
A Tight Integration of Pruning and Learning

�

Johannes F�urnkranz

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

E-mail: juffi@ai.univie.ac.at

Abstract

This paper outlines some problems that may occur with Reduced Error

Pruning in rule learning algorithms. In particular we show that pruning

complete theories is incompatible with the separate-and-conquer learning

strategy that is commonly used in propositional and relational rule learning

systems. As a solution we propose to integrate pruning into learning and

examine two algorithms, one that prunes at the clause level and one that

prunes at the literal level. Experiments show that these methods are not

only much more e�cient, but also able to achieve small gains in accuracy

by solving the outlined problem.

Keywords: Rule Learning, Inductive Logic Programming, Pruning, Noise

OEFAI-TR-95-03

�

An Extended Abstract of this paper appeared in the Proceedings of the ECML-95.

1 Introduction

Most rule learning algorithms deal with noise in the data during learning, i.e. they

employ pre-pruning. In relational learning systems such as Foil (Quinlan and

Cameron-Jones 1993), mFoil (D�zeroski and Bratko 1992), or Fossil (F�urnkranz

1994b) pre-pruning is commonly used in the form of so-called stopping criteria.

An alternative way for dealing with noise | post-pruning | is to �rst learn a

theory that over�ts the data and then prune this theory to an appropriate level

of generality. The most common post-pruning algorithm, Reduced Error Pruning

(REP), has been adapted from propositional decision tree learning (Quinlan 1987)

to relational rule learning (Brunk and Pazzani 1991). However, this adaptation

has several shortcomings. In particular we will argue in section 2 that post-

pruning complete theories is incompatible with the commonly used separate-and-

conquer rule learning strategy. As a solution we propose to integrate pruning

into learning and examine two algorithms, one that prunes at the clause level

(section 3) and one that prunes at the literal level (section 4). In section 5

we will report some experiments in relational and propositional domains which

show that these methods can improve the learning process in terms of speed and

accuracy.

2 REP

Reduced Error Pruning (REP) was originally proposed in (Quinlan 1987) as a

method for post-pruning decision trees. Pagallo and Haussler (1990) adapted it

for learning decision lists. A version that can be used for relational learning was

then introduced in (Brunk and Pazzani 1991).

The basic algorithm of this version is depicted in Fig. 1. After splitting the

training set into a growing and a pruning set according to some user-speci�ed

ratio, a concept description that covers all of the positive and none of the neg-

ative examples of the growing set is learned with a separate-and-conquer rule

learning algorithm like the propositional learner CN2 (Clark and Niblett 1989)

or the relational learner Foil (Quinlan 1990). This intermediate theory is then

simpli�ed by deleting literals and clauses until any further deletion would lead to

a decrease of accuracy on the pruning set.

The major shortcomings of this straightforward adaptation of REP for rule

learning are its ine�ciency and its incompatibility with the separate-and-conquer

search strategy that is commonly employed in propositional and relational rule

learning algorithms. REP is very ine�cient, because the over�tting theory it gen-

erates in its �rst pass can be much more complex than the �nal theory that is left

after the post-pruning phase. A lot of work is wasted in learning and subsequently

pruning super
uous literals and clauses. This argument has been formalized in

(Cohen 1993), where it was shown that the growing phase of REP has a time

1

procedure REP(Examples, SplitRatio)

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Theory = SeparateAndConquer(GrowingSet)

loop

NewTheory = SimplifyTheory(Theory,PruningSet)

if Accuracy(NewTheory,PruningSet) <

Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory

return(Theory)

Figure 1: Reduced Error Pruning

complexity of
(n

2

log n) and that its pruning phase has a time complexity of

(n

4

) (where n is the size of the training set).

F�urnkranz and Widmer (1994) point out another problem with REP that is

caused by the di�erences between the divide-and-conquer approach used for deci-

sion tree learning and the separate-and-conquer strategy commonly used for rule

learning. The decision tree learning algorithms of the TDIDT family (Quinlan

1986) all use a divide-and-conquer strategy. After having selected an appropriate

test for the root note of the decision tree, the algorithm divides training set into

disjoint subsets, each one representing a possible outcome of the chosen test. The

algorithm is then recursively applied to each of these sets independently.

