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Abstract
Most knowledge-based monitoring and therapy planning systems neglect the
importance of data validation. Real data are more faulty than expected.
Moreover, only reliable data may be used for effective and efficient therapy
planning. Additionally, most systems do not take into account the various kinds
of data and the various frequencies at which they are usually available.

We propose automated data validation methods which consider the various kinds
of real data and which are based on temporal ontologies (time points, time inter-
vals, and trends) in order to arrive at reliable data. Furthermore, our approach
includes repair and adjustment methods for correcting wrong or ambiguous data.
Our approach benefits from dynamically derived qualitative data-point- and
trend-categories which result in unified qualitative descriptions of parameters and
overcome the limitations of comparison with predefined static thresholds.

Our methods are applicable to domains where different kinds of data are available
and where no reliable structure-function model exists because the underlying
mechanism is only poorly understood. We applied them in VIE-VENT, an open-
loop knowledge-based system for artificially ventilated newborn infants.

Keywords:
Reasoning about Action and Change
Principles of AI Applications
Knowledge-based Monitoring and Therapy Planning (Temporal Reasoning),
Artificial Ventilation

Declaration:
This Paper has not already been accepted by and is not currently under review for a
journal or another conference. Nor will it be submitted for such during IJCAI's
review period.



page 2

1. Introduction
This work is part of the growing field of monitoring and therapy planning in
medical domains. We were particularly motivated by the real-world problems of
such processes facing an unexpectable high amount of faulty data and various types
of data available occurring at various frequencies (e.g., high or low frequency data).
Moreover, there exists no reliable structure-function model because the underlying
mechanism is often poorly understood.

Our approach is oriented on, but not limited to, our application domain: artificial
ventilation of newborn infants. The technical improvement of Intensive Care Units'
(ICUs') equipment makes a huge amount of data available to the medical staff, but
methods for data validation to arrive at reliable measurements are missing. Several
monitors have a built-in module for recognizing unusual data values, especially
those arising from hardware problems. But these built-in modules often trigger false
alarms. The monitoring data (signals) are observed by the trained medical staff.
However, these single observations are only recognized for being "normal" or
"abnormal". Information about trends, "natural" oscillations, etc. is very difficult to
gather. Inexperienced personnel may have difficulties in interpreting a clinical
picture from single monitoring data. Some of the variables are influenced by other
clinical variables that may not be (continuously) determined (like cardiac output,
pulmonary perfusion). Physicians recognize many respiratory factors, like perfu-
sion or oxygenation, but cannot predict quantitative effects on the blood gas mea-
surements from changes of these factors. Therefore in this domain time-series
analysis techniques (Avent and Charton, 1990), may be insufficient because of the
absence of an appropriate curve-fitting model.

Our approach was to develop different methods for data validation and repair algo-
rithms which are based on different temporal ontologies (Allen, 1991; Dean and
McDermott, 1987) due to a real-world monitoring situation. The utility of our
approach is illustrated by VIE-VENT, an open-loop knowledge-based system for
artificially ventilated newborn infants. Our aim in developing VIE-VENT (Miksch,
et al. 1993) was to incorporate alarming, monitoring, and therapy planning tasks
within one system in order to overcome some of the limitations of existing systems
(e.g., GUARDIAN (Hayes-Roth, et al. 1992; NeoGanesh/Ganesh (Dojat, et al.
1992, 1994)). VIE-VENT is especially designed for practical use under real-time
constraints at neonatal ICUs (NICUs) and the various components are built in anal-
ogy to the clinical reasoning process. The data-driven architecture of VIE-VENT
consists of several modules: data selection, data validation, data abstraction, data
interpretation and therapy planning. All these steps are involved in a single cycle of
data collection from monitors. VIE-VENT's knowledge-base is implemented in
Clips (v6.02, COSMIC/NASA), a forward chaining rule and/or object based
development system. All examples used are defined in Clips notation.

In the first part we categorize the possible kinds of data that are available during the
patient monitoring processes. The second part focuses on different methods for data
validation based on different temporal ontologies and their reasoning process.
Additionally, we present repair and adjustment methods for correcting wrong or
ambiguous data.
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2. Kinds of data
The data used are divided in the continuously and discontinuously assessed moni-
toring data and their corresponding derived qualitative data-point- and trend-
categories.

