
A New MDL Measure for Robust Rule

Induction

Bernhard Pfahringer

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

E-mail: bernhard@ai.univie.ac.at

Area: Inductive Learning

Keywords: Minimum Description Length, Pruning, Noise.

Abstract

We present a generalization of a particular Minimum Description Length

(MDL) measure that sofar has been used for pruning decision trees only.

The generalized measure is applicable to (propositional) rule sets directly.

Furthermore the new measure also does not su�er from problems reported

for various MDL measures in the ML literature. The new measure is

information-theoretically plausible and yet still simple and therefore e�-

ciently computable. It is incorporated in a propositional Foil-like learner

called Knopf. We report on favorable results in various purely symbolic

propositional domains. Both rule quality in terms of simplicity (and syn-

tactic closeness to the respective underlying theory where known) and pre-

dictive accuracy of induced theories are convincing.

1 Introduction

The Minimum Description Length (MDL) Principle [Rissanen 78], some-

times also called the Minimum Message Length (MML) Principle, has been

successfully applied in Machine Learning, both for inducing decision trees

[Quinlan & Rivest 89, Quinlan 93, Wallace & Patrick 93, Forsyth 93], for con-

structing new attributes [Pfahringer 94], and in ILP [Muggleton et al. 92]. But

recently also some problems with MDL were discovered [Quinlan 94].

In this paper we try to explain the origin of these problems in section 2. A

new MDL measure applicable to propositional rule learning aimed at overcoming

these problems will be introduced in section 3. Section 4 describes a propositional

Foil-like learning algorithm using this new MDL measure as both a stopping

criterion for rule induction and as a criterion to choose between di�erent rule

sets, especially to choose between sets of pruned rules and sets of unpruned rules.

Empirical results are reported in section 5. Section 6 discusses open problems

and further research directions.

2 MDL in Rule Learning and its Problems

Empirical induction is always faced with the problem of over�tting the data,

especially in the presence of noise or irrelevant attributes. The MDL principle

is a possible solution as it measures both the simplicity and the accuracy of a

particalur rule set in a common currency, namely in terms of the number of

bits needed for encoding. A very good introduction to MDL and also its close

relation to Bayesian theory can be found in [Cheeseman 90]. He de�nes the

message length of a rule set (called model in his article) as:

Total message length = Message length to describe the model +

Message length to describe the data,

given the model.

This way a more complex theory will need more bits to be encoded, but might

save bits when encoding more data correctly. The theory with the minimal total

message length is also themost probable theory explaining the data [Rissanen 78].

Now the problem for machine learning consists of �nding the appropriate coding

schemes for the particular kinds of models induced, be it decision trees, proposi-

tional rules, Prolog programs, or neural networks.

The precise MDL formula used by [Quinlan 93] for simplifying rule sets is:

Cost = TheoryCost+ log

2

C

FP

!!

+ log

2

NC

FN

!!

1

In this formula TheoryCost is an estimate for the number of bits needed to

encode the theory. C is the total number of training examples covered by the

theory, FP is the number of false-positive examples, NC is the total number

of training examples not covered by the theory, and FN is the number of false-

negative examples. So the second and the third terms of the formula estimate the

number of bits needed to encode all false-positive and all false-negative examples

respectively. In summary this formula approximates the total cost in the number

of bits for encoding a theory and its exceptions.

So what are the problems with that formula? [Quinlan 94] states two and we

would like to add an additional one:

1. The formula for computing exception cost is symmetric, i.e. a theory pro-

ducing consistently wrong classi�cations (i.e. labeling every positive exam-

ple as negative and vice versa) will have an exception cost of zero, just like

a complete and correct theory.

2. If the class to be learned is signi�cantly in the majority (minority), in-

duced theories tend to under-generalize (over-generalize), especially in the

presence of noise and with small numbers of learning examples.

3. When learning from lots of examples in the presence of noise, there is still

a tendency to �t the noise.

