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Abstract
Shift-scheduling for employees is highly complex due to the size of each solution and
the size of the solution space. We model this real-world problem as a CSP-problem
and simplify this NP-hard problem dramatically with an algorithm called "projections
first strategy".
The projections first strategy benefits from the interaction with the user (e.g., variable
ordering) and the extensive usage of aggregated features of possible solutions
(projections) to prune the search space and to find building blocks to build up
solutions quickly. Our approach captures a human problem solving technique
algorithmically, namely modularisation. To give an idea:

The merchant asked: How to lay my bricks to get 48 offices, an inviting

entrance hall, ....

The craftsman answered: First we have to make up our mind on the number of

floors, then on the number of rooms. Several floors will be equal. .... Don't

bother the bricks at the beginning.

Projections make also recomputation easier when constraints change. Projections
allow chronological backtracking to move through levels of abstraction and to reuse
results.
Applying a realistic example we compare the complexity of our approach with back-
tracking. In good and bad cases our approach reduces the complexity dramatically.
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1. Introduction
A very popular approach to scheduling problems is to formulate them as constraint
satisfaction problems (CSP) because scheduling is complex and knowledge-intensive.
But scheduling needs extensions of pure CSP to tackle search efficiently. Although
the amount of reported work about CSP is increasing, there is a lack of mapping CSP
technology onto real-world problems (Prosser, 1993). The developed algorithms tend
to look at "toy" problems, like graph coloring problem, n-queens problem, confused-
n-queens problem, zebra problem, puzzle-solving problem, and scene labeling. These
algorithms make assumptions, like binary constraints, which are not always "natural"
in real-world problems.
Shift-scheduling is a highly complex scheduling task due to the number of con-
straints, global constraints, the size of the solution space and the size of each solution.
Furthermore it is dynamic due to emerging requirements (e.g., organizational) and
bad or incomplete knowledge (e.g., time preferences of employees). We do not
discuss the optimization of shift-schedules in principle here (compare e.g., Gärtner
1992; Nachreiner, et al. 1993). Designers are usually satisfied with sub-optimal solu-
tions if they work (Nachreiner, et al. 1993) because of the huge effort of developing
further admissible solutions.
Primarily  two approaches to shift-scheduling exist. The first one focuses on issues of
improved backtracking, multi-attribute optimization/operation research (e.g., see
Adelman 1992). This approaches suffer of limitations in capturing domain
knowledge and in exploiting that knowledge (Fox 1990; Prosser, et al. 1994). Fröschl
(1993) stressed the importance of the human factor to be involved in the solving
algorithm. The second approach is founded on user-centered decisions
(ShiftPlanAssistent, Gärtner and Wahl 1994) providing a structuring tool that
performs analyses and overviews but moves most decisions to the users.

In contrast to these approaches we modeled shift-scheduling as a CSP and extended
the pure CSP with interventions of users and aggregations of variables to make the
problem solving more efficient and parts of solutions reusable by chronological
backtracking. According to Freeman-Benson, et al. (1990) we call the set of solutions
that satisfy all the required constraints admissible solutions. There may exist many
admissible solutions for a given CSP. Our central aim is to find admissible solutions
quickly.
A CSP can be established in a general way as follows (Meseguer, 1989)

Let {X1,...Xn} be a set of variables with values in a set of dis-

crete and finite domains {D1,...Dn}. Let {Rk} be a set of con-

straints each of which shows the values mutually compatible for a

variable subset. Thus RjÊ⊆ÊDi,1Êx...xÊDi,j denotes the compatible

values among the variables Xi,1,...Xi,j. The problem is to find an

assignment of values to variables such that all the constraints are

satisfied. Every different value assignment that satisfies all the

constraints is called a solution.
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The "projection first strategy" prunes the search process applying mountain view and
constructs a solution by solving simplified CSPs that are used as building blocks.

Mountain view  simplifies the original CSP using variable-classes, variable-projec-
tions, and variable ordering. Variable-classes use the feature of the problem that
many variables with equal constraints and equal domains are used. This allows
efficient pruning of domains (doing it once for each class) and efficient computing
how many different instantiations of equal variables are needed and are admissible
for an admissible solution. This prunes the search space. Variable ordering is done by
the users in advance, capturing domain knowledge about basic structures of solutions.
Building blocks  are solutions for subproblems (solution-projections) that build an
admissible solution for the complete problem by concatenation (e.g., we try to find
shift-schedules for two weeks that give a shift-schedule for the whole year by replica-
tion) or parallelisation (a number of workers have similar shift-schedules).
Mountain view and building blocks  use features of the problem domain: First, a great
number of variables with equal constraints and equal domains are used. Second, in
admissible solutions a huge number of variables may have equal instantiations. Third,
the constraints are cyclic and refer (partially) to global features of a solution.
Chronological backtracking  uses the existing knowledge about building blocks and
mountain view to prune recomputation. Subsolutions may be reused and the search
space is already limited. Additionally, users handle constraint relaxation when no ad-
missible solution is found, and decide whether recomputation does make sense (e.g.,
when constraints or domains have changed).