2.1 Original monitoring data
According to the technical equipment of modern ICUs a huge amount of on-line data
is available. Additionally off-line data and qualitative observations are available and
needed for a global picture of the patient's condition and for an effective reasoning
process. The data can be divided according to their observation frequency and regu-
larity as well as for their data types. We distinguish between three kinds of data:
continuously assessed quantitative data, discontinuously assessed quantitative, and
qualitative data.

The most important kind of data in the field of monitoring and therapy planning are
continuously observed quantitative measurements which are successively and regu-
larly taken real numbers (e.g., transcutaneous blood gas measurements PtcCO2,
PtcO2, SaO2). Usually series of different parameters are monitored and compared at
once. The discontinuously assessed quantitative data are not regularly taken real
numbers which are used in critical situations as control factors for cross validation
(e.g., dynamic calibration) and therapy planning (e.g., invasive blood gas
measurements PaCO2, PaO2, pH). Discontinuously assessed qualitative data are not
regularly taken verbal descriptions which are also used for cross validation and
therapy planning (e.g., excessive chest wall expansion, low spontaneous breathing
effort). The discontinuous data are entered on request at a particular time-point, but
may be valid for a longer time period.

2.2 Dynamically derived qualitative data-point- and trend-categories
In addition to the numerical time-point- and trend-values we derive qualitative data-
point- and trend-categories to detect faulty measurements. The aim of this data
abstraction process is to arrive at unified qualitative descriptions of data points and
trend data. It transforms quantitative measurements into qualitative values, which
can be used in the system model for data interpretation and therapy planning. An
advantage of using qualitative values is their unified usability in the system model,
no matter of which origin they are. Adaptation to specific situations can easily be
done by using specific transformation tables without changing the model of data
interpretation and therapy planning. Additionally, by using qualitative values an
easily comprehensible and transparent system model can be developed.

(a)      Qualitative data-point-categories
The transformation of quantitative data points into qualitative values is usually per-
formed by dividing the numerical range of a parameter into regions of interest. Each
region stands for a qualitative value. The region defines the only common property
of the numerical and qualitative values. It is comparable to "point temporal abstrac-
tion" of (Shahar and Musen, 1992; Shahar, 1994) .

The basis of the transformation of the blood gas measurements are data-point-

transformation schemata relating single values to seven qualitative categories of
blood gas abnormalities (qualitative data-point-categories).These data-point-trans-
formation schemata are defined for all kinds of blood gas measurements depending
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on the blood gas sampling site (arterial, capillary, venous, transcutaneous) and the
mode of ventilation (IPPV, IMV). The different modes of ventilation require spe-
cific predefined target values depending on different attainable goals. Figure 1
shows the scheme of PtcO2 during IPPV. For example, the transformation of the
transcutaneous PtcO2 value of 91 mmHg during IPPV results in a qualitative PtcO2

value of g3 (“extremely above target range"). The wi,x -values divide the qualitative
regions. The transformation of trends is based on these qualitative data-point-cate-
gories, which are described in the following section.
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g1	 ...	 slightly

above the target range

below the target range

Figure 1: Data-point-transformation scheme of PtcO2 during IPPV

(b)      Qualitative trend-categories
The transformation of trend data into qualitative values is based on the combination
of qualitative data-point-categories and the qualitative descriptions of the expected
behavior of a parameter (expected qualitative trend descriptions; e.g., "parameter
PtcO2 is moving one qualitative step towards the target range within 10 to 30
minutes"). These trend-curve-fitting schemata transform the quantitative trend
values into ten qualitative categories guided by physiological criteria (figure 2). We
used a dynamic comparison algorithm to classify the trend data, which performs a
stepwise linearization of the expected exponential function to overcome complexity
(compare Miksch, et al. 1994b).
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(8) B3 . . . increase too slow
(9) ZB . . . zero change
(10) D . . . dangerous decrease

Figure 2: Trend-curve-fitting scheme

The aim of our approach is to use all available kinds of data for data validation based
on different temporal ontologies.