On the other hand, greedy covering algorithms like Foil follow a separate-

and-conquer approach. Here the learner constructs the theory rule by rule. After

a rule is learned the algorithm separates all examples that are covered by this

rule from the current set of training examples. Then the algorithm is recursively

applied to �nd rules that explain the remaining examples.

Although the separate-and-conquer approach shares many similarities with

the divide-and-conquer strategy, there is one important di�erence: Pruning of

branches in a decision tree will never a�ect the neighboring branches, whereas

pruning of literals of a rule will a�ect all subsequent rules. Figure 2 (a) illustrates

how post-pruning in decision tree learning works. The right half of the initially

grown tree covers the sets C and D of the training instances. When the pruning

algorithm decides to prune these two leaves, their ancestor node becomes a leaf

that now covers the examples C [D. The left branch of the decision tree is not

in
uenced by this operation.

Pruning a literal from a clause on the other hand means that the clause is

generalized, i.e. it will cover more positive instances along with some negative

instances. Consequently those additional positive and negative instances should

be removed from the training set so that they cannot in
uence the learning of

2

Pruning

Training
ExamplesA B C D A B C D

(a)

Pruning

Training
Examples

Training
Examples

A

B

C

C
AB1

B2

(b)

Figure 2: Post-Pruning in (a) divide-and-conquer and (b) separate-and-conquer

learning algorithms.

subsequent clauses. However, the initial growing phase of REP does not know

which of the instances are noisy and will henceforth carry along instances that

should already be covered by one of the previous clauses.

In the example of �gure 2 (b) the �rst of three rules is simpli�ed and now

covers not only the examples its original version has covered, but also all of the

examples that the third rule has covered and some of the examples that the

second rule has covered. While the third rule could easily be removed by the

pruning algorithm, in general it need not be the case that the second rule or one

of its pruned versions will be good explanations for the remaining set of examples

B2, because B2 is a subset of the original set B and pruning operators can only

generalize and not specialize the concept. Besides, it might well be the case that

a good explanation for B2 consists of a totally di�erent set of literals than a good

explanation for its superset B. Conversely, if several sets like B2 appear, their

union might have a much simpler explanation than the logical disjunction of the

explanations previously found for their supersets.

Another way of looking at this problem may be to view a PROLOG program

as a binary decision tree that allows conjunctive tests at each interior node, and

3

where at least one of the two successors of each node is a leaf. The body of

each clause of the program corresponds to a node in the decision tree. If the

body is true, the head is proven and we arrive at a leaf node. Otherwise we

try the next node in the tree, i.e. the next clause in the program. Classical

decision tree pruning would only allow pruning the nodes bottom up, i.e. only

allow the deletion of clauses from the end of the program. REP, however, not

only allows pruning any (instead of only the last) node, but also pruning the

conditions of the rules associated with each node by deleting literals. Changing

the test associated with a node in a decision tree will in general change the split

it induces on the examples and thus could lead to the generation of di�erent

subtrees for its children. However, as the test is changed at pruning time (after

learning), REP has to keep the subtree that has been previously learned from

a di�erent set of examples, although there might be a better subtree to explain

this new set of examples.

Thus it is clear that the initial over�tting phase of post-pruning algorithms

may in the best case only lead to the generation of some additional clauses that

will be pruned in the pruning phase (like the third rule in the example). In the

worst case, however, the instances that will be covered by a pruned rule, but are

not covered by its unpruned original (the sets C and B1 in our example) may

lead the learner down a garden path. They may change the evaluation of the

candidate literals in subsequent learning and thus the \correct" literals might

not be selected. A wrong choice of a literal cannot be undone by pruning.

