036
7646480429
9618188159
9208680582
7862320900
5209618369
1038375051

55615108657
4454905987
8269895193
2509443117
5311802328
3041690351
57492792610
2160990235
0888707016
0115747704

Projection and Redundancy Elimination

Once a derivation succeeds, the Prolog system presents the bindings for the variables in the
query. In a CLP system, the set of answer constraints is presented in analogy. A complication in
the CLP context are variables and associated constraints that were not mentioned in the query. A

motivating example is the familiar mortgage relation:

h
% from file: library(’clpqr/examples/mg’)
h
mg(P,T,I,B,MP):-
{
T=1,
B+ MP =P x (1+1I)
}.
mg(P,T,I,B,MP):-
{
T>1,
P1 =P % (1 + I) - MP,
T1 =T -1
}’
mg(P1, T1, I, B, MP).

A sample query yields:

clp(r) ?- use_module(library(’clpqr/examples/mg’)).
clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

Without projection of the answer constraints onto the query variables we would observe the

following interaction:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=12.682503013196973*%_A-11.682503013196971%P},
{Mp= -(_A)+1.01%P},
{_B=2.01%_A-1.01%P},



Constraint Logic Programming over Rationals or Reals

{_C=3.0301%_A-2.0301%P},
{_D=4.060401000000001%_A-3.0604009999999997*P},
{_E=5.101005010000001%_A-4.10100501%P},
{_F=6.152015060100001*_A-5.152015060099999*P}
{_G=7.213535210701001%_A-6.213535210700999*P},
{_H=8.285670562808011*_A-7.285670562808009*P},
{_I=9.368527268436091%_A-8.36852726843609*P},
{_J=10.462212541120453*%_A-9.46221254112045%P},
{_K=11.566834666531657*_A-10.566834666531655%P}

The variables _A ... _K are not part of the query, they originate from the mortgage program
proper. Although the latter answer is equivalent to the former in terms of linear algebra, most
users would prefer the former.

Variable Ordering

In general, there are many ways to express the same linear relationship between variables.
clp(Q,R) does not care to distinguish between them, but the user might. The predicate
ordering(+Spec) gives you some control over the variable ordering. Suppose that instead of
B, you want Mp to be the defined variable:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

This is achieved with:

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp]l).

{Mp= -0.0788487886783417+B+0.08884878867834171%P}

One could go one step further and require P to appear before (to the left of) B in a addition:

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp,P]).

{Mp=0.08884878867834171*P-0.0788487886783417*B}

Spec in ordering(+Spec) is either a list of variables with the intended ordering, or of the
form A<B. The latter form means that A goes to the left of B. In fact, ordering([A,B,C,D]) is
shorthand for:

ordering(A < B), ordering(A < C), ordering(A < D),
ordering(B < C), ordering(B < D),
ordering(C < D)



Constraint Logic Programming over Rationals or Reals

The ordering specification only affects the final presentation of the constraints. For all other
operations of clp(Q,R), the ordering is immaterial. Note that ordering/1 acts like a constraint:
you can put it anywhere in the computation, and you can submit multiple specifications.

clp(r) ?- ordering(B < Mp), mg(P,12,0.01,B,NMp).
{B= -12.682503013196973*Mp+1.1268250301319698*P}

yes
clp(r) ?- ordering(B < Mp), mg(P,12,0.01,B,Mp), ordering(P < Mp).

{P=0.8874492252651537+B+11.255077473484631*Mp}

Turning Answers into Terms

In meta-programming applications one needs to get a grip on the results computed by the
clp(Q,R) solver. The SISCtus Prolog predicate call_residue/2 provides this functionality:

clp(r) ?- call_residue({2*A+B+C=10,C-D=E,A<10}, Constraints).