3. Definitions and overview
The major aim of the data validation process is to detect faulty measurements or
artifacts and finally to arrive at reliable measurements which may be used for further
analysis tasks. An artifact is a situation where a measured variable does not reflect
the clinical context. Undoubtedly, the data validation is an important, but often
neglected part of the monitoring and therapy planning process.

For definitional purposes, it is essential to distinguish between our usage of the term
"(data) validation" and "validation of knowledge-based systems". The latter is the
process which attempts to determine whether a system does or does not satisfy one
of its specifications. In this sense validation is the sum of verification (the proof of
objective, formal specifications) and evaluation (the proof of interpretative, pseudo-
formal specifications) (Laurent, 1992).

We deal with "data validation". It is the context-sensitive examination of the plau-
sibility of input data based on different temporal ontologies. The result is a classifi-
cation of the input data. An input value is finally classified as

(a) correct
(b) wrong
(c) unknown
(d) adjusted

A measurement is classified as "adjusted" if a "wrong" or "unknown" value is
corrected by a repair or adjustment method (see section 5). If VIE-VENT recognizes
a faulty measurement but could not apply any of these methods, it is classified as
"wrong". If VIE-VENT receives no data for a measurement from the monitor and
no value could be estimated, then the measurement is classified as "unknown".
Otherwise it is classified as "correct". Not all methods mentioned below lead to a
final classification. Some of them (like, the time-point-based functional depen-
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dencies) result in an intermediate and ambiguous classification of "some are
wrong". This information is forwarded to and handled by the repair and adjustment
module which provides strategies for repairing and adjusting not plausible or
missing values based on the same temporal ontologies as the data validation module.

We divided our methods in three parts based on their underlying temporal
ontologies: time-point-based, time-interval-based, and trend-based reasoning.
Figure 3 gives an overview of the particular categories.

Time-point-based Time-interval-based Trend-based

Plausible 
measurements

Causal 
dependencies

Reliability ranking

Temporal validity

Allowed  changes of 
parameters

Validation

Functional 
dependencies

Functional 
dependencies

Coping with  missing 
values

Dynamic calibration
of values

Repair & 
Adjustment

Predicting values

Assessment of developments 
of parameters

Functional dependencies

Figure 3: Overview of the components of the data validation and repair/adjustment
modules

4. Data validation

4.1 Reasoning based on time points
The time-point-based concept uses the value of a parameter at a particular time point
for its reasoning process. It benefits from the transparent and fast to proceed
reasoning process. But it suffers from neglecting any information about the history
of the observed parameters. VIE-VENT uses the following methods for detecting
faulty measurements or artifacts: checking the plausibility of measurements, causal
and functional dependencies, and reliability ranking. Parts of the time-point-based
concept were discussed in a previous publication (Miksch, et al. 1994a).

4.1.1 Plausible measurements
The most basic method is time-point based range checking. We have enhanced this
method by adding additional attributes, which define the clinical context (e.g.
arterial, IPPV). There are look-up tables for all input parameters covering the
plausible ranges. A parameter in the look-up table is specified by a parameter name,
a list of attribute descriptors, an upper limit and a lower limit. For example, (pCO2,
(arterial, IPPV), 10, 140), where “arterial" refers to the kind of blood gas analysis
and IPPV to the mode of ventilation. When a new parameter value is received, the
system checks if this value is within or out of range and a corresponding flag
("correct" or "wrong") is set, e.g., if 10 ≤ pCO2(arterial, IPPV) ≤ 140 then it is a
"correct" measurement.
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4.1.2 Causal dependencies
A causal dependency specifies a relationship between an actual value and the
expected value of a corresponding parameter. It is a kind of cross-relation between
different measurements. For example, if the chest wall expansion is small then the
tidal volume has to be less-than-or-equal-to (≤) 5 ml/kg. This method cannot rate a
particular parameter as "correct" or "wrong". If the causal dependency fails all
involved parameters are marked as "some are wrong". This information is
forwarded to the repair and adjustment methods (compare chapter 5). If this ambi-
guity could not be solved all values are classified as "wrong".