3 I-REP

Incremental Reduced Error Pruning (I-REP) (F�urnkranz and Widmer 1994) was

motivated by the observation that REP is incompatible with the separate-and-

conquer learning strategy as we have discussed in section 2. Its basic idea is that

instead of �rst growing a complete concept description and pruning it thereafter,

each individual clause will be pruned right after it has been generated. This

ensures that the algorithm can remove the training examples that are covered by

the pruned clause before subsequent clauses are learned. Thus it can be avoided

that these examples in
uence the learning of the following clauses.

A pseudo-code version of the algorithm can be found in Fig. 3. Before learning

a clause, the current set of training examples is split into a growing (usually

2/3) and a pruning set (usually 1/3) as in many post-pruning algorithms. After

learning a clause from the growing set, literals will be deleted from this clause in

a greedy fashion until any further deletion would decrease the accuracy of this

clause on the pruning set. The resulting rule will then be added to the concept

description and all covered positive and negative examples will be removed from

the training | growing and pruning | set. The remaining training instances are

then redistributed into a new growing and a new pruning set to ensure that each

4

procedure I-REP(Examples, SplitRatio)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Cover = GrowingSet

while Negative(Cover) 6= ;

Clause = Clause [FindLiteral(Clause; Cover)

Cover = Cover(Clause,Cover)

loop

NewClause = SimplifyClause(Clause,PruningSet)

if Accuracy(NewClause,PruningSet) <

Accuracy(Clause,PruningSet)

exit loop

Clause = NewClause

if Accuracy(Clause,PruningSet) �

Accuracy(fail,PruningSet)

exit while

Examples = Examples � Cover

Theory = Theory [Clause

return(Theory)

Figure 3: Incremental Reduced Error Pruning

of the two sets contains the prede�ned percentage of the remaining examples.

From these sets the next clause will be learned. When the predictive accuracy

of the pruned clause is below the predictive accuracy of the empty clause (i.e.

the clause with the body fail), the clause will not be added to the concept

description and I-REP returns the learned clauses.

Most of the e�ciency of the I-REP algorithm comes from the integration of

pre-pruning and post-pruning by this de�nition of a stopping criterion based on

the accuracy of the pruned clause on the pruning set. Thus I-REP does not need

REP's delete-clause operator (Brunk and Pazzani 1991), because the clauses of

the �nal theory are constructed directly and learning stops when no more useful

clauses can be found. However, this may also cause problems: Whenever the

pruned clause does not have an accuracy above the accuracy of the empty clause,

no more clauses will be learned. If this accuracy is not estimated accurately,

either because there are not enough remaining examples or because of a bad

split, I-REP will be prone to over-generalization.

5

procedure I

2

-REP(Examples)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

SplitExamples(0.5, Examples, SetA, SetB)

CoverA = SetA

CoverB = SetB

while (Negative(CoverA) 6= ;) ^ (Negative(CoverB) 6= ;)

ClauseA = Clause [FindLiteral(Clause; CoverA)

ClauseB = Clause [FindLiteral(Clause; CoverB)

if Accuracy(ClauseA,Examples) >

Accuracy(ClauseB,Examples)

NewClause = ClauseA

else

NewClause = ClauseB

if Accuracy(NewClause,Examples) <

Accuracy(Clause,Examples)

exit while

CoverA = Cover(NewClause,CoverA)

CoverB = Cover(NewClause,CoverB)

Clause = NewClause

if Accuracy(Clause,Examples) �

Accuracy(fail,Examples)

exit while

Examples = Examples � (CoverA [CoverB)

Theory = Theory [Clause

return(Theory)

Figure 4: I

2

-REP

4 I

2

-REP

I-REP still has to learn over�tting clauses which we tried to avoid with a new

algorithm. Just as I-REP improves upon REP by pruning on the clause level

instead of the theory level, we tried to improve I-REP by pruning on the literal

level instead of the clause level. Figure 4 shows the resulting algorithm, I

2

-REP.

As in pre-pruning algorithms I

2

-REP tries to select only the right literals in

the �rst place and to decide when to stop adding literals to the theory. However,

it uses a typical post-pruning method (evaluation on a separate pruning set) to

do so. For this purpose the set of training examples is split into two subsets of

equal size. A literal that maximizes some heuristic function is found for each of

the two sets. These two literals are then compared and the one that has a higher

accuracy on the entire set of examples is chosen to extend the current clause.