Constraints = [
[AT-{A<10.03},
[B]-{B=10.0-2.0%A-C},
[D]-{D=C-E}

Projecting Inequalities

As soon as linear inequations are involved, projection gets more demanding complexity wise.
The current clp(Q,R) version uses a Fourier-Motzkin algorithm for the projection of linear inequal-
ities. The choice of a suitable algorithm is somewhat dependent on the number of variables to be
eliminated, the total number of variables, and other factors. It is quite easy to produce problems
of moderate size where the elimination step takes some time. For example, when the dimension
of the projection is 1, you might be better off computing the supremum and the infimum of the
remaining variable instead of eliminating n-1 variables via implicit projection.

In order to make answers as concise as possible, redundant constraints are removed by the
system as well. In the following set of inequalities, half of them are redundant.

h
% from file: library(’clpqr/examples/elimination’)

b



Constraint Logic Programming over Rationals or Reals

example(2, [X0,X1,X2,X3,X4]) :-

{
+87%xX0 +52%X1 +27*X2 -54xX3 +56%X4 =< -93,
+33%X0 -10%X1 +61%X2 -28%X3 -29*%X4 =< 63,
-68*X0 +8%X1 +35%X2 +68*X3 +35%X4 =< -85,
+90%X0 +60*X1 -76%X2 -53%X3 +24%xX4 =< -68,
-95*%X0 -10%X1 +64xX2 +76%X3 -24*X4 =< 33,
+43%xX0 -22%X1 +67*X2 -68%X3 -92%xX4 =< -97,
+39%X0 +7%X1 +62%X2 +54x%X3 -26%X4 =< -27,
+48%X0 -13%X1 +7*%X2 -61%X3 -59%X4 =< -2,
+49%X0 -23*X1 -31%X2 -76xX3 +27*X4 =< 3,
-50%X0 +58x%X1 -1%X2 +57*X3 +20%xX4 =< 6,
-13*%X0 -63*X1 +81%X2 -3*%X3 +70xX4 =< 64,
+20%X0  +67*X1 -23%X2 -41%xX3 -66%X4 =< 52,
-81*%X0 -44xX1 +19%X2 -22%xX3 -73*X4 =< -17,
-43*X0 -9%X1 +14xX2 +27%X3 +40%X4 =< 39,
+16%X0 +83%X1 +89%X2 +25xX3 +55*%X4 =< 36,
+2xX0 +40%X1 +65%X2 +59%X3 -32%X4 =< 13,
-65%X0 -11%X1 +10*X2 -13%X3 +91%X4 =< 49,
+93%X0 -73*X1 +91x%X2 -1%X3 +23%X4 =< -87
}.

Consequently, the answer consists of the system of nine non-redundant inequalities only:

clp(q) 7- use_module(library(’clpqr/examples/elimination’)).
clp(q) 7- example(2, [X0,X1,X2,X3,X4]).

{X0-2/17%X1-35/68%X2-X3-35/68*X4>=5/4},
{X0-73/93%X1+91/93%X2-1/93%X3+23/93%X4=<-29/31},
{X0-29/25%X1+1/50%X2-57/50%X3-2/5%xX4>=-3/25},
{X0+7/39%X1+62/39*%X2+18/13%X3-2/3%X4=<-9/13},
{X0+2/19%X1-64/95%X2-4/5+X3+24/95*X4>=-33/95},
{X0+2/3%X1-38/45%X2-53/90%X3+4/15%X4=<-34/45},
{X0-23/49%X1-31/49%X2-76/49%X3+27/49%X4=<3/49},
{X0+44/81%X1-19/81%X2+22/81*%X3+73/81%X4>=17/81},
{X0+9/43%X1-14/43%X2-27/43%X3-40/43%X4>=-39/43}

The projection (the shadow) of this polyhedral set into the X0,X1 space can be computed via
the implicit elimination of non-query variables:

clp(q) 7- example(2, [X0,X1]|_]1).