4.1.3 Functional dependencies
A time-point based functional dependency describes a functional relationship
between two or more parameters to check inadequate data transmission or faulty
measurements. There are two possible kinds of functional dependencies: the
involved parameters refer to the same clinical context or to a different one. In the
first case we have to deal with some kind of calibrating measurements. Calibration
is a time-point-based method due to its activation at the time of the availability of the
data, but its consequences are adjustments of the values for a longer period of time.
We categorize these adjustments as a time-interval-based repair method. It is dis-
cussed in chapter 5.2.1.

An example of the latter kind is f␣=␣60␣/␣(tI␣+␣tE), where f is the ventilation rate, tI
is the inspiration time and tE is the expiration time. We receive all values of f, tI and
tE  and check the functional dependency of these parameters. As in case of causal
dependencies, if the functional dependency fails it results in an intermediate,
ambiguous classification of "some are wrong" and is handled in the same way.

4.1.4 Reliability ranking
Priority lists of measurements are an indicator of their reliability. The data validation
process allows to identify a less reliable parameter from a set of conflicting
parameters. The result is a reliability ranking. For example, arterial blood gases are
more reliable than venous blood gases; PaO2 is more reliable than SaO2 and SaO2 is
more reliable than PtcO2. This method is triggered, if an ambiguous classification of
values "some are wrong" has been derived.

4.2 Reasoning based on time intervals
The time-interval-based concept deals with values of different parameters during an
interval. VIE-VENT uses two different methods: temporal validity and allowed
changes of a parameter  during an interval.

4.2.1 Temporal validity
The temporal validity sets the valid time intervals of parameters. The discontinu-
ously and continuously assessed data are handled in different ways.
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(a)      Discontinuous data
The discontinuously assessed quantitative and qualitative data are handled by the
same method. There are two possibilities for setting a time interval of a parameter
valid.

(1) The user of VIE-VENT can specify a duration of validity when entering a
particular discontinuous value.
For example,

"PaO2 should be valid for the next 30 minutes" is expressed as

(time-interval (kind temporal-validity)

(parameter PaO2) (validation valid)

(begin-time 12:00:00) (duration 30 minutes)

(reason entered-by-the-user))

(2) For each discontinuous parameter there are predefined default durations of
validity . When no duration is entered, VIE-VENT uses the default interval as
long as no external invalidation procedure is activated.

The parameter is set invalid, if one of the following conditions becomes true:

(1) the time interval of the parameter has elapsed;

(2) a new value of the discontinuous parameter is available;

(3) an external event enforces to manually set the parameter invalid.

(b)      Continuous data
The continuously assessed data are handled in a different way: instead of valid time
intervals we define invalid time intervals. A continuous value is only set invalid due
to external problems (e.g., new application of sensors, calibration of sensors, dis-
connection of a sensor).

For example,
(time-interval (kind␣temporal-validity) (parameter␣SaO2)

(validation␣invalid) (begin-time␣10:00:00)

(duration␣10 minutes)

(reason␣changing-position-of-sensors))

means, that SaO2 will be invalid from 10:00:00 to 10:10:00 due to calibration
and changing of the position of the sensor.

4.2.2 Allowed changes of parameters
The checks for allowed changes of parameters is the comparison of the new value
with previously assessed values within a predefined time-interval. This method can
only be applied to continuously assessed quantitative values. We distinguish
between two situations: allowed changes of parameters without a therapeutic action
and allowed changes of parameters after a therapeutic action.

(a)      Allowed changes of parameters without a therapeutic action
If no therapeutic action has taken place, it is possible to check the changes of a
parameter within a particular time interval. The amount of change and the particular
interval is defined for each continuous parameter.
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For example,
(time-interval␣(kind␣allowed-changes) 

(parameter␣SaO2)␣(validation␣valid)␣

(duration␣5 minutes)␣(amount␣10%)␣

(reason␣without-a-therapeutic-action))

means, that only a change of less than 10% of the SaO2 value is valid within 5
minutes.