This is repeated until the clause covers no negative examples in one of the two

6

sets or until the chosen literal does not improve the accuracy of this clause. In

that case the learned clause is compared to the clause with the body fail and if

its accuracy is higher, it will be added to the theory and the next clause will be

learned from the examples that are not yet covered. If the current clause cannot

improve upon the empty clause, learning stops as in I-REP.

One of the problems with I-REP is that a bad split of the training examples

into a growing and a pruning set can cause over-generalisation, because I-REP

would either learn an incorrect clause from a bad growing set or evaluate a correct

clause on a bad pruning set. In both cases the learned clause may appear worse

than the empty clause and I-REP will stop. As we will see in section 5 this can

lead to the learning of over-general domain theories, in particular in domains with

only a limited amount of noise or domains with low example set sizes. I

2

-REP

having two literals to chose from, will hopefully be less likely to prematurely stop

learning if one of them is a bad choice or a good choice that is badly evaluated.

Besides, I

2

-REP's procedure for selecting a literal is very similar to 2-fold cross-

validation which has recently been shown to be a reliable procedure for comparing

classi�ers, in particular at low training set sizes (Weiss and Indurkhya 1994).

Therefore we hope that I

2

-REP will be able to improve upon I-REP in these

cases.

5 Experiments

We have tested REP, I-REP, and I

2

-REP on the relational KRK chess endgame

domain and on several propositional domains from the UCI repository of Machine

Learning databases. I-REP was tested with two di�erent settings. The one that

has been used in all previous experiments (see e.g. (F�urnkranz 1994a)) splits the

training examples in the ratio 2=3 growing and 1=3 pruning examples. In the

other setting I-REP splits the training examples into halves. The latter version

has been included into the test series in order to have a better evaluation of the

merits of I

2

-REP, because this version of I-REP used exactly the same splits as

I

2

-REP, but only selected literals from the �rst of the two sets.

All algorithms were implemented in SICStus PROLOG and had major parts

of their implementations in common. In particular they shared the same interface

to the data and used the same procedures for splitting the training sets. Mode,

type and symmetry information about the background relations was used to

restrict the search space. Information gain was used as a search heuristic. All

results are averaged from 10 di�erent runs on di�erent training sets. We report

the average accuracy, its standard deviation �

n

, and its range (the di�erence

between the maximum and minimum value encountered in the 10 runs). The

range information was used for a simple signi�cance test which can be used to

quickly determine signi�cant di�erences between the averages for small (n < 20)

sample sizes (Mittenecker 1977). For n = 10 the value of L =

�

1

��

2

R

1

+R

2

has to be

7

> 0:152 for a signi�cance level of 5% and > 0:210 for a signi�cance level of 1%,

where �

i

are averages and R

i

are ranges.

In addition, we also report the run-times of all algorithms. The results of REP

are taken from previous experiments (F�urnkranz 1994a) which were performed

on the same datasets, but on a slower machine. The values for the run-times

of REP have therefore been adjusted by a factor that has been estimated from

the run-time di�erences of I-REP on both machines. This has yielded very good

approximations as we have con�rmed with a few test runs.

5.1 Results in the KRK domain

The KRK domain has become a standard benchmark problem for testing rela-

tional learning systems. The domain theory used in our experiments is extensively

described in the appendix of (F�urnkranz 1994a). In the KRK domain we used

5 di�erent training set sizes containing 10% of arti�cial class noise, i.e. 10% of

the training examples were misclassi�ed. For each training set size we used 10

di�erent example sets. Accuracies were measured on 5000 noise-free examples.

The training and test data were the same for all algorithms. The data sets used

are exactly the same as in our previous experiments in this domain (F�urnkranz

1994a; F�urnkranz 1994) so that the accuracy results are directly comparable to

the results of other algorithms reported there. However, as already mentioned,

the run-times have to be adjusted accordingly.