In chapter 2 we introduce preliminary notations of the shift-scheduling problem and
domain specific as well as formal characteristics of constraints. In the following
chapter we describe the "projections first strategy" in detail. Finally, we compare the
complexity of our "projections first strategy" with simple backtracking. The
"projections first strategy" is strongest where it is difficult to find an admissible solu-
tion for large, structured CSP problems.

2. Shift-schedules
In the following we characterize shift-schedules and introduce important notions and
constraint. Furthermore we discuss dynamics and constraint relaxation.

2.1. Definition of shift-schedules and important notions

A shift-schedule is the regulation of employees' work hours. They are primarily de-
fined by shifts (figure 1) and rosters (figure 2).
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Figure 1: Shifts (black...duties)

Shifts define duties (e.g., morning
shift from 6 a.m. to 2 p.m.) relative to
a day. There may be different shifts
for weekends, etc. (e.g., Knauth 1993)
and complex structures (breaks,
stand-by duty, etc.).

Employees may have similar shifts on different days and several employees may
have the same shift on the same day.

DAY	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

Group 1	 M	 M	 E	 E	 N	 N

Group 2	 	 	 M	 M	 E	 E	 N	 N

Group 3	 	 	 	 	 M	 M	 E	 E	 N	 N

Group 4	 N	 N	 	 	 	 	 M	 M	 E	 E

Group 5	 E	 E	 N	 N	 	 	 	 	 M	 M

Figure 2: Example Roster (M ... Morning shift,
E...Evening shift, N ... Night shift)

Rosters define which (group of)
employee(s) has to work on
which shift. The given example is
a roster with a length of 50 days
and 5 groups. (Group 1 works the
roster from the 1st row to the 5th
row. Group 2 starts in the 2nd
row.)

The example shown in Figure 2 is rather simple. Rosters with a more complex shift-
sequence, more groups (e.g., 12) and longer duration (e.g., 48 weeks) are broadly
spread. A formal definition of schedules is given in the next chapter.

The basic time structure: We use minimal time units to transform the problem into a
finite problem. The smallest time unit is 1 hour (abbreviated as 1/24). The most com-
mon ones are one day (24 hours), one week (7 days = 168 hours) and maximal cycle
(350 days). Smaller time units can be used but they increase computation costs and
are rarely needed in practice. The domain of the time variable is an ordered set of
units. Applying an enumeration function enables the definition of enumerated time
units, like the first day, the first Friday in a month.
Shift-cycle: The length of a repeating pattern of shifts and employees within a
schedule (e.g., 50 days in the example in Figure 2). Shift-group: A set of employees
that have the same shifts on every day within such a repeating pattern.
Number-of-shift-workers: Number of workers within the same shift on the same day
within a basic time structure. E.g., on each Monday 18 workers work on the morning
shift. Number-of-workers-on-duty: Number of workers on duty given a particular day
and a particular hour. Number-of-shifts: Number of shifts an employee has in a
particular week. Length-of-shift: The length (in hours) of the duty for an employee on
a particular day. If the employee has no duty it is 0. Operating-hours: The operating
hours of SCHEDULE, i.e., the time frame in which workers are on duty.

2.2. Constraints to shift-schedules

Several constraints are applied:
Temporal constraints: A number of different approaches for temporal representation
and reasoning exist (e.g., Allen, 1984, 1991; McDermott, 1982; Freksa, 1992). We
use temporal intervals, e.g., a starting point of a duty and it's duration instead of begin
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and end points of intervals, like (Allen, 1984). Temporal constraints are e.g., No

overlapping work times of one employee.

Legal constraints: Depending on national laws, collective and company agreements a
number of constraints are applied. E.g.,

Average work hours of employees per week have to be less then 40 hours. This

average has to be reached within 26 weeks. Maximum work time per 24 hours␣is

limited to 9 hours.