[Quinlan 94] tries to remedy complaints 1 and 2 by introducing an ad-hoc

factor penalizing theories that predict distributions too far o� the distribution

found in the training data. He also brie
y investigates two alternatives for en-

coding exceptions. All these three modi�cations empirically improve categorical

prediction for small data sets in the presence of noise. But none of these can

solve problem 3. To motivate the solution proposed below, let us have one more

look at the complaints:

1. We don't see this as a problem! On the contrary, we view this as a very nice

property, because a theory consistently producing the wrong classi�cation

is - at least for the 2-class learning tasks considered here - a very good

theory for the negation of the concept to be learned, and as such it is a

valuable inductive result. Besides, the theories being compared by MDL

are typically constructed by algorithms exhibiting a strong bias towards

coverage of and accuracy for positive examples. So in practice such negated

theories will probably not be induced at all (unfortunately, as one might

say).

2. A closer look at the exception cost formula reveals the source for

over/under-generalization. Assuming that the positive examples form a

signi�cant majority, any induced reasonable theory will also have to cover

2

the majority of the training data (being mostly positive examples). This

causes the exception cost to be dominated by its �rst summand:

log

2

C

FP

!!

That of course results in false-positive errors being much more expensive

than false-negative errors. So when minimizing the total cost, theories

producing few errors of commisionwill be favored. Empirically such theories

are overly speci�c and produce considerably more errors of omission (which

are inexpensive, because the total number of examples not covered by the

theory is small).

The same kind of reasoning can be applied for the minority case, too.

3. Over�tting when given too many examples is also explained easily. Assume

we have a training set of given size and a level of class noise strictly larger

than zero.

1

Furthermore assume we know the correct underlying theory, so

that we can compute its cost. What happens if we double the number of

training examples? The cost of encoding the theory will remain the same,

as it is not a function of the number of examples. But exception cost will

rise as there will also be 2 times as many errors in total.

2

Thus incorrect,

more complex theories (incurring higher theory cost) that partially over�t

the data (incurring smaller exception cost) can evaluate to a total bitcost

smaller than that of the correct theory.

All these problems with the above formula stem from the fact that this formula

is just an approximation of the generic MDL principle as de�ned above. It does

not estimate encoding cost of all examples with respect to a given theory but

instead computes a kind of penalty for wrong classi�cations only! Furthermore

this penalty function is in general asymmetric in the way it assigns cost for false-

positives and false-negatives (It is symmetric for rare theories covering exactly

50% of all training examples). This explains both problems 2 and 3. So the

remedy would be to look for a formula that is more faithful to the MDL principle.

[Muggleton et al. 92] describe a (rather complicated) scheme for encoding the-

ories and data in an ILP setting in a way such that both the theory and a single

proof for every example are encoded. Their argument is that such a scheme min-

imizes the sizes of proofs, thus leading to the induction of e�cient theories. But

1

We are using the so-called Classi�cation Noise Process[Angluin & Laird 87] where a class

noise level of � means that for every training example the classi�cation is reversed with proba-

bility �. This corresponds to a class noise level of 2� for the model incorporated by [Quinlan 94].

Note that neither model preserves the original distribution of positive and negative examples

in the undisturbed data (unless there are exactly 50% positive examples).

2

We can estimate: log

2

��

2n

2k

��

� 2log

2

��

n

k

��

3

we think the essential property of their formula is just to encode every example in

terms of the theory. In [Srinivasan et al. 92] they report impressive results (which

are reproduced below in table 3 of section 5) for large enough training sets in the

KRK domain, a standard ILP testbed. But one can notice shortcomings: their

scheme is rather sensitive to the number of training examples and the level of

noise. About half of the entries of table 3 are empty, meaning no compression

was achieved. We therefore suspect that their coding scheme for theories and

proofs is ine�cient in an information-theoretic sense: too many bits are needed

for encoding the theory and proofs, which in turn causes theories to produce no

compression for small training sets.

3 An alternative MDL formula

[Forsyth 93] introduces a well-performing formula for encoding decision trees:

cost(tree) = �cost(leaf

i

)

cost(leaf

i

) = d

i

+ e

i

� n

i

where d

i

is the depth of the leaf in the tree, n

i

is the number of examples

covered by the leaf, and e

i

is average entropy of the outcome at that leaf de�ned

by:

e

i

= �(p � log(p) + (1 � p) � log(1 � p))

where p is the proportion of positive examples covered by leaf

i

.