From table 1 we can see that I-REP and I

2

-REP in general learn more accurate

theories than REP. In fact, I

2

-REP learns a signi�cantly (1%) better theory than

REP at all training set sizes. I-REP is not as consistent. In particular at low

training set sizes it is likely to over-generalize. E.g. at size 100 I-REP (2=3)

returns a theory that is signi�cantly worse than the one learned by I

2

-REP. At

low training set sizes I

2

-REP seems to be able to make better use of the available

training examples. At high example set sizes I-REP and I

2

-REP both learn

simple approximations to the target concept, while REP starts to over�t the

noise, because it has to prune more and more clauses and literals and is likely to

get stuck at a local optimum.

I-REP (1=2) learns signi�cantly better theories than REP at sizes 500 and

1000, while I-REP (2=3) does so at sizes 250 and 1000. In addition, at size 1000

I-REP (2=3) was signi�cantly better than its counterpart that used only 1=2

of the examples for learning. However, in general the good performance of the

latter version showed that it is not only important to have a enough examples for

learning, but there also have to be enough examples for pruning. I

2

-REP's way of

using both example sets for both tasks seems to form a reasonable compromise.

However, there clearly is a price to be paid for this increase in reliability:

I

2

-REP is slower than I-REP. Nevertheless the asymptotic time complexity of

both algorithms is about the same as can be seen from table 2 which contains

a log-log analysis as originally suggested in (Cameron-Jones 1994). Dividing the

8

Table 1: Results in the KRK domain.

KRK-100 Accuracy Stnd. Dev. Range CPU secs.

REP 91.77 8.59 28.52 5.68

I-REP (2=3) 84.55 9.39 31.00 2.21

I-REP (1=2) 91.17 9.78 31.44 2.04

I

2

-REP 95.48 5.12 14.32 3.14

KRK-250 Accuracy Stnd. Dev. Range CPU secs.

REP 96.29 1.84 6.30 101.10

I-REP (2=3) 98.34 0.89 3.66 8.91

I-REP (1=2) 96.68 4.12 13.78 6.25

I

2

-REP 98.48 0.66 2.30 11.60

KRK-500 Accuracy Stnd. Dev. Range CPU secs.

REP 97.62 0.91 3.12 1025.71

I-REP (2=3) 98.49 1.24 4.56 23.35

I-REP (1=2) 98.80 0.54 1.36 18.19

I

2

-REP 98.92 0.59 1.50 27.83

KRK-750 Accuracy Stnd. Dev. Range CPU secs.

REP 97.47 1.36 4.62 4131.84

I-REP (2=3) 98.86 0.48 1.22 40.89

I-REP (1=2) 99.19 0.42 1.16 35.19

I

2

-REP 99.21 0.42 1.28 49.89

KRK-1000 Accuracy Stnd. Dev. Range CPU secs.

REP 97.72 1.18 3.70 13615.50

I-REP (2=3) 99.48 0.25 0.92 59.10

I-REP (1=2) 98.94 0.55 1.36 44.80

I

2

-REP 99.27 0.50 1.56 71.10

di�erences of the logarithms of the run-times by the di�erences of the logarithms

of the training set sizes gives an approximation for the degree of the highest order

term of the growth function. We have tabulated the slopes for adjacent training

set sizes in table 2.

The main result for our study is that I-REP and I

2

-REP both have a sub-

quadratic time complexity in noisy domains. This is consistent with the conjec-

ture of (F�urnkranz and Widmer 1994), where we estimated I-REP to have a time

complexity of O(n log

2

n) on random data. Thus both algorithms are signi�cantly

faster than the initial over�tting phase of post-pruning algorithms which typically

has a time complexity of
(n

2

log n) (Cohen 1993) (see also the �rst column of

table 2). Asymptotically I

2

-REP even seems to be a little more e�cient than

I-REP, as can be expected from the fact that it does not have to learn over�tting

clauses. However, the presented results do not allow this conclusion.