{X0+2619277/17854273*xX1>=-851123/17854273%},
{X0+6429953/16575801%X1=<-12749681/16575801},
{X0+19130/1213083%X1>=795400/404361},
{X0-1251619/3956679*X1>=21101146/3956679},
{X0+601502/4257189%X1>=220850/473021%}

Projection is quite a powerful concept that leads to surprisingly terse executable specifications of
nontrivial problems like the computation of the convex hull from a set of points in an n-dimensional
space: Given the program

b



Constraint Logic Programming over Rationals or Reals

% from file: library(’clpqr/examples/elimination’)
h
conv_hull(Points, Xs) :-

lin_comb(Points, Lambdas, Zero, Xs),

zero(Zero),

polytope(Lambdas).

polytope(Xs) :-
positive_sum(Xs, 1).

positive_sum([], Z) :- {Z=0}.

positive_sum([X|Xs], SumX) :-
{ X >= 0, SumX = X+Sum 7,
positive_sum(Xs, Sum).

zero([]).
zero([Z|Zs]) :- {Z=0}, zero(Zs).

lin_comb([], 1, S1, S1).

lin_comb([Ps|Rest], [KI|Ks], S1, S3) :-
lin_comb_r(Ps, K, S1, S2),
lin_comb(Rest, Ks, S2, S3).

lin_comb_r{[], _, U, 1.
lin_comb_r([P|Ps], K, [S|Ss], [Kpsl|Ssi]) :-
{ Kps = K*P+S 1},
lin_comb_r(Ps, K, Ss, Ssi).

we can post the following query:

clp(q) ?- conv_hull([ [1,1], [2,0], [3,0], [1,2], [2,2] ], [X,YD]).

{Y=<2},
{X+1/2*%¥=<3},
{X>=1%},
{Y>=0%},
{X+Y>=2}

This answer is easily verified graphically:

2 - * *
|
|
1 - *
|
|
0 ----- [ ===k k-



Constraint Logic Programming over Rationals or Reals

The convex hull program directly corresponds to the mathematical definition of the convex
hull. What does the trick in operational terms is the implicit elimination of the Lambdas from
the program formulation. Please note that this program does not limit the number of points or
the dimension of the space they are from. Please note further that quantifier elimination is a
computationally expensive operation and therefore this program is only useful as a benchmark for

the projector and not so for the intended purpose.

Why Disequations

A beautiful example of disequations at work is due to [Colmerauer 90]. It addresses the task of
tiling a rectangle with squares of all-different, a priori unknown sizes. Here is a translation of the
original Prolog-III program to clp(Q,R):

h

% from file: library(’clpqr/examples/squares’)
h

filled_rectangle(A, C) :-

{a>=113,
distinct_squares(C),
filled_zone([-1,4,11, _, C, [1).

distinct_squares([]).
distinct_squares([B|C]) :-
{B>01},
outof(C, B),
distinct_squares(C).

outof ([], ).
outof ([B1|C], B) :-
{ B =\=B1 1}, % *** note disequation *x*x

outof(C, B).

filled_zone([VIL], [WIL], CO, CO) :-
{ V=W,V >= 0 }.

filled_zone([VIL], L3, [BIC], C2) :-
{v<o},
placed_square(B, L, L1),
filled_zone(L1l, L2, C, C1),
{ Vb=V+B 7},
filled_zone([Vb,BIL2], L3, C1, C2).

placed_square(B, [H,HO,H1|L], L1) :-
{ B > H, HO=0, H2=H+H1 },
placed_square(B, [H2|L], L1).

placed_square(B, [B,VIL], [X|L]) :-
{ X=V-B }.

placed_square(B, [HIL], [X,YIL]) :-
{B < H, X= -B, Y=H-B }.



Constraint Logic Programming over Rationals or Reals

There are no tilings with less than nine squares except the trivial one where the rectangle equals
the only square. There are eight solutions for nine squares. Six further solutions are rotations of
the first two.

clp(q) 7- use_module(library(’clpqr/examples/squares’)).
clp(q) ?- filled_rectangle(A, Squares).

A=1,

Squares = [1] 7 ;

A = 33/32,
Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] 7 ;

A = 69/61,
Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61]

Depending on your hardware, the above query may take a few minutes. Supplying the knowledge
about the minimal number of squares beforehand cuts the computation time by a factor of roughly
four:

clp(q) ?- length(Squares, 9), filled_rectangle(A, Squares).