3

Note that

e

i

� n

i

is the number of bits needed by an optimal or `Hu�man' coding of the

classi�cations at leaf

i

in terms of the relative frequencies of positive and negative

examples at leaf

i

.

We have modi�ed this formula for coding sets of propositional rules. The

essential di�erences are a cost estimate for examples not covered by the rule set

and an information-theoretically plausible encoding cost for the rules themselves.

Note that the ordering of rules is signi�cant in this encoding, meaning that an

example is covered by the �rst of all the rules matching it. We de�ne the cost of

a rule set as follows:

cost(ruleset) = n

nc

� e

nc

+ �cost(rule

i

)

cost(rule

i

) = rc

i

+ e

i

� n

i

where n

nc

is the total number of examples not covered by the rule set and

e

nc

is the according entropy of this set. One can interpret this as the cost for an

empty rule added at the end of the rule set classifying all left-over examples as

negative. So this is the penalty for one kind of error: omissions or false-negatives.

3

0 � log(0) is de�ned to equal 0.

4

The complexity of a single rule is accounted for by rc

i

which could be de�ned

in analogy to trees as just the length of a rule. Experiments and some thought

showed a serious
aw: in the presence of noise overly complex but correct rules

covering only a few examples are still cheap, because their total cost is equivalent

to their length. A better solution is to really try to encode the body of the

rule. Assuming a total number N

pt

of tests that could possibly be used by a rule

and adopting Quinlan's idea for encoding exceptions we can de�ne the cost for

encoding the body of a rule as follows. We just have to choose the appropriate

number of tests out of all possibly used tests (remember that order of tests is not

important in propositional settings). The cost for choosing Length

i

tests out of

N

pt

possible tests now can be estimated as:

rc

i

= log

2

N

pt

Length

i

!!

This rule cost estimate lead to much better empirical results for noisy training

sets as reported in section 5. It may also account for the better results reported

below when applying our system to some of the domains used by [Forsyth 93]

(besides the principle advantages of learning rules instead of trees).

The new estimate certainly solves problem 3 as coding cost for all examples

is estimated (remember that the entropy of a rule e

i

is multiplied by the total

number of examples covered by that rule n

i

as part of the cost of a rule). Prob-

lem 2 is only partially solved as errors are penalized in a totally di�erent way.

We do not get consistently over- or under-generalizing behavior, but with too

small training sets the empty theory can result from induction. But this is a

consequence of using MDL itself: enough positive data has to support a rule,

otherwise the intrinsic cost of the rule will outweigh the classi�cation advantage

gained by this rule. Regarding the so-called problem 1, the new formula is even

more symmetric in the sense that in principle positive and negative rules could

be freely mixed in an induced theory. For practical reasons one would have to

add one more bit per rule for encoding the decision part (positive or negative) of

each rule, if one wanted to take advantage of that property.

To summarize, the new formula measures cost for encoding all the training ex-

amples in terms of the theory (the single rules), classi�cation errors are accounted

for at a per-rule basis using local entropies, and complexity of rules is estimated

in an information-theoretically plausible way. Furthermore this formula still is

symmetric with respect to negative theories.

4 Algorithmic Usage of the new Formula

For empirical testing of the new formula we have implemented a kind of propo-

sitional Foil [Quinlan & Cameron-Jones 93] called Knopf. Right now Knopf

is restricted to purely symbolic 2-class learning problems. It is completely free

5

of user-settable parameters. The MDL principle is used in two ways: �rstly as

a stopping criterion when inducing a single rule set and secondly for choosing

the �nal rule set out of a number of induced rule sets (here implicitly MDL is

also used to judge which kind of pruning is necessary - see below). Di�erent rule

sets are induced by combining various standard search heuristics for single rule

induction with two di�erent forms of pruning as discussed below.

Single rules are constructed top-down by using standard search heuristics

[Lavrac et al. 92]: info or accuracy gain, weighted or not, approximating proba-

bilities using either relative frequencies, the Laplace estimate or the m-estimate

(for di�erent values of m, currently 0:5; 1; 2; 4). Construction of a single rule stops

when either only positive examples are covered, or the heuristic value cannot be

increased any further, or no possible test is left to be incorporated. Such rules are

then immediately pruned in one of two ways. One way of pruning is intended for

presumably noise-free data, the second way of pruning is intended for presumably

noisy training data.