Our results also con�rm that the pruning phase is the most expensive part

of REP with a time complexity of
(n

4

). However, in (Cohen 1993), where this

problem was discussed for the �rst time, an e�cient alternative was suggested

9

Table 2: Log-log analysis of the run-times on noisy KRK data.

KRK

Set

Sizes

REP

Rule

Growth

REP

Pruning

I-REP

(2=3)

I-REP

(1=2)

I

2

-REP

100-250 2.61 4.11 1.52 1.22 1.20

250-500 2.32 3.91 1.39 1.54 1.26

500-750 2.26 3.78 1.38 1.63 1.44

750-1000 2.16 4.00 1.28 0.84 1.23

that keeps the run-time of post-pruning below the run-time of the initial rule

growing phase by using a top-down instead of a bottom-up search.

1

Although this

would speed up the total learning time considerably, the algorithm would still be

much slower than I-REP and I

2

-REP, because their run-times are signi�cantly

below that of the initial over�tting phase that is common to all post-pruning

approaches.

5.2 Propositional Domains

We have also compared the algorithms on various propositional data sets from

the UCI repository of Machine Learning databases. In this case our algorithms

behave very similar to the CN2 rule induction system (Clark and Niblett 1989;

Clark and Boswell 1991). The appendix of (Holte 1993) gives a summary of the

results achieved by various algorithms on some of the most commonly used data

sets of the UCI repository and a short description of these sets. We selected 9 of

them for our experiments. The remaining sets were not used because either the

description of the data sets was unclear or they had more than two classes, which

cannot be handled by our current implementation of the learning algorithms. In

the Lymphography data set we removed the 6 examples for the classes \normal

�nd" and \�brosis" in order to get a 2-class problem. All other data were used

as described in (Holte 1993).

In all datasets the background knowledge consisted of < and = relations with

one variable and one constant argument. Wherever appropriate, comparisons

between two di�erent variables of the same data type were allowed as well (e.g.

in the Vote domains). Introduction of new variables was not allowed. For all

1

Similar experiments reported in (F�urnkranz 1994a) con�rm the result of (Cameron-Jones

1994) that the asymptotic time complexity of this top-down approach to pruning is still above

the complexity of the initial over�tting phase contrary to a claim in (Cohen 1993). However,

in absolute terms the pruning costs of the top-down version were always neglible compared to

the costs of initial rule growing, while the opposite was true for the bottom-up pruning used in

REP.

10

Table 3: Results in some propositional domains.

Breast Cancer Accuracy Stnd. Dev. Range CPU secs.

REP 69.97 3.80 12.16 104.35

I-REP (2=3) 70.89 5.23 19.58 11.75

I-REP (1=2) 69.42 4.51 14.48 6.51

I

2

-REP 70.93 3.71 11.54 16.18

Hepatitis Accuracy Stnd. Dev. Range CPU secs.

REP 76.96 3.93 10.80 40.88

I-REP (2=3) 78.66 2.80 7.34 24.14

I-REP (1=2) 78.09 2.48 7.55 15.13

I

2

-REP 74.70 6.27 20.11 49.21

Sick Euthyroid Accuracy Stnd. Dev. Range CPU secs.

REP 97.55 0.32 1.06 5121.28

I-REP (2=3) 97.48 0.50 1.70 986.31

I-REP (1=2) 97.56 0.41 1.45 507.11

I

2

-REP 97.61 0.36 1.07 1367.22

Glass (G2) Accuracy Stnd. Dev. Range CPU secs.

REP 77.76 4.31 14.73 93.31

I-REP (2=3) 76.31 4.89 15.95 26.54

I-REP (1=2) 74.06 4.51 13.33 16.72

I

2

-REP 77.98 4.77 14.62 36.24

Votes Accuracy Stnd. Dev. Range CPU secs.

REP 95.84 1.39 3.92 22.83

I-REP (2=3) 94.75 1.75 6.95 8.92

I-REP (1=2) 95.27 1.03 3.77 6.55

I

2

-REP 94.98 1.14 3.88 9.84

Votes (VI) Accuracy Stnd. Dev. Range CPU secs.