A = 33/32,
Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] 7 ;

A = 69/61,
Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61]

Syntactic Sugar

There is a package that transforms programs and queries from a eval-quote variant of clp(Q,R)
into corresponding programs and queries in a quote-eval variant. Before you use it, you need to
know that in an eval-quote language, all symbols are interpreted unless explicitly quoted. This
means that interpreted terms cannot be manipulated syntactically directly. Meta-programming in
a CLP context by definition manipulates interpreted terms, therefore you need quote/1 (just as in
LISP) and some means to put syntactical terms back to their interpreted life: {}/1.

In a quote-eval language, meta-programming is (pragmatically) simpler because everything is
implicitly quoted until explicitly evaluated. On the other hand, now object programming suffers

from the dual inconvenience.

We chose to make our version of clp(Q,R) of the quote-eval type because this matches the
intended use of the already existing boolean solver of SICStus. In order to keep the users of the

eval-quote variant happy, we provide a source transformation package. It is activated via:



Constraint Logic Programming over Rationals or Reals

| ?- use_module(library(’clpqr/expand’)).

Loading the package puts you in a mode where the arithmetic functors like +/2, */2 and all

numbers (functors of arity 0) are interpreted semantically.

clp(r) 7- 2+2=X.

X=4.0

The package works by purifying programs and queries in the sense that all references to inter-
preted terms are made explicit. The above query is expanded prior to evaluation into:

linear:{2.0+2.0=X}

The same mechanism applies when interpreted terms are nested deeper:

some_predicate(10, £f(A+B/2), 2xcos(4))

Expands into:

linear:{Xc=2.0*xcos(A)},
linear:{Xb=A+B/2},
linear:{Xa=10.0},
some_predicate(Xa, £(Xb), Xc)

This process also applies when files are consulted or compiled. In fact, this is the only situation
where expansion can be applied with relative safety. To see this, consider what happens when
the toplevel evaluates the expansion, namely some calls to the clp(Q,R) solver, followed by the
call of the purified query. As we learned in [Feedback], page 5, the solver may bind variables,
which produces a goal with interpreted functors in it (numbers), which leads to another stage of
expansion, and so on.

We recommend that you only turn on expansion temporarily while consulting or compiling files

needing expansion with expand/0 and noexpand/0.

Monash Examples

This collection of examples has been distributed with the Monash University Version of clp(R)
[Heintze et al. 87], and its inclusion into this distribution was kindly permitted by Roland Yap.

In order to execute the examples, a small compatibility package has to be loaded first:

clp(r) ?- use_module(library(’clpqr/monash’)).



Constraint Logic Programming over Rationals or Reals

Then, assuming you are using clp(R):

clp(r) ?- expand, [library(’clpqr/examples/monash/rkf45°)],

noexpand.

clp(r) 7- go.

Point 0.00000 : 0.75000 0.00000
Point 0.50000 : 0.61969 0.47793
Point 1.00000 : 0.29417 0.81233
Point 1.50000 : -0.10556 0.95809
Point 2.00000 : -0.49076 0.93977
Point 2.50000 : -0.81440 0.79929
Point 3.00000 : -1.05440 0.57522

Iteration finished

439 derivative evaluations

Compatibility Notes

The Monash examples have been written for clp(R). Nevertheless, all but rkf45 complete nicely
in clp(Q). With rkf45, clp(Q) runs out of memory. This is an instance of the problem discussed
in [Numerical Precision], page 8.

The Monash University clp(R) interpreter features a dump/n predicate. It is used to print the
target variables according to the given ordering. Within this version of clp(Q,R), the corresponding
functionality is provided via ordering/1. The difference is that ordering/1 does only specify the
ordering of the variables and no printing is performed. We think Prolog has enough predicates
to perform output already. You can still run the examples referring to dump/n from the Prolog

toplevel:

clp(r) 7- expand, [library(’clpqr/examples/monash/mortgage’)], noexpand.

h go2

h
clp(r) ?- mg(P,120,0.01,0,MP), dump([P,MP]).
{P=69.7005220313972+MP}

% go3
A
clp(r) ?- mg(P,120,0.01,B,MP), dump([P,B,MP]).

