
Compression-Based Feature Subset Selection

Bernhard Pfahringer

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

E-mail: bernhard@ai.univie.ac.at

Phone: (+43 1) 533-6112

Fax: (+43 1) 532-0652

Keywords: Machine Learning, Inductive Learning, Minimum Description

Length Principle, Noise

Abstract

Irrelevant and redundant features may reduce both predictive accu-

racy and comprehensibility of induced concepts. Most common Machine

Learning approaches for selecting a good subset of relevant features rely on

cross-validation. As an alternative, we present the application of a partic-

ular Minimum Description Length (MDL) measure to the task of feature

subset selection. Using the MDL principle allows taking into account all of

the available data at once. The new measure is information-theoretically

plausible and yet still simple and therefore e�ciently computable. We show

empirically that this new method for judging the value of feature subsets

is more e�cient than and performs at least as well as methods based on

cross-validation. Domains with both a large number of training examples

and a large number of possible features yield the biggest gains in e�ciency.

Thus our new approach seems to scale up better to large learning problems

than previous methods.

Submitted to IJCAI95.



1 Introduction

The problem of feature subset selection involves �nding a good subset of all

given features. Some of these attributes may be irrelevant or redundant.

Goodness is usually de�ned by some objective function like predictive accu-

racy of the resulting concept hypothesis, its structural complexity or { prob-

ably domain-dependent { the cost of tests or combinations thereof. As es-

pecially predictive accuracy cannot reliably be estimated from the complete

set of training examples, usually some kind of cross-validation has to be used

[John et al. 94, Kohavi 95, Caruana & Freitag 94].

In this paper we describe the application of the Minimum Description Length

(MDL) principle [Rissanen 78] as an objective function for judging goodness of

a feature subset. Feature subsets are used to construct so called simple decision

tables [Kohavi 95]. MDL takes into account both the simplicity and the accuracy

of the simple decision tables induced by particular feature subsets. MDL uses all

of the training data at once eliminating the need for costly cross-validation runs.

The MDL Principle has been successfully applied in Machine Learning before, for

inducing decision trees [Quinlan & Rivest 89, Quinlan 93, Wallace & Patrick 93,

Forsyth 93], for inducing production rules [Pfahringer 95], for constructing new

attributes [Pfahringer 94], and in ILP [Muggleton et al. 92].

Section 2 will describe, how simple decision tables are constructed for given

feature subsets and how they are used for classifying test examples. In section

3 we will describe a new MDL coding schema for simple decision tables. Ex-

perimental considerations and setup, and empirical results using this new coding

schema are reported in section 4. Section 5 discusses open problems and further

research directions.

2 Simple Decision Tables

[Kohavi 95] describes simple decision tables and their usage for classi�cation as

follows:

� For any feature subset construct a decision table by simply projecting all

given training examples on the feature subset.

� For all { after projection { identical examples count class frequencies and

assign the majority class to every entry. Also compute the overall majority

class.

� When classifying new examples, look up the projected example in the deci-

sion table. If there is an entry found, return the appropriate majority class

of that entry as the classi�cation result, else return the global majority

class.

1



A

1

A

2

A

3

A

4

Class

Ex

1

1 1 0 0 +

Ex

2

1 1 0 1 {

Ex

3

1 1 1 1 +

Ex

4

1 0 0 0 {

Ex

5

0 1 0 1 {

Ex

6

1 1 1 0 +

Ex

7

1 1 0 1 +

Table 1: A set of training examples for an arti�cial 2-class learning task involving

4 boolean attributes.

A

1

A

2

Class Examples

Entry

1

1 1 + Ex

1

; Ex

2

; Ex

3

; Ex

6

; Ex

7

Entry

2

1 0 { Ex

4

Entry

3

0 1 { Ex

5

Table 2: Simple decision table for feature subset fA

1

; A

2

g for the examples given

in table 1. The global default class would be +, as there are 4 examples for this

class versus only 3 for the other one.