(b)      Allowed changes of parameters after a therapeutic action
If a therapeutic action has taken place, we would expect a particular parameter to
improve towards the normal range after a certain delay-time. The duty of this
method is to specify a larger amount of allowed changes of parameters for a
particular time interval.

For example,
(time-interval (kind␣allowed-changes) (parameter␣SaO2)

(validation␣valid) (begin-time␣11:00:00)

(duration␣10 minutes) (amount␣20%)␣

(reason␣after-a-therapeutic-action))

means, that a change of less than 20% of the SaO2 value is valid from 11:00:00
to 11:10:00.

4.3 Reasoning based on trends
The trend-based concept tries to analyze the development of a parameter during an
interval. A trend is a significant pattern in a sequence of time-ordered data.
Therefore the following methods can only handle continuously observed measure-
ments. It benefits from the dynamically derived qualitative trend-categories which
overcome the limitations of predefined static thresholds. VIE-VENT uses the
following methods: trend-based functional dependencies and assessment procedures
of the development of a parameter.

4.3.1 Preconditions

a)        Trend approximation
The problem of planning artificial ventilation of newborn infants - as in other
medical fields, like pediatric growth (Haimowitz and Kohane 1993) - lies in the lack
of an appropriate curve-fitting model to predict the development of a physiological
variable from actual measurements. Therefore our first effort is to approximate the
growth of the continuously assessed measurements PtcO2, PtcCO2 and SaO2 using a
simple linear regression model (E(Y)␣=␣a␣+␣k␣*␣Xi, where E(Y) is the expected
value, Xi  are the observed data points, a is a constant value (offset), and k is growth
rate).

Choosing this simple linear regression model was influenced by practical clinical
reasons: the only important characteristics of parameters used by physicians are on
the one hand increases, decreases, or zero changes of parameters, and on the other
hand too slow, too fast, or reasonable changes of parameters. Therefore it would be
superfluous to calculate a curve-fitting model of higher order with additional
features for our purpose.
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We distinguished four kinds of trends based on our samples, which are derived
from new measurements every 10 seconds. The distinction of the trends are guided
by physiological criteria:

(1) very short-term trend: sample of data points based on the last minute
(2) short-term trend: sample of data points based on the last 10 minutes
(3) medium-term trend: sample of data points based on the last 30 minutes
(4) long-term trend: sample of data points based on the last 3 hours

The very short-term, the short-term, and the medium-term trend are used for data
validation. The long-term trend is used for changing therapeutic strategies.

b)       Criteria of validity to calculate trends
During a monitoring process the position of a measurement in the sequence of time-
ordered data influences the reasoning process: namely, the recent measurements are
more important than the historical measurements. Therefore criteria dealing only
with the average distribution of the measurements are insufficient. Due to this
precondition we defined two criteria of validity to make sure that the used trend is
meaningful: an at least amount of valid measurements within the whole time
interval, and an at least amount of valid measurements at the end of the time interval.
These limits are defined by experts based on their clinical experience. They may
easily be adapted to the situation of a specific clinic based on the frequency at which
data values arrive. Table 1 shows the different conditions.

Kind of trend valid measurements

within the whole time

interval

valid measurements

at the end of the time

interval

very short-term trend at least 30 percent last 20 percent

short-term trend at least 40 percent last 30 percent

medium-term trend at least 45 percent last 35 percent

long-term trend at least 50 percent last 40 percent

Table 1: Criteria of validity

4.3.2 Trend-based functional dependencies
We can also define functional dependencies for expectations on trends. The
increase/decrease of a parameter suggests an increase/decrease of another. If such an
expectation is violated, one of these parameters must be faulty (classified as "some
are wrong"). The short-term trend is used for comparison.

E.g., if the minute ventilation (AMV) is increasing then PtcCO2 is expected to
decrease.