REP 86.72 3.46 10.78 62.31

I-REP (2=3) 87.25 3.27 10.75 14.80

I-REP (1=2) 86.51 3.68 12.77 10.65

I

2

-REP 88.60 2.06 8.07 22.63

KRKPa7 Accuracy Stnd. Dev. Range CPU secs.

REP 97.84 0.54 2.01 3946.39

I-REP (2=3) 97.74 0.36 1.32 1660.65

I-REP (1=2) 97.37 0.57 1.75 1266.62

I

2

-REP 97.83 0.49 1.86 2230.70

Lymphography (2 classes) Accuracy Stnd. Dev. Range CPU secs.

REP 81.85 4.86 16.83 7.72

I-REP (2=3) 79.17 4.42 15.30 4.16

I-REP (1=2) 78.93 5.24 16.15 3.18

I

2

-REP 82.32 4.70 17.41 6.90

Mushroom Accuracy Stnd. Dev. Range CPU secs.

REP 99.97 0.05 0.15 763.82

I-REP (2=3) 99.97 0.04 0.11 986.04

I-REP (1=2) 99.96 0.05 0.15 856.73

I

2

-REP 99.94 0.07 0.19 1373.26

11

data sets the task was to learn a de�nition for the minority class. All experiments

followed the setup used in (Holte 1993), i.e. the algorithms were trained on 2=3 of

the data and tested on the remaining 1=3. However, only 10 runs were performed

for each algorithm on each data set.

In the results of table 3 I

2

-REP achieves the highest accuracy in 5 of the

9 data sets. However, none of the di�erences in accuracy are signi�cant, not

even at the 5% level (mostly because the results of di�erent runs in the same

domain vary considerably). In the Hepatitis domain I

2

-REP is clearly worse than

the other algorithms. In this domain I-REP pro�ts from its strong over�tting

avoidance bias. In some of the 10 runs it learns an empty theory and classi�es

it with baseline accuracy. In this domain this helps to improve the average

performance, because all algorithms learn theories that are below the default

accuracy. That I

2

-REP's over�tting avoidance bias is not as strong as I-REP's

can also be seen from the results in domains with low noise levels

2

like KRKPa7

and Lymphography, where I

2

-REP achieves better results. In these domains, as

in domains with low example set sizes, I-REP is likely to over-generalize. This

can also be seen from the run-times when I

2

-REP is more than twice as slow as

I-REP (1=2), which means that it must have learned more literals.

I-REP is the fastest algorithm in all tested domains except for the noise-free

Mushroom domain. Here algorithms that do not prune at all are able to achieve

an accuracy of 100% (see (F�urnkranz 1994)). REP's post-pruning phase therefore

does not change much on the theories produced by the initial over�tting phase

and therefore is almost costless. The overhead associated with I-REP and I

2

-REP

in this case outweighs the bene�ts (I

2

-REP also seems to over�t the data a little

bit). But in general I-REP has proven to be a more e�cient alternative to REP

in noisy domains, while I

2

-REP improves upon I-REP in domains with low noise

levels and/or low example set sizes.

6 Conclusion

In this paper we have outlined some principal problems with using Reduced Error

Pruning for separate-and-conquer rule learning algorithms. We have suggested

two alternative versions that, by integrating pruning and learning, do not prune

entire domain theories, but prune at the clause level (I-REP) or even at the

literal level (I

2

-REP). Doing so results in considerable gains in e�ciency (both

alternatives are signi�cantly faster than REP's initial rule growing phase alone)

and may also yield better results in terms of accuracy by avoiding the above-

2

In (F�urnkranz 1994a) and (F�urnkranz 1994) we grouped the nine domains into three sets:

In the �rst three domains post-pruning signi�cantly improved upon the result from the initial

over�tting phase, in the second three domains it did not change much and in the last three

domains it worsens the result. We have interpreted this as evidence that the last three domains

are not very noisy, while the �rst three are.

12

mentioned problems. However, the di�erences in the tested propositional domains

were not as signi�cant as in the relational KRK domains, possibly because the

discussed problems are not as relevant for the former as they are for the latter.