Tables 1 and 2 exemplify simple decision tables, or DTM (for Decision Table

Majority) as [Kohavi 95] calls them. Table 1 lists some training examples for an

arbitrary 2-class learning task involving 4 boolean attributes. Table 2 depicts the

respective decision table for the feature subset fA

1

; A

2

g. A new example [1011]

would be classi�ed as \{" using entry

2

, and e.g. [0010] would be classi�ed as \+"

using the global majority class, as there is no entry for A

1

= 0; A

2

= 0 in the

table.

To estimate the predictive accuracy (which is used as the objective function)

of a given feature subset, an incremental k-fold cross-validation (see also section

4) is used. The optimal feature subset is selected by performing a best-�rst search

in the space of all possible feature subsets. In the next section we will show how

this incremental k-fold cross-validation can be replaced by a more e�cient MDL

evaluation.

2



3 An MDL Measure for Simple Decision Ta-

bles

Empirical induction is always faced with the problem of over�tting the data,

especially in the presence of noise or irrelevant or redundant attributes. The

MDL principle is a possible solution as it measures both the simplicity and the

accuracy of a particular theory in a common currency, namely in terms of the

number of bits needed for encoding. A very good introduction to MDL and also

its close relation to Bayesian theory can be found in [Cheeseman 90]. He de�nes

the message length of a theory (called model in his article) as:

Total message length = Message length to describe the model +

Message length to describe the data,

given the model.

This way a more complex theory will need more bits to be encoded, but might

save bits when encoding more data correctly. The theory with the minimal total

message length is also themost probable theory explaining the data [Rissanen 78].

Now the problem for machine learning consists of �nding the appropriate coding

schemes for the particular kinds of models induced, be it decision trees, proposi-

tional rules, Prolog programs, neural networks, or simple decision tables. Actually

we don't really need to encode, we just need a formula estimating the number of

bits needed if we encoded a theory and data in terms of that theory.

[Forsyth 93] introduces a well-performing formula for encoding decision trees,

which we have modi�ed for encoding propositional rules in [Pfahringer 95].

We de�ne the cost of a rule set as follows:

cost(ruleset) = n

nc

� e

nc

+ �cost(rule

i

)

cost(rule

i

) = rc

i

+ e

i

� n

i

rc

i

= Cost

Premises

+ Cost

Outcome

where n

i

is the number of examples covered by the respective rule, and e

i

is

the average entropy of the classi�cation outcome of that rule de�ned by:

e

i

= �(p � log(p) + (1 � p) � log(1 � p))

where p is the proportion of positive examples covered by rule

i

.

1

Note that

e

i

� n

i

is the number of bits needed by an optimal or `Hu�man' coding of the

classi�cations at rule

i

in terms of the relative frequencies of positive and negative

examples at rule

i

. n

nc

is the total number of examples not covered by the rule

set and e

nc

is the according entropy of this set. One can interpret this as the

cost for an empty rule added at the end of the rule set classifying all left-over

1

0 � log(0) is de�ned to equal 0.

3



examples as negative. So this is the penalty for one kind of error: omissions or

false-negatives. The syntactic complexity of a single rule is accounted for by rc

i

which sums up the cost for encoding both the premises (Cost

Premises

) and the

conclusion (Cost

Outcome

) for each rule.

Modifying this formula for simple decision tables is straightforward, if we

interpret table-entries as rules and take advantage of the highly redundant struc-

ture of these \rules": every rule (entry) tests exactly the same attributes. So we

only need to encode the feature subset once and then encode the classi�cation

outcome of every entry, but need not account for the syntactic complexity of the

premises of single rules (entries), i.e. Cost

Premises

= 0 for single rules. But we

still need to encode the conclusion of each rule (Cost

Outcome

). A simple-minded

local approach could set Cost

Outcome

= 1 for each rule, but we describe a more

e�cient

2

global encoding below. Furthermore every training example is covered

by the decision table (because of the way this table is constructed; but examples

might of course be wrongly classi�ed by a given table), therefore n

nc

= 0, too.

So we get:

cost(decisiontable) = AttrCost+OutcomeCost+ �cost(entry

i

)

cost(entry

i

) = e

i

� n

i

where n

i

is the number of examples covered by the respective entry in the

decision table, and e

i

is the average entropy of the classi�cation outcome of

that entry de�ned as above for rules. So AttrCost and OutcomeCost together

measure the syntactic complexity of a decision table, and �cost(entry

i

) measures

the table's predictive performance.