The �rst pruning strategy is correctness preserving: the pruned rule will not

cover more negative examples than the unpruned rule. The second strategy

just maximizes the di�erence p � n of positive and negative examples covered

by the rule. This strategy for single rule induction is inspired by the IREP-

algorithm [Fuernkranz & Widmer 94]. One di�erence is that we always use all

of the available data both for constructing and pruning single rules - no splitting

into separate training and pruning sets ever takes place.

A novelty ofKnopf with respect to pruning is the incorporation of a complete

search algorithm - namely branch-and-bound - to determine the global optimum

for both cases of pruning. So single rule induction could also be described as

a two-tiered process: an e�cient heuristic search using purity measures and all

possible tests to determine a small subset of tests is followed by a complete

search using only that small subset of tests and one of two very simple evaluation

functions.

Induced rules are added incrementally to the current rule set as long as the

total cost of the rule set improves, i.e. decreases. Once a rule is induced that does

not improve global cost, rule induction is stopped. That way Knopf performs

greedy hill-climbing search for inducing each rule set using the MDL principle as

a stopping criterion.

The MDL principle is also used for choosing the �nal resulting theory. As

we straightforwardly induce all theories using the various search heuristics men-

tioned above combined with both pruning strategies we get a lot of competing

theories. The least expensive theory according to the MDL measure is returned

as the �nal result of induction. As that set will be the result of one of the two

pruning mechanism, in a sense the system also automatically decides which kind

of pruning is necessary, thus implicitly judging the presence of noise in the learn-

ing data. When a set of correctness preservingly pruned rules is chosen as the

�nal result, we can assume noise-free data and vice versa.

6

5 Empirical Results

In the following experiments, Knopf's performance was usually averaged over

ten runs choosing training sets at random. The class attribute was randomly

reversed (from yes to no or vice versa) for N% of the training examples, when

the noise level was set to N . We always report the accuracy of both Knopf

and C4.5rules [Quinlan 93] and sometimes quote additional results from the

literature.

5.1 Various Boolean Concepts

The following three data sets have been used by [Forsyth 93] for comparing his

Treemin program with various other ways of pruning. We reproduce his de-

scription of the sets here:

� RAND. This is simply a random data set containing 12 random binary

variables plus a target variable which is 1 in approximately 50% of the

cases and 0 in the other 50%. Training set size was 255, test set size 100.

We do not report any accuracies achieved; that it would not make much

sense. The interesting qualitative result is that Knopf did return the

empty theory in 8 of the 10 test-runs, a convincing result given this partic-

ular learning task! C4.5, on the contrary, always produced a more or less

complex set of (probably spurious) rules.

� QUIN. This arti�cial data set was designed to model a task where only

probabilistic classi�cation is possible and which also contains disjunctions.

It is e�ectively the same as Quinlan's `Prob-Disj' data-set [Quinlan 87] and

consists of ten random binary variables (v1 to v10). The outcome (Y or N)

for each case is assigned according to the conditional expression:

IF v1 & v2 & v3

OR v4 & v5 & v6

OR v7 & v8 & v9

THEN outcome = Y (with prob 0.9), outcome = N (prob 0.1)

ELSE outcome = N (with prob 0.9), outcome = Y (prob 0.1)

Attribute v10 is irrelevant. Training set size was 400, test set size was 200.

Table 1 shows the average accuracy of Knopf on this data set; it is signi�-

cantly better than C4.5 at the 95% level. The average accuracy of around

90% is easily explained by the fact that Knopf in 9 of 10 runs induced ex-

actly the de�nition given above, the best a non-probabilistic classi�er can

hope to achieve. Rule sets induced by C4.5 typically consist of the correct

rules (or specializations thereof) and some additional spurious rules, thus

clearly showing a bit of over�tting.

7

Treemin C4.5 Knopf signif.

QUIN 83.50 86.70 90.30 95%

DIGIDAT 88.32 87.79 88.26 no

Table 1: QUIN and DIGIDAT: Accuracies for Knopf,C4.5, and Treemin, plus

t-test signi�cance.