4.3.3 Assessment of developments of parameters
The assessment procedure of developments of a particular parameter is based on the
qualitative trend-categories (chapter 2.2) and the ordering of these categories. The
preconditions to proceed are a positive judgment of the criteria of validity to
calculate trends (chapter 4.3.1) and a valid allowed change of the parameter (chapter
4.2.2). The simple method of comparing the actual numerical growth rate with a
predefined growth threshold is not applicable in our case. The reason lies in the
physiological behavior which results in different expected normal growth rates
depending on the absolute values of the parameter. Therefore we use the ten
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qualitative trend-categories which reflect this dynamic aspect. The qualitative trend-
categories are divided by the normal region in an upper and a lower region.
According to these regions the ordering of the qualitative categories is defined as
follows

ordering of the qualitative trend-categories:
qualitative upper region:  A1 - A2 - A3 - ZA - C
qualitative lower region:  B1 - B2 - B3 - ZB - D

The assessment procedure compares the previous qualitative short-term trend-
category with the actual qualitative short-term trend-category. If the actual category
belongs to the same qualitative category or to a qualitative neighboring category of
the previous category then the parameter is validated as "correct". Otherwise the
parameter is classified as "wrong". We can only apply the short-term trends,
because the very short-term trend reacts too rapidly to small oscillations of the
values (compare figure 4) and the medium- and long-term trend are too insensitive.

Figure 4 illustrates an example of the assessment procedure of the SaO2 (arterial
oxygen saturation) time series. At 17:17:00 the SaO2 value is classified as "wrong",
because the actual qualitative short-term trend-category "C" does not belong to "D"
(the same qualitative category as the previous values) or to "ZB" (the neighboring
category of the previous categories). The very short-term trend categories are not
usable for this purpose, because they show too rapid changes of the qualitative
categories (at 17:06:00, 17:09:00, 17:12:00, and 17:14:00).
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Figure 4: Example assessing the developments of the parameter SaO2

4.2 Interaction of the methods
The reasoning methods based on time points and time intervals represent a
preprocessing for the reasoning based on trends. They primarily perform static data
validation which delivers the necessary preconditions to proceed with the trend-
based validation. Further, trend-based validation may result in the conclusion that a
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data value of the last point is implausible and has to be invalidated (in some severe
cases even older values have to be invalidated, which results in the problem of "the
revision of the past"). In such a case previous validation methods have to be
reapplied. Given such strong interaction of the methods presented the data validation
process has been implemented as a multi-step procedure.

5. Repair and adjustment
If a measurement was classified as "wrong", "some are wrong" or "unknown",
VIE-VENT tries to substitute a correct value. Additionally, if several monitor
parameters, which should reflect the same clinical context, deviate from each other a
dynamic calibration of these values is necessary. There are four repair possibilities:
functional dependencies, coping with missing values, dynamic calibration,
predicting a "correct" value. The user of VIE-VENT will be informed about the
repair action of a particular value and has the opportunity to disable this feature. All
the quantitative continuously and discontinuously assessed parameters can be
repaired.

5.1 Time-point-based repair and default values

5.1.1 Applying functional dependencies
Functional dependencies are based on time-point values. They are used for the
repair of the ventilator settings. Only values which had been classified as "some are
wrong" by the time-point-based causal and functional dependencies are involved in
this task. The set of dependencies are the same as used in chapter 4.1. But this
repair method takes the additional information of the reliability ranking into account.

5.1.2 Coping with missing values
This method is triggered if a value is marked as "unknown", "wrong", or "some are
wrong" and if it could not be adjusted by any other method. There are two options
to deal with missing values:

(a)      Simplified reasoning process
The simplified reasoning process uses only a few parameters. VIE-VENT uses a
simplified system model of neonatal respiration during the initial phase when the
only reliable continuous measurement is SaO2. There are restricted reactions to
decrease oxygenation depending on the degree of abnormality of the SaO2 and the
actual tidal volume (VT). The VT is estimated here by the extent of the chest wall
expansion.

(b)      No solution
When all measurements are "unknown", "wrong", or "some are wrong" or a critical
situation has arisen in the past, VIE-VENT is unable to find a solution and the
recommendations of appropriate treatments are shifted to the physician.