Both AttrCost and OutcomeCost can be estimated by applying the above

`Hu�man' coding ideas

3

. For each given attribute we have to encode whether

it is used by the respective decision table (`1') or not (`0'). An optimal coding

takes into account the relative frequencies of 0s and 1s and needs the following

number of bits:

AttrCost = N

attrs

� (�(p � log(p) + (1� p) � log(1 � p)))

2

A coding schema is said to be more e�cient than other coding schemas, if it needs fewer

bits for encoding the same information content.

3

An alternative way of coding chosen subsets adopts Quinlan's [Quinlan 94] idea for encoding

exceptions: The cost for choosing I items out of a total of N possible items can be estimated

as:

Cost = log

2

N + log

2

��

N

I

��

As both this formula and Hu�man coding give similar (though not identical!) values, we

prefer Hu�man coding because of its simplicity and its therefore smaller computational cost.

4



where N

attrs

is the total number of possible attributes and p is the proportion

of attributes actually used by the decision table (p = jAttrsUsedj=N

attrs

).

OutcomeCost is de�ned similarly: entry

i

in the table yields class \+" (1) or

class \{" (0). So when encoding all entries in the table simultaneously we get:

OutcomeCost = N

entries

� (�(p � log(p) + (1 � p) � log(1 � p)))

where N

entries

is the total number of entries and p is the proportion of \posi-

tive" (+) entries in the decision table (p = N

posentries

=N

entries

).

Note that this formula for computing bitcost for a decision table is perfectly

symmetric (exchanging \+" and \{" classes yields exactly the same formula) and

that this formula can be generalized to N-class decision tables in a straightforward

way.

To summarize, the new formula measures cost for encoding all the training

examples in terms of the theory (the decision table de�ned by encoding which

feature subset is used and encoding classi�cation outcome for every table en-

try), and classi�cation errors are accounted for at a per-entry basis using local

entropies.

4 Experiments and Empirical Results

For empirical testing of our compression-based heuristic for feature subset selec-

tion and comparison to existing approaches we have implemented a specialized

best-�rst search algorithm (see below) that can use either our new heuristic or

incremental k-fold cross-validation. For further comparisons C4.5 [Quinlan 93]

was used on both the original complete sets of attributes and on the best subsets

returned by both heuristics for feature subset selection.

Best-�rst search is only one of a few possible search strategies. Clearly ex-

haustive enumeration of all possible subsets is out of the question except for

the simplest domains. [Caruana & Freitag 94] compare various forms of greedy

hill-climbing:

� Forward Selection (FS): start with an empty set of attributes and greedily

add attributes one at a time.

� Backward Elimination (BE): start with the complete set of attributes and

greedily delete attributes one at a time.

� Forward Stepwise Selection (FSS): start with an empty set of attributes

and greedily add or delete attributes one at a time.

� Backward Stepwise Elimination (BSE): start with the complete set of at-

tributes and greedily delete or add attributes one at a time.

5



� BSE-Slash: more greedy variant of BSE eliminating (slashing) after every

step all attributes not used at that step.

They report favorable results, especially for the later three methods (FSS,

BSE, and BSE-Slash), for their domain of calendar scheduling tasks. As these

later methods perform bidirectional hill-climbing and as they are equipped with

a mechanism for preventing cycles, they can theoretically explore all possible

subsets (given enough time). [Skalak 94] successfully applies random mutation

hill-climbing . [John et al. 94, Kohavi 95] make good use of best-�rst search for

all experiments they report.

Contrary to these lessons from the literature our initial experiments with these

di�erent search strategies quickly revealed their ine�ectiveness for demanding do-

mains like Parity 5/27 (see below) given reasonable constraints on resources (like

limiting the maximum number of node-expansions that yield no improvement

over the current optimum). We have therefore added a kind of preprocessing

step to our best-�rst search:

1. Compute the heuristic value for randomly chosen subsets of attributes by

constructing the respective decision tables until a subset is found such that

the heuristic value of that set is signi�cantly better than the average of all

subsets evaluated so far. Of course, for practical reasons (and to ensure

termination) there must be a limit set on the number of random shots

allowed. If this limit is reached, the best subset so far will be used.