Company based constraints: E.g.,
140 hours operating time per week . Not less then 3 employees and not more then

18 employees at a time. No work on Thursday afternoon due to repairs.

Health based constraints: A huge number of ergonomic criteria has been developed
(see e.g., Knauth 1993, Schönfelder 1992), e.g.,

No night work in a row for more then three nights. No night work if other work

time is possible. No start-time between 11 p.m. and 5 a.m.

Employee based constraints: E.g.,
No night work for Mr. X.. Same number of work shifts for all employees.

2.3. Domains of shift-schedules

The scope of our CSP is restricted to finite and discrete domains for each variable. In
the following we describe the properties of the used domains.
DOMAIN DAYS: In principle, the domain of days for a shift-schedule could be infi-
nite. For practical reasons (technological and economical changes) shift-schedules are
limited to a year or less (e.g., 50 weeks) and "reused" if possible. By this: E.g.,

Domain (days)={ 1,...350}

DOMAIN EMPLOYEES: The same argument holds true for employees. E.g.,

Domain (employees) = { 1,...200}

DOMAIN STARTING_TIME: This domain can be made finite by the introduction of
a minimal time unit (see above). We use the representation of a 24 hours day.

E.g., Domain (starting_time) = { 1,...24}

DOMAIN DURATION: Also the domain of duration has to be made finite by a
minimal time unit. In practice duration is limited to some degree (e.g., legal con-
straints). E.g., Domain (duration) = { 6,7,8,9,10}

2.4. Dynamic constraints and constraint relaxation

Shift-schedules affect the organization and the employees in many ways (e.g., coop-
eration between departments, customers, health and life-styles of employees). New
constraints and changes of domains emerge through changes in the environment,
experiences with shift-schedules etc.. If no admissible schedule can be found
constraints must be relaxed.
Constraint relaxation can be handled by the users determining preferences of con-
straints in advance (e.g., Mr. X prefers morning shift over night shifts), by direct in-
ventions of the users specifying which constraint should be relaxed first. Freemann-
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Benson, et al. (1992) propose an incremental constraint satisfaction system for
interactive applications where the constraint hierarchy evolves gradually.
These approaches are questionable in the domain of shift-scheduling. Case studies
(e.g., Wahl 1995) and organizational-theory (e.g., Perrow 1986) stress that constraint
relaxation and constraint hierarchy is solved in bargaining learning processes and
can't be foreseen. Therefore constraint relaxation has to be handled by the users. The
computer system should only support recomputation and book-keeping functions as
used in REDUX' (Petrie, et al. 1994).
2.5. Characteristics of constraints

Rossi et al. (1990) have proven that binary and non-binary CSPs are equivalent when
they are mutually reducible, in the sense that they contain the "same information". In
their scheme, both constraint and variable redundancy are allowed in CSPs belonging
to the same equivalence class.
The "nature" of some constraints applying to shift-schedules are non-binary in the
sense that they address global features of a solution (e.g., average work time of
employees). This non-binary CSP could be to transformed into a binary CSP but on
high costs. We choose a different approach which tries to use these global features to
find a solution more efficiently. This approach is described in chapter 3.

3. The "projections first strategy"

3.1. Overview

A large number of problems can be viewed as special cases of CSP with a large num-
ber of different approaches to improve efficiency and consistency (e.g., "Generate &
Test", simple backtracking to intelligent - selective and dependency-directed - algo-
rithms like constraint propagation, lookahead, lookback algorithms; compare
Meseguer, 1989, Kumar, 1992).
Backtracking  algorithms are a prominent processing technique in AI, in particular in
CSP. Standard backtracking attempts to assign values to variables so that all
constraints are satisfied. Given a variable order it starts with the first variable as-
signing values as long as each assigned value is consistent with the values assigned to
preceding variables. At dead-end situation backtracking takes place. The two major
drawbacks are thrashing and redundant assignment work (Kumar, 1992).
Lookahead algorithms are based on the idea that each step towards a solution should
have some evidence that the following path does not lead to a dead-end situation.
Moreover, they eliminate values of future variables because they will never appear in
any solution. Forward checking  and full lookahead belong to this group. Full looka-