� DIGIDAT. This example is essentially the same as used in

[Breiman et al. 84] as a running example. Each data record is generated

by simulating a faulty liquid crystal display in which digits are displayed

by setting bars on or o�. There are seven bars, each of which may be on

or o�. Training set size was 359, test set size was 642. Every bar had a 0.1

probability of being in error - either on when it should have been o� or vice

versa. In addition, four spurious attributes randomly set to on or o� were

included into every example. The learning task was to distinguish 8s and

9s from the other numerals 0 to 7.

Judging from classi�cation accuracy Knopf did slightly better than C4.5

on this example and slightly worse than Treemin, but the di�erences are

not statistically signi�cant. Judging results qualitatively Knopf induced

just one or two rules except for one test run and these induced rules did

not test spurious variables (v8 to v11) for 7 out of the 10 test runs. C4.5

mostly induced three or four rules for the class (plus an equal number of

rules for the counter-examples) and also always tested at least one spurious

variable. This does not seem to hurt in terms of classi�cation accuracy,

though. Treemin induced trees with 7 leaves, which would correspond to

a set of seven rules.

Two other arti�cial boolean functions, DNF3 and DNF4, introduced in

[Pagallo & Haussler 90] turned out to be a hard problem for decision tree learn-

ing even though training set sizes are large - 1650 and 2650 respectively. C4.5's

performance in this domain is signi�cantly worse than that of Knopf, which

performs rather well even in the presence of noise as can be seen in table 2.

5.2 Illegal King-Rook-King Chess Positions

This domain is used as a standard testbed in ILP for experiments involving

various amounts of noise and varying sizes of training sets. It is also easily trans-

formed into a propositional learning problem. The standard translation is to

rewrite each example into a boolean vector containing 18 variables which repre-

sent the 18 di�erent test predicate instantiations that can be used for constructing

clauses.

8

Noise C4.5 Knopf signif.

0.0 97.81 100.00 99%

DNF3 0.1 88.13 98.86 99%

0.2 71.83 91.39 99%

0.0 87.25 100.00 99%

DNF4 0.1 68.39 96.88 99%

0.2 61.90 91.03 99%

Table 2: DNF3 and DNF4: Accuracies for C4.5 and Knopf plus t-test signi�-

cance for various noise levels.

We compare Knopf, C4.5, and Golem, which all do fairly well in this

domain.

4

Table 3 summarizes experimental runs. We varied noise levels from

0% to 40% and used training set sizes between 100 and 10000. Testing was

always performed on a set of 5000 test examples. Results for Knopf and C4.5

are averages of 10 runs each. The results reported for Golem are as given

in [Srinivasan et al. 92] and are probably results of only one run. Furthermore

Golem had to construct new predicates, too. Empty entries represent the fact

that no compression was achieved, i.e. the empty theory resulted from induction.

Comparing the di�erent programs we see that Knopf almost always induces

some theory, and on average these theories are more accurate than the theories

induced by the other two programs. Though the di�erences might not appear to

be large, one has to keep in mind the following: a correct and complete theory

consists of at least 8 rules, whereas good approximate theories with 4 rules using

a total of only 6 tests already yield more than 98% accuracy [Fuernkranz 93].

Knopf almost always induces some of these approximations, but is also able

to construct a complete and correct theory for all ten runs given 10000 exam-

ples and misses such a theory in only 1 out of 10 runs given 5000 examples

(at noise level 0). Results reported here are also better than those given in

[Fuernkranz & Widmer 94] for the case of 10% noise.

Generally C4.5 again induces signi�cantly more rules in all cases, thus pro-

ducing overly complex theories. This typically does not really hurt performance

(but see the above remark about slight di�erences of accuracy in this domain),

4

This may be surprising as one would not expect such good results when given at most

10000 out of 2

18

= 262144 possible examples for learning. As a matter of fact, these 18 tests

form a kind of powerful abstraction language yielding only less than 1000 positive and negative

examples each. This can be explained by a lot of interdependecies between the single tests (e.g.

a < b and b < c together imply a < c). So the original high number of possible board positions,

which accidentally also is 262144 (six variables with eight possible values each: 8

6

= 262144),

is reduced by two orders of magnitude. Fortunately, this abstraction also preserves all the

information necessary for inducing correct and complete de�nitions for the illegal-concept.