2. Use the best subset from step 1 as the starting point for a resource-limited

bidirectional best-�rst search. (The maximum number of node-expansions

yielding no improvement over the currently best subset is limited to 50 for

all experiments reported below.)

This modi�ed kind of best-�rst search proved to be su�cient for all domains

investigated below.

Incremental k-fold cross-validation is described in [Kohavi 95]. If it is possible

to incrementally add examples to and delete examples from the data-structures

maintained by the learning algorithm, cross-validation can be done incremen-

tally, which saves a lot of computational work. The computational complexity of

incremental k-fold cross-validation is independent of k , meaning e.g. leave-one-

out cross-validation can be performed as quickly as, say, 10-fold cross-validation.

Incremental cross-validation works as follows:

1. Use all the training data to build up the appropriate data-structures.

2. For every fold of training data:

(a) Delete all examples of this fold.

6



(b) Classify all examples of this fold, recording all errors.

(c) Re-add all examples of this fold.

3. Return the average error rate.

Simple decision tables are easily updated incrementally: keeping class fre-

quency counts for every table entry is su�cient. Still we have to expect higher

computational cost even for incremental cross-validation than for an MDL-based

heuristic. Incremental cross-validation is bound to slower than MDL-based

heuristics by atleast a constant factor. Every example must be added twice and

be deleted once for incremental cross-validation, whereas one addition per ex-

ample su�ces for MDL-based heuristics. Empirical results reported below show

signi�cant runtime di�erences for the more di�cult domains.

4.1 Domains

All the domains used in this empirical evaluation are 2-class problems using only

non-numeric attributes (but see above comments regarding N-class problems).

All results reported are averages of ten runs each using di�erent random samples

for learning, giving the mean value and the standard deviation (if it is di�erent

from zero).

� Illegal King-Rook-King Chess Positions (KRK): This domain is used as

a standard testbed in ILP [Srinivasan et al. 92] for experiments involving

various amounts of noise and varying sizes of training sets. It is also easily

transformed into a propositional learning problem. The standard transla-

tion is to rewrite each example into a boolean vector containing 18 variables

which represent the 18 di�erent test predicate instantiations that can be

used for constructing clauses. We used training set sizes of 100, 250, and 500

with zero noise for the experiments summarized in tables 3 and 4. Testing

was always performed on an independent set of 5000 test examples.

� Parity 5/5: The target concept is the parity of 5 bits. The 5 additional

boolean attributes are random (and therefore irrelevant). The training set

contains 100 examples, and all 1024 possible examples are used for testing

([John et al. 94] uses the same settings).

� Monk1, Monk2, Monk2loc, Monk3: These data sets are taken from

[Thrun et al. 91]. Monk1, Monk2, and Monk3 all have six attributes yield-

ing 432 possible di�erent examples. Ten sets each were drawn randomly

from these 432 examples for learning, testing used all 432 examples (as is

done originally in [Thrun et al. 91]). Training set sizes are 124, 169, and

122 respectively. For Monk3 class noise is arti�cially added by switching

the class values of 5% of the training examples. Monk2loc is an interesting

7



alternative representation for the Monk2 problem translating the 6 nominal

attributes into 17 (partially redundant) boolean attributes.

� Mushroom: This is a large example database taken from the UCI repository

of machine learning databases [Murphy & Aha 94]. 8124 di�erent examples

are described by 22 nominal attributes having up to 12 di�erent possible

values. Training sets of size 1000 are drawn randomly, all 8124 examples

are used for testing.

� Parity 5/27: The target concept is the parity of 5 bits. The 27 additional

boolean attributes are random (and therefore irrelevant). The training

set size is 4000 each, and 2000 examples each are used for testing. This

particular domain was �rst used by [Pagallo & Haussler 90] and is especially

di�cult to learn for decision tree algorithms. This should not be surprising,

as only relatively few subsets of the large number of all possible subsets (2

32

)

yield a classi�cation performance signi�cantly better than random guessing.