{P=0.30299477968602706*B+69.7005220313972*MP}
h go4d

A

clp(r) ?- mg(999, 3, Int, O, 400), dump.

nonlin:{_B-_B*Int+_A+400.0=0.0},
nonlin:{_A-_A*Int+400.0=0.0},



Constraint Logic Programming over Rationals or Reals

{_B=599.0+999.0*Int}

A Mixed Integer Linear Optimization Example

In this section we are going to exercise our solver a little by the computation of a small mixed
integer optimization problem (MIP) from miplib, a collection of MIP models, housed at Rice

University. Here are the original comments on the example:

NAME: flugpl

ROWS: 18

COLUMNS: 18

INTEGER: 11

NONZERO: 46

BEST SOLN: 1201500 (opt)

LP SOLN: 1167185.73

SOURCE: Harvey M. Wagner
John W. Gregory (Cray Research)
E. Andrew Boyd (Rice University)

APPLICATION: airline model

COMMENTS : no integer variables are binary

b

% from file: library(’clpqr/examples/mip’)

b

example(flugpl, Obj, Vs, Ints, []) :-
Vs = [ Anml,Anm2,Anm3,Anm4,Anm5, Anmé,

Stml,Stm2,Stm3,Stm4,Stm5,Stmb,
UE1,UE2,UE3,UE4,UE5,UE6] ,

Ints =

0bj =

+ + 4+ + +

2700*Stm1
2700*Stm?2
2700*Stm3
2700*Stm4
2700*Stmb5
2700*Stmé

+ + + + + +

1500*Anm1
1500*Anm2
1500*Anm3
1500*Anm4
1500*Anmb
1500*Anm6

+
+
+
+
+
+

[Stm6, Stmb5, Stm4, Stm3, Stm2,
Anmé, Anm5, Anm4, Anm3, Anm2, Anmi],

30*xUE1
30*xUE2
30*xUE3
30xUE4
30*xUESL
30*UE6,



Constraint Logic Programming over Rationals or Reals

allpos(Vs),
{ Stml = 60, 0.9*%Stml +1*Anml -1*Stm2 = O,
0.9%Stm2 +1*%Anm2 -1*Stm3 = 0, 0.9*%Stm3 +1*%Anm3 -1*Stm4
0.9%Stm4 +1*%Anm4 -1*Stmb5 = 0, 0.9%Stm5 +1*Anmb5 -1%Stm6
150%3tm1 -100*Anml +1*xUE1 >= 8000,
150%3tm2 -100*Anm2 +1*xUE2 >= 9000,
150%3tm3 -100*Anm3 +1*UE3 >= 8000,
150%3tm4 -100*Anm4 +1xUE4 >= 10000,
150%3tm5 -100*%Anm5 +1*UE5 >= 9000,
150%3tmé -100*%Anm6 +1xUE6 >= 12000,
-20%Stml +1%UE1 =< 0, -20%Stm2 +1*UE2 =< 0, -20*Stm3 +1*UE3
-20*%Stm4 +1%UE4 =< 0, -20%Stmb +1*UE5 =< 0, -20%Stm6 +1*UE6
Anml =< 18, 57 =< Stm2, Stm2 =< 75, Anm2 =< 18,
57 =< Stm3, Stm3 =< 75, Anm3 =< 18, 57 =< Stm4,
Stm4 =< 75, Anm4 =< 18, 57 =< 3tm5, Stmb =< 75,
Anmb =< 18, 57 =< Stm6, Stm6 =< 75, Anm6 =< 18
}.

non
O O

1}
A
o O

-

1}
A

allpos([]).
allpos([X|Xs]) :- {X >= 0}, allpos(Xs).

We can first check whether the relaxed problem has indeed the quoted infimum:

clp(r) ?- example(flugpl, Obj, _, _, _), inf(0bj, Inf).