5.2 Time-interval-based adjustment

5.2.1 Dynamic calibration of values
When we observe various monitoring parameters, some of the parameters reflect the
same clinical context. If these parameters deviate from each other due to the
individual situation of the patient or due to variations in the environmental
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conditions under which the sensors operate, we need a dynamic adjustment. This is
done under the assumption that the previous data validation task has classified the
data as "correct". The method we use is a linear calibration based on the reliability
ranking and on an analysis of real clinical data.

The activation of calibration depends on the time-point-based measurement. The
calibration is done in case the qualitative data-point-values differ by two qualitative
categories.

For example, one of the benefits of VIE-VENT is the opportunity to combine values
of the transcutaneous blood gas monitor with the more reliable but only rarely
drawn discontinuous arterial blood gas measurements. Therefore transcutaneous
measurements have to be calibrated against arterial blood gas measurements,
PtcCO2␣=␣corr␣(PaCO2), where corr is a linear correlation function. The analysis
of 442 cases with corresponding measurements results in the following correlation:
PtcCO2=corr(PaCO2)=2.226+1.039 PaCO2 with r2␣=␣0.705. If qualitative data-
point-value of corr(PaCO2) and of the actual measured PtcCO2, meas differ by two
qualitative categories the activation becomes true and the new calibrated value
PtcCO2, calc is calculated as follows,

PtcCO2
* = corr(PaCO2) = 2.226 + 1.039 PaCO2

c = PtcCO2
* - PtcCO2, meas

PtcCO2, calc = c + PtcCO2, meas.

The dynamic calibration lasts as long as the discontinuous measurement is set valid
(compare 4.2.1).

5.3 Trend-based repair

5.3.1 Predicting values
During a monitoring process the position of a sensor has to be changed frequently
and regularly. Therefore the measurements are often missing. The implicit assump-
tion of missing measurements during such a position change is that they will be
steady keeping their previously observed values. However, we may be more clever
by propagating our trends.

There are two possibilities to deal with missing measurements. First, a stepwise
backward checking of the last reliable value and continuing with this value as long
as no other system change is detected. Second, applying the previously explained
linear regression model based on the short-term trend to predict a "correct" value. A
precondition is the stability of the trend. The stability is assessed applying the quali-
tative trend-categories. If the medium-term and short-term qualitative trend-cate-
gories are identical, the precondition of intrinsic development of the measurements
becomes true. The trend-based prediction of a value is a more accurate action,
because it takes the history of the values into account. But the criteria of validity to
calculate a trend have to be fulfilled to predict a value.

Dealing with trend data and continuously and discontinuously assessed measure-
ments leads to the problem of "the revision of the past". First, we may detect that
we have falsely classified previously observed measurements as correct or wrong
respectively (e.g., wrong prediction of a measurement based on calculation of the
trend). Second, there exists a delay-time when collecting discontinuous laboratory
data. When the data become available they reflect the clinical situation some minutes
ago (e.g., at the time the blood sample was drawn). We time-stamp such data and
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use this information especially for the calibration process. However, this may make
necessary to revise decisions already taken. In real time we cannot withdraw thera-
peutic actions and their consequences. Instead we have to adjust therapeutic recom-
mendations. We are aware of circumstances which enforce a revision of such past
decisions. Future research will take into account such revisions especially during the
evaluation whether a therapeutic action was successful or unsuccessful for the
patient.

6. Conclusion and further enhancement
We demonstrate methods for automated data validation and repair based on temporal
ontologies (time points, time intervals, and trends). They take into account the
various types of data available occurring at various frequencies and combine and
integrate a bunch of methods for data validation in a real-time environment. It is
important to use all available information for data validation, to cross-validate
continuously and discontinuously observed data, and to cross-validate data from
different sources. Of essential importance is the reliability ranking of data values to
reach meaningful conclusions in conflicting situations. Such reliability may result
from a priori definitions, from experience, or from dynamic evaluation of the
current data set.

Our approach benefits from dynamically derived qualitative data-point- and trend-
categories which result in unified qualitative descriptions of parameters and
overcome the limitations of comparison with predefined static thresholds.

An important research topic for the future is the integration of methods which learn
from past experience, both from data collected from an individual patient in the past,
and from similar situations in our patient data base. Additionally, we will try to
integrate strategies solving the problem of "the revision of the past".
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