9

Noise Program 100 250 500 1000 5000 10000

C4.5 98.38 98.92 99.44 99.56 99.98 100.00

0.0 Golem - 99.70 99.70 99.70 99.70 100.00

Knopf 98.39 99.35 99.46 99.50 99.99 100.00

C4.5 95.74 98.87 99.00 99.39 99.65 99.96

0.05 Golem - 98.10 98.10 99.70 99.70 99.70

Knopf 96.86 98.42 99.48 99.54 99.54 99.54

C4.5 94.42 97.16 97.47 99.07 99.65 99.84

0.1 Golem - - 98.10 98.10 99.70 99.70

Knopf 96.37 98.20 99.02 99.54 99.54 99.54

C4.5 93.36 94.70 98.35 98.48 99.35 99.71

0.15 Golem - - 98.10 98.10 99.70 99.70

Knopf 96.28 98.20 98.92 99.48 99.54 99.54

C4.5 91.47 92.09 95.24 96.59 98.69 99.61

0.2 Golem - - - 98.10 99.70 99.70

Knopf 92.77 96.14 97.86 99.41 99.54 99.54

C4.5 78.71 81.85 87.80 91.37 97.08 98.10

0.3 Golem - - - - 98.10 98.10

Knopf 77.31 77.05 88.86 97.43 99.40 99.54

C4.5 60.77 53.22 69.38 81.53 88.61 93.48

0.4 Golem - - - - - 98.10

Knopf 67.24 - - 83.89 97.59 99.23

Table 3: Illegal KRK: Accuracies (percentages) for C4.5,Golem, andKnopf for

various levels of noise and various sizes of the training set in the King-Rook-King

domain. Best results are boldface, except when below base-line accuracy. Empty

entries represent null theories which could be attributed base-line accuracy.

10

though when confronted with small training sets and high noise levels, results

may be below the base-line accuracy (which is 66.38% for the particular test set).

An example for such a situation is the 250 examples at 40% noise case. Also, re-

sults for higher noise levels and larger numbers of training examples exemplify the

noise �tting behaviour of C4.5 when compared to Golem or Knopf. Whereas

Golem prefers to stay agnostic until given enough examples and then produces

a high-quality theory, Knopf produces reasonable theories for all but 2 of the

higher noise cases and almost always outperforms the other two approaches at

higher noise levels. FurthermoreKnopf never returns a theory yielding less than

the base-line accuracy.

6 Conclusions, Related Work, and Further Re-

search

We have de�ned a new MDL measure for rule sets and incorporated it into the in-

ductive learner Knopf. This new measure is information-theoretically plausible

in the way it encodes the theory and the examples and it also gives good results

in the experiments reported above. But there are still a lot of open questions and

opportunities for improvement.

� Though our way of encoding rules and there estimating their cost seems to

produce sensible results empirically, it is de�nitely not an optimal encoding.

Tests are not independent, so after choosing one test, some of the remaining

tests are either redundant or contradictory. A better encoding should take

this into account.

� The search strategy employed inKnopf is very greedy, especially regarding

the stopping criteria. Maybe a deeper lookahead search could improve

overall theories when the current greedy search cannot �nd compressive

rules. The Parity problem seems to be a useful testbed in this regard, as

the current version of Knopf does not fare well in that domain.

� Another open question is the generalization of the proposed MDL measure

to account for numbers and new variables. That would make it applicable

to all kinds of propositional as well as �rst-order learning problems.

� Furthermore we want to evaluate the cost of additional attributes induced

by means of constructive induction [Bloedorn et al. 93, Pfahringer 94],

which can help the learning process in cases of an inadequate initial repre-

sentation language.

In summary, the new MDL measure proposed in this paper is a general-

ization of the formula given in [Forsyth 93] applicable to sets of rules, it over-

comes the de�ciences of the formula used in C4.5, and it is simpler (and may

11

also be more reliable for small training sets) than the coding scheme used by

[Muggleton et al. 92].

Acknowledgements

Financial support for the Austrian Research Institute for Arti�cial Intelligence is pro-

vided by the Austrian Federal Ministry of Science and Research. I would like to thank

Gerhard Widmer for constructive discussion and help with this paper, and Johannes

F�urnkranz for always collecting relevant literature, discussing all kind of spurious ques-

tions, and for providing the king-rook-king position generator.