Inf = 1167185.7255923203

Computing the infimum under the additional constraints that Stm6, Stm5, Stm4, Stm3, Stm2,
Anm6, Anm5, Anm4, Anm3, Anm2, Anm1 assume integer values at the infimum is computationally harder,

but the query does not change much:

clp(r) 7- example(flugpl, Obj, _, Ints, _), bb_inf(Ints, Obj, Inf).

Inf = 1201500.0000000005

Implementation Architecture
The system consists roughly of the following components:

e A polynomial normal form expression simplification mechanism.
¢ A solver for linear equations [Holzbaur 92].

e A simplex algorithm to decide linear inequalities [Holzbaur 94].

Fragments and Bits



Constraint Logic Programming over Rationals or Reals

Rationals

The internal data structure for rational numbers is rat (Num,Den). Den is always positive, i.e.
the sign of the rational number is the sign of Num. Further, Num and Den are relative prime. Note
that integer N looks like rat(N,1) in this representation. You can control printing of terms with

portray/1.

Partial Evaluation, Compilation

Once one has a working solver, it is obvious and attractive to run the constraints in a clause
definition at read time or compile time and proceed with the answer constraints in place of the
original constraints. This gets you constant folding and in fact the full algebraic power of the solver
applied to the avoidance of computations at runtime. The mechanism to realize this idea is to
use call_residue/2 for the expansion of {}/1 (see (undefined) [Definite], page (undefined), hook

predicate user:goal_expansion/3).

Asserting with Constraints

If you use the dynamic data base, the clauses you assert might have constraints on the variables

occurring in the clause. This works as expected:

clp(r) 7- {A < 10}, assert(p(d)).
{a<10.0%}

yes
clp(r) 7- p(X).

{X<10.0%}

Bugs

o The fuzzy comparison of floats is the source for all sorts of weirdness. If a result in R surprises

you, try to run the program in Q before you send me a bug report.

e The projector for floundered nonlinear relations keeps too many variables. Its output is rather

unreadable.
e Disequations are not projected properly.

e This list is probably incomplete.

Please send bug reports to <christian@ai.univie.ac.at>.



References

References

[Colmerauer 90]
Colmerauer A.: An Introduction to Prolog III, Communications of the ACM, 33(7),
69-90, 1990.

[Heintze et al. 87]
Heintze N., Jaffar J., Michaylov S., Stuckey P., Yap R.: The CLP(R) Programmers
Manual, Monash University, Clayton, Victoria, Australia, Department of Computer
Science, 1987.

[Holzbaur 92]
Holzbaur C.: A High-Level Approach to the Realization of CLP Languages, in Proceed-
ings of the JICSLP92 Post-Conference Workshop on Constraint Logic Programming
Systems, Washington D.C., 1992.

[Holzbaur 92]
Holzbaur C.: Metastructures vs. Attributed Variables in the Context of Extensible
Unification, in Bruynooghe M. & Wirsing M.(eds.), Programming Language Imple-
mentation and Logic Programming, Springer, LNCS 631, pp.260- 268, 1992.

[Holzbaur 94]
Holzbaur C.: A Specialized, Incremental Solved Form Algorithm for Systems of Linear
Inequalities, Austrian Research Institute for Artificial Intelligence, Vienna, TR-94-07,
1994.

[Jaffar & Michaylov 87]
Jaffar J., Michaylov S.: Methodology and Implementation of a CLP System, in Lassez
J.L.(ed.), Logic Programming - Proceedings of the 4th International Conference - Vol-
ume 1, MIT Press, Cambridge, MA, 1987.



Index of Predicates

Index of Predicates

bbinf/3. ...

C

callresidue/2 ........ccoiviiiiinnnnnnnn..

E

entailed/1..... ..o
expand/0 ...

i:fimize/l ......................................... 4
minimize/1 ..o 4
E:ixpand/o ........................................ 18
Sdering/l ..................................... 4, 12
;jrtray/l. ........................................ 22
S