To test robustness in the presence of class noise, we arti�cially added noise

in certain cases by switching the class values of 5%, 10%, and 15% of the

training examples, respectively.

4.2 Results

Table 3 gives the average accuracies using the best simple decision table found

by MDL and ICV (incremental cross-validation) directly, using C4.5 with all

available attributes and using C4.5 with the respective best subset of attributes.

Generally the MDL-based heuristic is never signi�cantly worse then ICV and on

average performs slightly better. Comparison with C4.5 shows that both methods

seem to select reasonable subsets of attributes, as performance of C4.5 is never

signi�cantly degraded when using these subsets.

Performance is signi�cantly improved for two (Monk1 and Monk2loc) of the

4 domains were C4.5 does not perform well on its own. Interestingly, C4.5's

performance given the respective attribute subsets is still strictly worse than

both MDL's and ICV's simple decision tables for these domains. This might be

attributed to over-pruning as the number of training examples is small (less than

200) and pre-selecting a subset of attributes is a strong kind of prepruning, too.

Table 4 tries to compare the structural complexity of the induced simple

decision tables (measuring the average number of attributes selected) and the

computational e�ciency of MDL and ICV. In addition to total runtimes we also

report the average number of di�erent subsets evaluated by both heuristics during

the search and the average number of such evaluations per seconds. This last

measure will of course vary wildly with both the total number of training examples

and the total number of possible attributes. These more �ne-grained measures

clearly show that MDL on average not only evaluates (sometimes signi�cantly)

8



Domain Method Acc C4.5acc C4.5subset

KRK100 MDL 94.64�1.74 98.21�0.92 98.06�0.95

ICV 88.24�4.81 98.21�0.92 93.82�4.81

KRK250 MDL 97.17�1.23 98.79�0.57 98.70�0.76

ICV 97.33�1.32 98.79�0.57 98.52�0.67

KRK500 MDL 97.90�0.64 99.02�0.62 99.05�0.58

ICV 97.58�0.81 99.02�0.62 98.72�0.40

Parity5/5 MDL 98.26�1.55 84.37�3.70 85.54�2.17

ICV 98.26�1.55 84.37�3.70 85.54�2.17

Monk1 MDL 95.00�2.08 76.04�5.93 86.39�4.20

ICV 95.00�2.08 76.04�5.93 86.39�4.20

Monk2 MDL 76.57�1.84 64.63�1.92 65.32�1.65

ICV 72.99�5.53 64.63�1.92 65.42�1.55

Monk2loc MDL 98.70�1.09 69.58�4.27 88.87�2.48

ICV 98.70�1.09 69.58�4.27 88.87�2.48

Monk3 MDL 91.62�3.94 89.21�4.76 88.06�4.20

ICV 92.31�2.55 89.21�4.76 89.07�4.34

Mushroom MDL 99.88�0.12 99.67�0.42 99.84�0.22

ICV 99.89�0.09 99.67�0.42 99.64�0.42

Table 3: Average accuracies (Acc) and standard deviations for MDL and ICV

simple decision tables, and for C4.5 using all attributes (C4.5acc) and for C4.5

using the respective subsets (C4.5subset) for various domains.

more subsets per time unit but also evaluates a lesser number of subsets in total.

Both of these factors account for the better total runtimes of MDL when compared

to ICV.

In summary, MDL performs slightly better than ICV for all simple domains,

and di�erences are more pronounced in favor of MDL for the more complex

domains Monk2loc and Mushroom. Especially for Mushroom MDL �nds signi�-

cantly smaller subsets (of comparable predictive accuracy, see table 3) in roughly

a fourth of runtime.

