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Kurzfassung

Diese Dissertation besch�aftigt sich mit e�zienten Methoden f�ur fehlertolerantes maschi-

nelles Lernen unter Ber�ucksichtigung von relationalem Hintergrundwissen. W�ahrend

sich klassische Algorithmen auf das Lernen von propositionalen Konzepten in der Form

von Entscheidungsb�aumen oder Entscheidungslisten beschr�anken, sind relationale Ler-

nalgorithmen in der Lage, nicht nur Wissen �uber Datenattribute und deren Werte,

sondern auch �uber Relationen zwischen einzelnen Attributen in den Lernproze� mitein-

zubeziehen. Aufgrund der m�achtigeren Repr�asentationssprache dieser Algorithmen |

im Prinzip lernen sie PROLOG Programme zur Klassi�kation der Lernbeispiele | wer-

den sie dem relativ jungen Gebiet der induktiven logischen Programmierung zugerech-

net, einer neuen Forschungsrichtung an der Schnittstelle von maschinellem Lernen und

logischer Programmierung.

In dieser Arbeit werden einerseits verschiedene bekannte Methoden zur Erreichung

von Fehlertoleranz untersucht und in ein einheitliches Schema gebracht, andererseits je-

doch drei neue, verbesserte Algorithmen vorgestellt. Die beiden grundlegenden Ans�atze

zum sogenannten Prunen sind entweder zu versuchen, Datenfehler w�ahrend des Lern-

vorgangs zu erkennen, oder sie vorerst zu ignorieren und danach die daraus resultieren-

den Fehler im gelernten Konzept zu entdecken und zu korrigieren. Beide Methoden

haben ihre Vorz�uge, weshalb im Zuge dieser Dissertation M�oglichkeiten untersucht wer-

den, diese beiden Verfahren zu kombinieren bzw. zu integrieren. Die N�utzlichkeit der

neuen Algorithmen wird anhand praktischer Experimente in verschiedenen k�unstlichen

und nat�urlichen Dom�anen demonstriert.

Abstract

This thesis is concerned with e�cient methods for achieving noise-tolerance in Machine

Learning algorithms that are capable of using relational background knowledge. While

classical algorithms are restricted to learn propositional concepts in the form of deci-

sion trees or decision lists, relational learning algorithms are able to include into the

learning process not only knowledge about data attributes and values, but also about

relations between the attributes. As these algorithms use a more powerful representa-

tion language | they learn PROLOG programs for classi�cation | they are part of

the recent �eld of Inductive Logic Programming, a new research area at the intersection

of Machine Learning and Logic Programming.

In this work we �rst review several known methods for achieving noise-tolerance

and put them into a uni�ed framework and then introduce three new and improved

algorithms. The two basic approaches to pruning are either to try to recognize noise in

the data during the learning process or to �rst learn a theory from the data as they are

and subsequently try to detect and correct the resulting mistakes in this theory. Both

approaches having their advantages, the major part of this thesis is devoted to trying

to combine and integrate them into new powerful algorithms. A series of experiments

with arti�cial and natural data sets demonstrates the usefulness of these approaches.
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Chapter 1

Introduction

Your name is Bond, James Bond. You are on a mission, and enemy robots are on

their way to stop you. The secret service was able to get the pictures of some of

the robots. Special agents have managed to provide a classi�cation of the robots

as dangerous or harmless. However, due to counterespionage, their classi�cation

might be wrong in some cases. You look at the pictures and see robots with

round, square, or octagonal heads or bodies. Each robot is wearing a jacket that

is either red, yellow, green, or blue. Some of the robots are smiling and some are

wearing ties. And they are holding things like swords, ags, or balloons. Based

on the pictures you have to learn to recognize whether the robots are dangerous

or harmless. The basic problem, however, is that you cannot get away with just

remembering each robot's appearance and its classi�cation, because although

your secret service was able to get pictures of some of the robots, they have not

been able to get them all. You will be likely to see new robots on your mission

and you have to identify those correctly as well. So your goal is to come up with a

rule of thumb to be able to discriminate between dangerous and harmless robots.

Rules might be as simple as \Harmless robots are smiling." or \Dangerous robots

are wearing a sword." However, they might also be as complicated as \Robots

that do not have a square head and are wearing a blue jacket, robots that are

holding a balloon and are wearing a tie, and robots that are not smiling and

whose heads and bodies have the same shape are dangerous."

1.1 Propositional Learning

Machine Learning research has developed a number of powerful algorithms

that are very well suited for this and similar kinds of problems. The input

of these algorithms is a description of the known data objects in the form

of known attributes (e.g. head shape, body shape, is smiling, holding,

jacket color, has tie). Each data object is described as a vector of values, one

1
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Jacket Color

Head Shape

Body ShapeHead Shape

Body Shape Body Shape

red yellow,green,blue

roundsquare,octagon

square octagon
round square,octagon

round,squareoctagonsquare round,octagon

dangerous

dangerous

dangerous

harmless

harmlessharmlessdangerous

Figure 1.1: A Decision Tree

for each of the attributes, and a classi�cation (e.g. [robot 3: (square, round,

yes, sword, red, no), dangerous]). The Machine Learning algorithm's out-

put will be a rule which will allow you to derive a (hopefully correct) classi�cation

for all objects, the ones you have already seen and the ones you have not seen

yet.