head guarantees that every future variable has at least one compatible value with the
current value assignment to past and current variables and every future variable has at
least one compatible value with any other future variable. Forward checking is
equivalent to full lookahead but without any consistency test among future variables
(Meseguer, 1989).
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Basically two methods are used to improve efficiency and consistency: first, to
modify the search space to make the search easier; second, to use heuristics to guide
this search. We use mountain view  to modify the search space and building blocks  to
guide the search process.
Mountain view  works extensively with variable-classes for variables with equal con-
straints and equal domains. It is a feature of this CSP (and of others) that the number
of similar variables is very high. Firstly, variable-classes are used to prune the
domain of each variable (doing it once for each class). Secondly, to compute how
many different  instantiations of a variable-class are needed and admissible for a
solution. E.g., we compute admissible numbers of employees and instantiate with
suitable sets. Thirdly, users order this smaller number of variable-classes capturing
domain knowledge about the structure of solutions (e.g., shift-schedules are ordered
by days). We called the strategy mountain view (the name comes from the Austrian
experience that one does not see all valleys, but one knows main directions of
possible movements).
Additionally, we apply a decom-
position strategy (building blocks )
by looking for subproblems that
allow the construction of a solution
by pure concatenation, by concate-
nation with minor adaptations or by
parallelisation (e.g., we try to find
shift-schedules for two weeks that
give a schedule for the whole year by
replication). This strategy guides our
search process. Figure 3 shows the
basic idea of the building block

approach (= solution-projection).

or iginal C SP

reduced CSP

concatenation

original 
CSP

building blocks =

solution 
projections

parallelisation

solution for the
or iginal C SP

Figure 3: Building blocks' approach

3.2 The problem definition in CSP manner and preparation

In this chapter we introduce a way to state the shift-scheduling as a CSP and prepare
the algorithm exemplified on the problem of shift-scheduling.

STEP 0: (a) variables, variable-classes and domains

(b) constraints

(c) pruning of variable-class domains

(d) variable ordering & blocks

STEP 0 (a): VARIABLES, VARIABLE-CLASSES and DOMAINS

Corresponding to the definition of a CSP given in chapter 1 the set of variables
{X1,...Xn} with a set of discrete and finite domains {D1, ...Dn} have to be defined.
Variables of a CSP can be viewed as instances of variable-classes. In many cases this
view is quite natural (e.g., in the n-queens problem each QUEENi is an instance of class
QUEEN). This view of variables as instances of classes allows an easier formulation of
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a problem in a CSP manner whenever a large number of similar variables are used.
All instances of such a variable-class have to have the same domain, all constraints
have to hold for them.

EXAMPLE: SHIFT-SCHEDULE: Find an admissible instantiation for
SCHEDULE := { DUTY1, DUTY2, ...DUTYm }

DUTY :=(DAY, EMPLOYEE, SHIFT)

SHIFT:=(START_TIME, DURATION) where VALUE(DURATION) ≠  0

The following similar notation is sometimes used to increase readability.
SCHEDULE = { (DAYi, EMPLOYEEi, START_TIMEi, DURATIONi) }

DAY... is a variable-class of days (e.g., 3rd day of the schedule).
EMPLOYEE...is a variable-class of specific employees (e.g., McMac).
START_TIME.is a variable-class of the starting time of a shift (e.g., 6 a.m.)
DURATION...is a variable-class of the temporal duration of a shift (e.g., 8h)

The following table gives an overview about the variables, their domains, and vari-
able-classes used in the shift-scheduling problem.

VARIABLE DOMAIN (example) Variable-class

DAYi D_DAY ={ day1,...day350 } CLASS_DAY

EMPLOYEEi D_EMPLOYEE ={employee1,...employee200 } CLASS_EMPLOYEE

SHIFTi D_SHIFT ={h1,...h24 }x{1h,...24h} CLASS_SHIFT

Table 1: Overview of used variables, domains, and corresponding variable -classes

EXAMPLE
CLASS_DAY

. . . DAY1 DAY2 DAY3 DAY4 DAY5 DAY6 DAYz-1 DAYz

1st Jan 94 2nd Jan 94 xth YYY 94. . . 

Figure 4: Variable-classes, variables and domains illustrated with "day"

STEP 0 (b): CONSTRAINTS

Corresponding to the definition of a CSP a set of constraints {Rk} has to be defined.
Theoretically {Rk} is given and the only problem is to find an admissible assignment.
In practice these sets have to be edited or computed most of the time. In our example
and in other practical problems this would be very expensive. Therefore we
reformulate the problem by formulating constraints as decideable expressions. Given
finite domains and decideable expressions the set {Rk} could be computed. Further
we spare work by computing elements of {Rk} only when necessary.
Examples for functions in the field of shift-scheduling where given in chapter 2.2.
(e.g., Length_of_shift). We show how to formulate such constraints.
EXAMPLE 1: Max. work hours per day for each employee ≤ 9h.