Table 5 summarizes all results for Parity 5/27. MDL is signi�cantly quicker

than ICV for all levels of noise, and induces simpler subsets than ICV for all

but the 15% noise level. At zero noise MDL exactly identi�es the necessary

and su�cient set of attributes whereas ICV adds 3.5 irrelevant attributes on

average. A di�erence between MDL and ICV in terms of the number of irrelevant

attributes included is also present for both 5% and 10% of class noise, though

less pronounced. This di�erence might be explained by MDL assessing both

simplicity and accuracy of a decision table, whereas ICV has no inherent notion

9



Domain Method #Attrs #Evals #Evals/sec Runtime

KRK100 MDL 4.3�0.5 657�37 54.6�1.1 12.04�0.56

ICV 5.2�1.1 861�112 44.1�1.9 19.50�2.42

KRK250 MDL 4.9�0.9 659�27 38.6�0.8 17.11�0.93

ICV 4.8�1.2 733�34 21.3�0.5 34.52�2.20

KRK500 MDL 5.6�0.8 681�30 24.9�4.9 29.77�12.64

ICV 5.2�1.0 733�31 11.1�0.6 66.06�4.21

Parity5/5 MDL 5.0�0.0 814�164 40.7�7.7 0.81�0.16

ICV 5.0�0.0 865�53 37.1�2.3 0.87�0.05

Monk1 MDL 3.0�0.0 64�0 36.6�0.6 1.75�0.03

ICV 3.0�0.0 64�0 32.9�0.4 1.95�0.02

Monk2 MDL 5.2�0.4 63�2 34.8�3.6 1.84�0.20

ICV 4.9�0.9 64�0 28.1�0.7 2.28�0.06

Monk2loc MDL 6.0�0.0 763�51 41.7�0.8 18.30�1.45

ICV 6.7�0.6 778�75 25.5�0.4 30.47�2.95

Monk3 MDL 2.3�0.5 64�0 35.1�1.0 1.83�0.06

ICV 2.5�0.5 64�0 32.5�0.4 1.97�0.02

Mushroom MDL 4.2�0.4 1280�247 18.8�0.8 67.62�10.79

ICV 7.3�0.5 1679�134 4.5�0.2 373.14�41.09

Table 4: Average number of selected attributes (#Attrs), average number of

subsets evaluated (#Evals), average number of subsets evaluated per second

(#Evals/sec), and average total runtimes (Runtime), and all standard deviations

for various domains.

of simplicity; it optimizes solely accuracy.

To summarize, MDL empirically performs at least as well as ICV in terms of

selecting good subsets of attributes. For complex domains MDL is signi�cantly

more e�cient than ICV in terms of runtime. Both heuristics seem to �nd rea-

sonable subsets when compared with C4.5 and both might act as a preprocessing

�lter for C4.5 for domains where C4.5 performs not so well on its own.

5 Conclusions, Related Work, and Further Re-

search

We have de�ned an MDL measure for simple decision tables. This new measure

is information-theoretically plausible in the way it encodes such tables and the

examples and it also gives good results in the experiments reported above. It

seems to be a more e�cient alternative to standard cross-validation, which opti-

10



MDL (0%) ICV (0%) MDL (5%) ICV (5%)

Accuracy 100.0 99.97�0.06 100.0 94.91�0.15

C4.5acc 50.85�2.41 50.85�2.41 52.40�2.73 52.40�2.73

C4.5subset 100.0 100.0 100.0 95.16�0.16

#RelAttrs 5 5 5 4.8�0.6

#IrrelAttrs 0 3.5�0.5 2�0 3.7�1.5

#Evals 1609�173 2735�116 3232�1032 3092�1280

#Evals/sec 3.40�0.49 1.13�0.03 2.89�0.62 1.41�0.07

Runtime 490�123 2425�164 1239�628 2220�1026

MDL (10%) ICV (10%) MDL (15%) ICV (15%)