References

[Angluin & Laird 87] Angluin D., Laird P.: Learning from Noisy Examples, Machine

Learning, 2(4), 343-370, 1987.

[Bloedorn et al. 93] Bloedorn E., Wnek J., Michalski R.S.: Multistrategy Construc-

tive Induction: AQ17-MCI, in Michalski R.S. and Tecuci G.(eds.), Proceedings of

the Second International Workshop on Multistrategy Learning (MSL-93), Harpers

Ferry, W.VA., pp.188-206, 1993.

[Breiman et al. 84] Breiman L., Friedman J.H., Olshen R.A., Stone C.J.: Classi�ca-

tion and Regression Trees, Wadsworth International Group, Belmont, CA, The

Wadsworth Statistics/Probability Series, 1984.

[Cheeseman 90] Cheeseman P.: On Finding the Most Probable Model, in Shrager J.,

Langley P.(eds.): Computational Models of Discovery and Theory Formation, Mor-

gan Kaufmann, Los Altos, CA, 1990.

[Forsyth 93] Forsyth R.S.: Over�tting Revisited: An Information-Theoretic Approach

to Simpifying Discrimination Trees, in JETAI 6(3), 1994.

[Fuernkranz 93] Fuernkranz J.: A numerical analysis of the KRK domain. Working

Note, 1993. Available upon request.

[Fuernkranz & Widmer 94] Fuernkranz J., Widmer G.: Incremental Reduced Error

Pruning, Proceedings of the 11th International Conference on Machine Learning

(ML-94), New Brunswick, N.J., 1994.

[Lavrac et al. 92] Lavrac N., Cestnik B., Dzeroski S.: Search heuristics in empirical

Inductive Logic Programming, in Workshop W18, Logical Approaches to Machine

Learning, ECAI-92, Vienna, 1992

[Muggleton et al. 92] Muggleton S., Srinivasan A., Bain M.: Compression, Signi�-

cance, and Accuracy, in Sleeman D. and Edwards P.(eds.), Machine Learning:

Proceedings of the Ninth International Workshop (ML92), Morgan Kaufmann,

San Mateo, CA, pp.338-347, 1992.

12

[Pagallo & Haussler 90] Pagallo G., Haussler D.: Boolean Feature Discovery in Em-

pirical Learning, Machine Learning, 5(1), 71-100, 1990.

[Pfahringer 94] Pfahringer B.: CiPF 2.0: A Robust Constructive Induction System,

Proceedings of the Workshop on Constructive Induction and Change of Represen-

tation, 11th International Conference on Machine Learning (ML-94/COLT-94),

New Brunswick, New Jersey., 1994.

[Quinlan 87] Quinlan J.R.: Simplifying Decision Trees, International Journal of Man-

Machine Studies, 27, pp. 221-234, 1987.

[Quinlan & Rivest 89] Quinlan J.R, Rivest R.L.: Inferring Decision Trees using the

Minimum Description Length Principle, in Information and Computation, 80:227-

248, 1989.

[Quinlan & Cameron-Jones 93] Quinlan J.R., Cameron-Jones R.M.: FOIL: A Midterm

Report, in Brazdil P.B.(ed.), Machine Learning: ECML-93, Springer, Berlin, pp.3-

20, 1993.

[Quinlan 93] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, CA, 1993.

[Quinlan 94] Quinlan J.R.: The Minimum Description Length Principle and Categori-

cal Theories, in Cohen W.W. and Hirsh H.(eds.), Machine Learning: Proceedings

of the Eleventh International Conference (ML94), Morgan Kaufmann, San Mateo,

CA, 1994.

[Rissanen 78] Rissanen J.: Modeling by Shortest Data Description, in Automatica,

14:465-471, 1978.

[Srinivasan et al. 92] Srinivasan A., Muggleton S., Bain M.: Distinguishing Exceptions

from Noise in Non-Monotonic Learning, in Proceedings of the 2nd International

Workshop on Inductive Logic Programming (ILP), Tokyo, 1992.

[Wallace & Patrick 93] Wallace C.S., Patrick J.D.: Coding Decision Trees, Machine

Learning, 11(1), 1993.

13