can be formulated rather easily in the following ways
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(a) " instances DUTYi of CLASS_DUTY: Length_of_shift(DUTYi) ≤ 9h

(b) ∀ instances DAYi of CLASS_DAY

      instances EMPLOYEEi of CLASS_EMPLOYEE

Length_of_shift(DAYi,EMPLOYEEi) ≤ 9h

Furthermore we omit "instances DAYi  of CLASS_DAY" and just write DAYi .
EXAMPLE 2: Every 2nd week, no workers are needed from Friday 2pm to

Saturday 6am due to repairs can be formulated as
∀ DAYi ,VALUE (DAYi) = Friday2nd , hourt ε  {2pm...12pm} AND

∀ DAYi ,VALUE (DAYi) = Saturday2nd , hourt ε  {1am...5am}

Number_of_workers_on_duty(DAYi,hourt) = 0

Many constraints refer to values of the domain of a variable (see example above).
Instead of writing: ∀ DAYi  : VALUE (DAYi) = dayj ε  D_DAYS

we just write: ∀ dayj ...

CONSTRAINTS IN THE SHIFT-SCHEDULING EXAMPLE (informal notation):

(1) Each hour number of employees on duty is less then 30

(2) Max. work hours per day for each employee with a duty ≤ 9h

(3) Min. work hours per day for each employee with a duty ≥ 7h

(4) 40 work hours for each employee who is hired per week

(5) Max. 5 duties a week for each employee

(6) Mr. Meier does not work on Wednesdays

(7) Every second week, no workers are needed between Friday 2pm and

Saturday 6am due to repairs.

(8) 216.000 total work hours per year

CONSTRAINTS IN THE SHIFT-SCHEDULING EXAMPLE (formal notation):

(1) ∀ dayi ∀ hourt Number_of_workers_on_duty (dayi,hourt) < 30

(2) ∀ dayi ∀ employeek Length_of_shift (dayi,employeek) ≤  9

(3) ∀ dayi ∀ employeek On_duty (dayi, employeek) :⇒

Length_of_shift(dayi,employeek) ≥  7Ê

(4) ∀ employeek  ∀ weekj ∑ Length_of_shift (dayi,employeek) = 40

          (dayi ∈ weekj & On_duty (dayi, employeek)

           OR ¬∃ dayi : On_duty (dayi, employeek))

(5) ∀ weekj ∀ employeek Number_of_shifts (weekj,employeek) ≤ 5

(6) ∀ weekj On_duty (Wednesday , Mr.Meier) is FALSE

(7) ∀ 14daysj   ∑ Number_of_workers_on_duty (dayi,hourt) = 0

(dayi = 2ndFriday   &  hourst ∈ {2pm...12pm}) OR

(dayi = 2ndSaturday &  hourst ∈ {1am...5am} )

(8) ∑{dayi},{hourt}    Number_of_workers_on_duty (dayi,hourt) = 216.000

STEP 0 (c): PRUNING OF VARIABLE CLASS DOMAINS

We prune the domains which could be used for the variables of each variable class by
applying the constraints which influence them directly (node-checking).
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We use the notation of DP_** for the pruned domain D_**
D_DAY     ={day1,... day350 } DP_DAY = D_DAY

D_EMPLOYEE={employee1,... employee200 } DP_EMPLOYEE = D_EMPLOYEE

D_SHIFT   ={h1,... h24} x {1h,... 24h} DP_SHIFT ={h1,... h24}x{7h,... 9h}

by (2),(3)

STEP 0 (d): VARIABLE ORDERING & BLOCKS

Two orders have to be defined by the user in advance. Firstly, the variable ordering
which is always possible. Secondly, the order of block sizes (i.e., should the
algorithm work with concatenation or with parallelisation) which has weak precondi-
tions. It can be done if a semi-ring together with multiplication by elements of N is
defined. This precondition holds in many practical cases (including: time, length,
temperature, weight, might of sets). Basically, it is necessary to be able to compute
LCM's (Least Common Multiples). E.g.,

1. VARIABLE: DAY

   ORDER CONCATENATION: less p many days

(i.e., Days are the most structuring element of shift-schedules; short shift-cycles
are preferred because of their simplicity; furthermore many constraints refer to
temporal patterns.)

2. VARIABLE: EMPLOYEE

   ORDER PARALLELISATION: many similar p a few similar employees

(i.e., Employees are an important structuring element of shift-schedules and large
groups of employees that have the same schedule are preferred.)