Accuracy 99.91�0.19 99.62�0.15 99.71�0.35 99.63�0.16

C4.5acc 50.84�1.52 50.84�1.52 50.27�1.99 50.27�1.99

C4.5subset 100.0 100.0 100 100

#RelAttrs 5 5 5 5

#IrrelAttrs 2.9�0.3 3 3 3

#Evals 2959�1086 4248�710 2957�1294 3407�815

#Evals/sec 2.69�0.58 1.19�0.06 2.57�0.50 1.09�0.07

Runtime 1261�729 3824�766 1283�915 3138�833

Table 5: Parity 5/27: Average accuracies (Accuracy) and standard deviations for

MDL and ICV simple decision tables, and for C4.5 using all attributes (C4.5acc)

and for C4.5 using the respective subsets (C4.5subset). Average number of se-

lected relevant (#RelAttrs) and irrelevant attributes (#IrrelAttrs), average num-

ber of subsets evaluated (#Evals), average number of subsets evaluated per sec-

ond (#Evals/sec), and average total runtimes (Runtime), and all standard devi-

ations. All results for class noise levels of 0%, 5%, 10%, and 15% respectively.

mizes solely predictive accuracy for selecting good subsets of features in inductive

learning.

Alternative methods for judging attribute relevance are e.g. FOCUS

[Almuallim & Dietterich 91] and RELIEF [Kira & Rendell 92]. Their respective

shortcomings are detailed in [John et al. 94]. RELIEF is only able to delete ir-

relevant attribute, but it cannot delete redundant attributes, whereas FOCUS

might be trapped into selecting a single attribute having a distinct value for ev-

ery single training example, which may result in poor predictive accuracy. Both

MDL and ICV do not exhibit these problems.

The method proposed in this paper has some shortcomings. Firstly it is

strictly limited to propositional learning tasks. One might want to assess the ir-

relevance or redundancy of relations in �rst-order learning, too. Unfortunately it

11



is not obvious how the proposed method could be adapted for �rst-order learning.

Secondly this method cannot handle numerical attributes directly. But we are

working on a discretization method based on a similar MDL-based heuristic. Nu-

merical attribute discretization could be used as a preprocessing step for feature

subset selection. Thirdly, when using simple decision tables as a preprocessing

step for other induction algorithms, one must be careful in matching the implicit

biases of the combined algorithms, e.g. C4.5 tends to overprune decision trees

induced from feature subsets in some of the domains discussed in section 4.

Further research will concentrate on the following two topics:

� When using simple decision tables for classi�caton directly, missing entries

could be dealt with in a more sophisticated manner, e.g. the majority class

for all near-misses (examples di�ering in exactly one attribute value) could

be used instead of the global majority class default.

� Compression-based feature subset selection could also be used as an input

�lter for constructive induction [Bloedorn et al. 93, Pfahringer 94], which

can help the learning process in cases of an inadequate initial representation

language.

In summary, the new MDL measure for simple decision tables seems to be at

least as reliable as incremental cross-validation in terms of selecting reasonable

subsets of features, and seems to be signi�cantly more e�cient than incremental

cross-validation for complex learning tasks.

Acknowledgements

Financial support for the Austrian Research Institute for Arti�cial Intelligence is pro-

vided by the Austrian Federal Ministry of Science and Research. I would like to thank

Gerhard Widmer for constructive discussion and help with this paper, and Johannes

F�urnkranz for pointers to relevant literature, and for providing the king-rook-king po-

sition generator.

References

[Almuallim & Dietterich 91] Almuallim H., Dietterich T.G.: Learning with Many Ir-

relevant Features, in Proceedings of the Ninth National Conference on Arti�cial

Intelligence, AAAI Press/MIT Press, Menlo Park, Vol. II, pp.547-552, 1991.

[Bloedorn et al. 93] Bloedorn E., Wnek J., Michalski R.S.: Multistrategy Construc-

tive Induction: AQ17-MCI, in Michalski R.S. and Tecuci G.(eds.), Proceedings of

the Second International Workshop on Multistrategy Learning (MSL-93), Harpers

Ferry, W.VA., pp.188-206, 1993.

12



[Caruana & Freitag 94] Caruana R., Freitag D.: Greedy Attribute Selection, in Co-

hen W.W. and Hirsh H.(eds.), Machine Learning: Proceedings of the Eleventh

International Conference (ML94), Morgan Kaufmann, San Mateo, CA, 1994.

[Cheeseman 90] Cheeseman P.: On Finding the Most Probable Model, in Shrager J.,

Langley P.(eds.): Computational Models of Discovery and Theory Formation, Mor-

gan Kaufmann, Los Altos, CA, 1990.