Recently several alternatives to REP have been proposed (Cohen 1993;

Cameron-Jones 1994). In (F�urnkranz 1994a) we discuss some of these algorithms

in detail and compare them to I-REP as well as to other relational or propositional

learning systems. However, as they are mostly concerned with improving REP's

expensive pruning phase only, they are also subject to the problems discussed in

section 2.

Acknowledgements

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen For-

schung (FWF) under grant number P10489-MAT. Financial support for the Austrian Research

Institute for Arti�cial Intelligence is provided by the Austrian Federal Ministry of Science and

Research. I would like to thank Gerhard Widmer and Bernhard Pfahringer for many helpful

comments and discussions. Thanks are also due to William Cohen, Mike Cameron-Jones and

Ross Quinlan for some valuable suggestions.

References

Brunk, C. A. and M. J. Pazzani (1991). An investigation of noise-tolerant rela-

tional concept learning algorithms. In Proceedings of the 8th International

Workshop on Machine Learning, Evanston, Illinois, pp. 389{393.

Cameron-Jones, R. (1994, May). The complexity of Cohen's grow method.

Unpublished draft for comments.

Clark, P. and R. Boswell (1991). Rule induction with CN2: Some recent im-

provements. In Proceedings of the 5th European Working Session of Learn-

ing, Porto, Portugal, pp. 151{163.

Clark, P. and T. Niblett (1989). The CN2 induction algorithm.Machine Learn-

ing 3 (4), 261{283.

Cohen, W. W. (1993). E�cient pruning methods for separate-and-conquer rule

learning systems. In Proceedings of the 13th International Joint Conference

on Arti�cial Intelligence, Chambery, France, pp. 988{994.

D�zeroski, S. and I. Bratko (1992). Handling noise in Inductive Logic Program-

ming. In Proceedings of the International Workshop on Inductive Logic Pro-

gramming, Tokyo, Japan.

F�urnkranz, J. (1994). A comparison of pruning methods for relational concept

learning. In Proceedings of the AAAI-94 Workshop on Knowledge Discovery

in Databases, pp. 371{382.

13

F�urnkranz, J. (1994a). E�cient Pruning Methods for Relational Learning. Ph.

D. thesis, Vienna University of Technology.

F�urnkranz, J. (1994b). Fossil: A robust relational learner. In Proceedings of

the European Conference on Machine Learning, Catania, Italy, pp. 122{137.

Springer-Verlag.

F�urnkranz, J. (1994). Pruning methods for rule learning algorithms. In Proceed-

ings of the 4th International Workshop on Inductive Logic Programming,

Number 237 in GMD{Studien, pp. 321{336.

F�urnkranz, J. and G. Widmer (1994). Incremental Reduced Error Pruning.

In Proceedings of the 11th International Conference on Machine Learning,

New Brunswick, NJ, pp. 70{77.

Holte, R. C. (1993). Very simple classi�cation rules perform well on most com-

monly used datasets. Machine Learning 11, 63{91.

Mittenecker, E. (1977). Planung und statistische Auswertung von Experimenten

(8th ed.). Vienna, Austria: Verlag Franz Deuticke. In German.

Pagallo, G. and D. Haussler (1990). Boolean feature discovery in empirical

learning. Machine Learning 5, 71{99.

Quinlan, J. R. (1986). Induction of decision trees.Machine Learning 1, 81{106.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-

Machine Studies 27, 221{234.

Quinlan, J. R. (1990). Learning logical de�nitions from relations. Machine

Learning 5, 239{266.

Quinlan, J. R. and R. M. Cameron-Jones (1993). FOIL: A midterm report.

In Proceedings of the European Conference on Machine Learning, Vienna,

Austria, pp. 3{20.

Weiss, S. M. and N. Indurkhya (1994). Small sample decision tree pruning. In

Proceedings of the 11th Conference on Machine Learning, Rutgers Univer-

sity, New Brunswick, NJ, pp. 335{342.

14