3. VARIABLE: SHIFT

   ORDER CONCATENATION: less p many shifts

(i.e., shifts are not very important to structure a schedules, still less shifts make
scheduling easier.)

3.3 Finding a solution for the smallest block-size
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Find solution for 

cycle smallest

Constructive Comp. 

Inst. Numbers (IN)

Admissible 

Solution?

Adapt IN (y)

Start with smallest 

IN (y) for all IN

Enumerate all Solu- 

tions with IN (y)

All no

yes

STORE state 

& go back

yes

Figure 5: Smallest Block

First, an admissible solution for the smallest
block is computed (figure 5).
The smallest block sizes are computed
straight forward from the constraints and the
domains (constraints refer mostly to temporal
cycles; i.e., 1 hour = min. time unit; 1 group
of employees with 200 members = max. of
domain; one shift = min.).
Each solution of a CSP is based on instantia-
tions. The number of instantiated variables of
each class may be very large (e.g., in the ex-
ample roughly 70.000). But many variables
may have the same value. We call the number
of different values of instantiations of a vari-
able-class instantiation-number (IN) (e.g., 3
different shifts). IN are very useful to prune
the search space. E.g.,
Consider the organization of a conference

with m sessions in n tracks. Let k possible

chairpersons be available. We can say that

each solution has at  least n different and a

maximum of n x m or k chairpersons.

Constructive Computation of Instantiation Numbers (IN): The original set of instan-
tiation numbers is indirectly described by the size of the pruned domains of each
variable-class (e.g., IN(DAYS)={0,...|{1,...350}|}={0...350}). Some con-
straints allow rather straight forward reduction of this sets with respect to different
block sizes used in the constraints. For each variable-class:

(a) compute block-cycles used by the quantifiers of constraints

(b) compute the closed set of LCM's for such cycles

(c) prune the sets of instantiation numbers (IN)

(a),(b) CYCLES (DAYS) = { 1/24, 1, 7, 14, 350}

        CYCLES (EMPLOYEE) = { 1 }

We use two ways to prune the IN-sets constructively. Either a constraints refers di-
rectly to the number of possible instantiations (e.g., constraint (1)) or applying rule of
proportion with the involved quantifiers (e.g., constraints (4) and (8)).

(c1) IN(EMPLOYEES, 1/24) = {1,...29) by (1)

(c2) IN(EMPLOYEES, 350) = {108} by (4), (8)

(c3) IN(DAYS, 350) = {311...350} by (1), (8)

A more powerful reduction of IN-sets were possible but costly. We do it later hand in
hand with the computation of solutions.
Start with smallest IN for all IN: The algorithm starts with the smallest element of
each IN-set. The enumeration of sets of IN is done by backtracking with respect to
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the variable order. Hand in hand with the enumeration of solutions for each IN-
element the IN sets are further pruned (Adapt IN(y)), e.g., if no admissible solution is
found with "2" different shifts than "2" is eliminated from the corresponding IN-set.
This is done for all IN-sets for variable-classes and for all their combinations (e.g.,
cycle length 14 days, 4 groups of employees, 3 classes of shifts). If an admissible
solution is found the state of computation is stored for latter continuation and the
result is returned. If no admissible solution is found for any element of the IN-set the
algorithm stops.

3.4 Computing larger solutions

Building Block 

Search

Find solution for 

block (smallest)

For all blocks x with 

increasing size

Build & adapt solution 

for x using solutions 

for x-1

Figure 6: Building Block Search

Given (an) admissible solution(s) for a smaller
block larger blocks are constructed in the way
shown in figure 6.
The computation of a solution for the smallest
block was discussed above.

Increase of size of blocks is primarily defined over the order of LCM's computed in
the step Constructive Computation of Instantiation Numbers(IN) (see above) (e.g.,
DAYS: 1/24, 1, 7, 14, 350). If there does not exist this ordering then multiples of the
basic unit of block size are used.
Solutions for larger blocks are build up by concatenation or by parallelisation of
smaller blocks (as defined by the user in step 0(d)).If a larger block is admissible the
algorithm proceeds to the next block size. If not than the solution has to be adapted.
Admissible smaller blocks are combinated systematically. If no admissible larger
block can be found the algorithm stops.