[Forsyth 93] Forsyth R.S.: Over�tting Revisited: An Information-Theoretic Approach

to Simplifying Discrimination Trees, in JETAI 6(3), 1994.

[John et al. 94] John G.H., Kohavi R., P
eger K.: Irrelevant Features and the Subset

Selection Problem, in Cohen W.W. and Hirsh H.(eds.), Machine Learning: Pro-

ceedings of the Eleventh International Conference (ML94), Morgan Kaufmann,

San Mateo, CA, 1994.

[Kira & Rendell 92] Kira K., Rendell L.A.: A Practical Approach to Feature Selection,

in Sleeman D. and Edwards P.(eds.), Machine Learning: Proceedings of the Ninth

International Workshop (ML92), Morgan Kaufmann, San Mateo, CA, pp.249-256,

1992.

[Kohavi 95] Kohavi R.: The Power of Decision Tables, Paper, submitted. (also avail-

able electronically as ftp://starry.stanford.edu/pub/ronnyk/tables.ps)

[Muggleton et al. 92] Muggleton S., Srinivasan A., Bain M.: Compression, Signi�-

cance, and Accuracy, in Sleeman D. and Edwards P.(eds.), Machine Learning:

Proceedings of the Ninth International Workshop (ML92), Morgan Kaufmann,

San Mateo, CA, pp.338-347, 1992.

[Murphy & Aha 94] Murphy P.M., AhA D.W.: UCI repository of machine learning

databases. For information contact ml-repository@ics.uci.edu.

[Pagallo & Haussler 90] Pagallo G., Haussler D.: Boolean Feature Discovery in Em-

pirical Learning, Machine Learning, 5(1), 71-100, 1990.

[Pfahringer 94] Pfahringer B.: CiPF 2.0: A Robust Constructive Induction Sys-

tem, Proceedings of the Workshop on Constructive Induction and Change

of Representation, 11th International Conference on Machine Learning (ML-

94/COLT-94), New Brunswick, New Jersey., 1994. (also available electronically

as http://cobar.cs.umass.edu/mlc94/papers/pfahringer.ps)

[Pfahringer 95] Pfahringer B.: A New MDL Measure for Robust Rule Induction,

submitted to the 8th European Conference on Machine Learning (ECML95),

1995. (also available electronically as ftp://ftp.ai.univie.ac.at/papers/oefai-tr-94-

29.ps.Z)

[Quinlan & Rivest 89] Quinlan J.R, Rivest R.L.: Inferring Decision Trees using the

Minimum Description Length Principle, in Information and Computation, 80:227-

248, 1989.

13



[Quinlan 93] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, CA, 1993.

[Quinlan 94] Quinlan J.R.: The Minimum Description Length Principle and Categori-

cal Theories, in Cohen W.W. and Hirsh H.(eds.), Machine Learning: Proceedings

of the Eleventh International Conference (ML94), Morgan Kaufmann, San Mateo,

CA, 1994.

[Rissanen 78] Rissanen J.: Modeling by Shortest Data Description, in Automatica,

14:465-471, 1978.

[Skalak 94] Skalak D.B.: Prototype and Feature Selection by Sampling and Random

Mutation Hill Climbing Algorithms, in Cohen W.W. and Hirsh H.(eds.), Machine

Learning: Proceedings of the Eleventh International Conference (ML94), Morgan

Kaufmann, San Mateo, CA, 1994.

[Srinivasan et al. 92] Srinivasan A., Muggleton S., Bain M.: Distinguishing Exceptions

from Noise in Non-Monotonic Learning, in Proceedings of the 2nd International

Workshop on Inductive Logic Programming (ILP), Tokyo, 1992.

[Thrun et al. 91] Thrun S.B., et.al.: The MONK's Problems: A Performance Com-

parison of Di�erent Learning Algorithms, CMU Tech Report, CMU-CS-91-197,

1991.

[Wallace & Patrick 93] Wallace C.S., Patrick J.D.: Coding Decision Trees, Machine

Learning, 11(1), 1993.

14