3.5 Constraint Relaxation & dynamic constraints

The embedding of constraint relaxation into an organizational setting and our focus
point on recomputation and bookkeeping was discussed in chapter 2. The user has to
decide how far recomputation makes sense.
If new constraints evolve recomputation is supported by the already computed hierar-
chy of smaller admissible blocks and the sets of instantiation numbers. In recomputa-
tion the algorithm steps back to smaller blocks until these blocks(!) are admissible
(chronological backtracking). If constraints were relaxed the user has to decide from
which level on recomputation should be done. Changes in the block hierarchy (e.g.,
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caused by a constraint like: every 4 weeks...) do not change the process in principle.
Bookkeeping for all results (admissible or not) is too expensive. Bookkeeping for in-
stantiation numbers (i.e. which constraints let to the elimination of an element of an
IN-set) reduces recomputation costs drastically.

4. Complexity
Backtracking and the "Projections First Strategy" are compared using a simplified
version of the example given above (200 employees, 350 days, 1 hour minimal time
unit, 36 constraints). As costs are case dependent we discuss two cases. In the best
case example we show a detailed analysis of costs. In bad cases we consider the most
dominant computation step.

4.1. No constraints lead to any kind of backtracking

We assume a meta-heuristic that instantiates all variables such that no backtracking
applies. Only checks are necessary. The simplified complexity analysis (figure 8) is
read: "For the work time of employees there refer 6 constraints per day. Results have
to be checked for 350 days ...". Costs = (number of variables) * (number of
constraints to check) * (number of results to check).

Constraints Results Variables

refer to # to check # Total involved # Total COSTS = 

6 for each day 350 70000 shifts 1 1 420.000

for each employee 200

6 for each week 50 10000 shifts 7 7 420.000

for each employee 200

6 for each employee 200 200 shifts 350 350 420.000

6 for each day 350 350 employees 200 200 420.000

6 for each week 50 50 employees 200 1400 420.000

days 7

6 for the year 1 1 employees 200 70000 420.000

days 350
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Figure 7: Simplified complexity analysis of simple backtracking.
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Constr. Domainsize COSTS

36 shifts 576 20.736
36 days 350 12.600
36 employees 200 7.200
36 days 350 12.600
36 employees 200 7.200
36 shifts 576 20.736

Variables # Total

12 days 1 200 2.400
employees 200

1 shifts 1
12 days 7 1400 16.800

employees 200
2 shifts 1

12 days 350 70000 840.000
employees 200

3 shifts 1
SUM 940.272
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Figure 8: Best case "Projections first strategy"

Figure 8 shows the costs for the
projections first strategy in the
same example. In the first part of
the figure the costs for preparation
are computed. In the second part
the costs for a straight forward
solution are stated.
Note that only one result has to be
checked at each step, which reduces
costs significantly.
If no constraints lead to
backtracking costs are reduced by
60% (from 2.520.000 to 940.000).

4.2. Bad cases

The analysis of bad cases (i.e., the whole search space has to be scanned) is done by a
computation of boundaries instead of a detailed analysis. The number of possible
combinations of instantiations of variables is a boundary for backtracking (if the
computational costs for constraints are constant).The "projections first strategy" is
bounded by 2 times the dominant computational step (the worst behavior of building
blocks is: max + max/2 + max/4 + max/8 + ...) and small costs caused by node-
checking and preparation.

(1) The worst case for simple backtracking is bounded by .... (24 * 24)200 * 350

(2) If only variable-projection is applied, the projections first strategy is bounded

by ............................................ 2  * (3 * 24)108 * 350 * \F(200!;108!*(200-108)!)

(3) If variable-projection and building blocks with 14 days, 4 groups, 3 shifts are
applied (n = number of admissible solutions for the 14days block),

the boundary is ........ 2  * 3 4 * 14  * \F(200!;27!4*(200-4*27)!) + (27 * 14) * (n)25

(4) If all employees are equal the boundary further decreases

to ...................................................................... 2  * 3 4 * 14 + (27 * 14) * (n)25

The differences are impressive, but still we hopefully don't trigger bad cases. If the
solution space for building blocks is dense AND has to be fully scanned AND all
combinations of building blocks have to be checked than the boundary is near the one
of backtracking. If the solution space is sparse OR only few admissible solutions for
smaller building blocks have to be found OR it is easy to combine smaller building
blocks than the boundary decreases extremely. Practical experience shows that either
the solution space for shift scheduling is extremely sparse OR it is trivial to combine
smaller building blocks. Both cases favor the Projections-first-strategy.
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5. Conclusion
We formulated the real-world  problem of shift-scheduling as a CSP and presented
our solution algorithm "projections first strategy". The projections first strategy
benefits from the interaction with the user (e.g., variable ordering) and the extensive
usage of aggregated features of possible solutions (projections) to prune the search
space (mountain view), and to find building blocks  that build up solutions quickly.
Our "projections first strategy" algorithm delivers good results for problems were a
problem decomposition in small sub-problems is admissible (= solution-projection)
which are later used as building blocks. Additionally, it benefits of large numbers of
similar variables with equal domains and equal constraints (variable-projection). Our
approach develops its strength when a high number of similar variables involved as
well as when constraints referring to non-local features of a solution. Such problems
can be found in other areas too, e.g., in construction, architecture, processor-design.
The comparison of the complexity of the "projections first strategy" with simple
backtracking based on a realistic example showed that in good and bad cases we
could reduce the complexity dramatically. Topics of future research are the
development and application more efficient forms of decomposition and
instantiation. Additionally, we will improve the handling of dynamic constraints and
constraint relaxation.

6. References
Adelman L.: Evaluating Decision Support and Expert Systems, Wiley, Chichester,

UK, 1992.

Allen J.F.: Time and Time Again: The Many Ways to Represent Time, International

Journal of Intelligent Systems, Vol. 6, pp.341-55, 1991.

Allen J.F.: Towards a General Theory of Action and Time, Artificial Intelligence,
23(2), pp.123-154, 1984.

Fox, M.S.: AI and Expert Systems Myths, Legends and Facts, IEEE Expert, 5(1), pp.
13-25, 1990 cited in (Prosser, P., Buchanan, I. 1994)

Freeman-Benson B., Maloney J., Borning A.: An Incremental Constraint Solver,
Communications of the ACM, 33(1), pp.54-63, 1990.

Freksa C.: Temporal Reasoning Based on Semi-Intervals, Artificial Intelligence,
54(1-2), pp.199-227, 1992.

Fröschl K.A.: Two Paradigms of Combinatorial Production Scheduling Operation
Research and Artificial Intelligence, in Dorn J., Fröschl K.A.(eds.),
Scheduling of Production Processes, Ellis Horwood, New York, pp.1-21,
1993.

Gärtner J.: CATS-Computer Aided Time Scheduling - Ein Modell für die computer-
unterstützte (Schicht-) Arbeitszeitplanung; Dissertation, TU-Wien, 1992.

Gärtner J., Wahl, S: Working Time Lab - Participative Organizational Planning of
Shift Schedules, Participative Design Conference, pp. 121-122, 1994.



Page - 17

Knauth P.: The Design of Shift Systems, Ergonomics, 36(1), pp. 77-83, 1993.

Kumar V.: Algorithms for Constraint-Satisfaction Problems: A Survey, AI Magazine,
pp.32-44, 1992.

McDermott D.: A Temporal Logic for Reasoning About Processes and Plans,
Cognitive Science, 6(2), pp.101-156, 1982.

Meseguer P.: Constraint Satisfaction Problems: An Overview, AI Communications,
2(1), pp.3-17, 1989.

Nachreiner F., Ling Q., Grzech H., Hedden I.: Computer Aided Design of Shift
Schedules, Ergonomics, 1993.

Petrie C., Cutkosky M., Park H.: Design Space Navigation as a Collaborative Aid, in
Gero J., Sudweeks F. (eds.), Artificial Intelligence in Design ´94, Kluwer
Academic Publishers, Netherlands, pp. 611-623, 1994.

Perrow C.: Complex Organizations - a Critical Essay, Random House, New-York
1986.

Prosser P.: Scheduling as a Constraint Satisfaction Problem: Theory and Practice, in
Dorn J., Fröschl K.A.(eds.), Scheduling of Production Processes, Ellis Hor-
wood, New York, pp.22-30, 1993.

Prosser P., Buchanan I.: Intelligent Scheduling: Past, Present and Future,
Engineering Intelligent Systems, Summer, 1994.

Rossi F., Petrie C., Dhar V.: On the Equivalence of Constraint Satisfaction Problems,
in Aiello L.(ed.), Proceedings of the 9th European Conference on Artificial

Intelligence (ECAI-90), Pitman, London, pp.550-557, 1990.

Schönfelder E.: Entwicklung eines Verfahrens zur Bewertung von Schichtsystemen
nach arbeitswissenschaftlichen Kriterien, Peter Lang Verlag, 1992.

Wahl, S.: Computerunterstützte Schichtarbeitszeitplanung, to appear, 1995.