The most prominent family of algorithms that attack these problems is based

on the success of ID3 [Quinlan, 1983]. All algorithms of this family construct

a concept description in the form of a decision tree (see �gure 1.1). Each node

of a decision tree typically corresponds to a test on one attribute of the input

data, and each edge typically represents a subset of the values of the previous

node's attribute. Each leaf is labelled with one of the di�erent classi�cation

possibilities. Classi�cation of an object with a decision tree starts with the root

attribute and performs the corresponding test. Depending on the outcome it

follows down the edge that has the appropriate label and performs the test

of the next node. This is repeated until one arrives at a leaf of the tree, in

which case its classi�cation label is returned. The most prominent representa-
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dangerous(Head,Body,Smiling,Holding,Jacket,Tie) :-

red(Jacket).

dangerous(Head,Body,Smiling,Holding,Jacket,Tie) :-

Head = Body.

Figure 1.2: PROLOG solution for problem 1

tives of this family are C4.5 [Quinlan, 1993], Assistant [Cestnik et al., 1987] and

CART [Breiman et al., 1984]. [F�urnkranz, 1991] contains a summary of some

basic methods for inducing decision trees from attribute-value data sets.

1.2 The Need for Relations in Learning

In [Thrun et al., 1991] three problems are proposed in the robots domain. Each

of them addresses a problem that is hard for decision tree learning algorithms.

The �rst of these problems is the following:

Problem 1: Robots whose head and body are equally shaped and those who are

wearing a red jacket are dangerous.

Propositional learning algorithms can only make use of the values of the at-

tributes, but not of relations between these values. As the correct solution for

problem 1 should test whether the equality relation holds between the attributes

head shape and body shape, propositional algorithms are not able to �nd this

description if they only know the given six attributes.

Figure 1.1 shows a binary decision tree solution for problem 1. It is easy to

see that the program has to generate one rule for each special case of the equality

between the shapes of the heads and bodies, because it is not able to directly

compare two values of di�erent attributes. If, however, the algorithm were able

to learn a concept description in a �rst-order logic representation, the concept

could be as simple and understandable as the PROLOG program of �gure 1.2.

Comparing the two, we not only realize that the PROLOG program is simpler

than the decision tree solution, but we also see that the PROLOG solution is

more general than the decision tree solution. If a robot with equal head and

body shapes that are neither square, octagon, or round comes along we would

not know how to classify it with the decision tree, but we would recognize it as

dangerous with the PROLOG rule.

In principle it would be possible to adopt this problem for propositional learn-

ing by providing a new hand-coded attribute head equal body that contains the
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value true for all robots that have equal head and body shapes and the value

false otherwise. However, inventing new relevant attributes requires a lot of

data engineering and domain knowledge. It can also be a very tiresome process.

If e.g. all of the 6 attributes were of the same type, then the knowledge engineer

would have to consider

�

6

2

�

new possible attributes for each binary relation.

One relational learning algorithm, LINUS, tries to automate this process (see

page 10).

Like the decision tree algorithms, other classic propositional learning

algorithms (including CN2 [Clark and Niblett, 1989], AQ [Michalski, 1980,

Michalski et al., 1986], and others) are also limited to concept descriptions in

propositional calculus. The algorithms we will discuss in this thesis will be able

to make use of relations in order to get simpler and more understandable concept

descriptions.

1.3 Noise Tolerance

Another important problem for decision tree algorithms is noise tolerance. Prob-

lem 3 of [Thrun et al., 1991] illustrates this di�culty.

Problem 3: Robots are dangerous when their jacket is green and they are holding

a sword or when their jacket is not blue and the shape of their bodies is not

octagon. Be aware that due to counterespionage the classi�cation of 5% of

the known robots may be wrong.

The problem with learning this comparatively simple concept is that you have

to �nd a good generalization, although you cannot entirely rely on the examples

you are given. The purpose of this exercise is to simulate learning from real-

world databases which very often contain noise, i.e. erroneous or incomplete

instances. There may be many reasons for noise in databases: manual data

collection and entry is error-prone, measuring devices may fail occasionally, some

attribute values may not always be available, classi�cation by human experts is

often inconsistent, and many more.

Research in propositional learning algorithms has already developed a va-

riety of methods for noise handling. Noise-tolerant decision tree learning al-

gorithms like CART [Breiman et al., 1984], C4.5 [Quinlan, 1993], ASSISTANT

[Bratko and Kononenko, 1986], CN2 [Clark and Boswell, 1991] are well-known

and often applied to real-world problems. However, many of the solutions em-

ployed in these programs are tailored for propositional learning algorithms, so

that the developement of noise-tolerant relational learning algorithms is currently

a very active research �eld.
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1.4 Overview

The goal of this thesis is two-fold: First we put a variety of noise-tolerant re-

lational learning algorithms into a uni�ed framework and show how they are

related to each other. Chapter 2 will give a short introduction into the new

research area called Inductive Logic Programming (ILP) and will introduce a

prototypical First Order Inductive Learner | Foil [Quinlan, 1990]. In the fol-

lowing two chapters 3 and 4 we will review well-known methods for noise handling

in this relational learning system. Chapter 3 will also introduce our relational

learner Fossil which uses new search and pre-pruning heuristics, and show that

it compares very well to other approaches known from the literature.

The second goal of this research is to show how this framework can be natu-

rally extended to incorporate two new approaches to noise-tolerance in relational

learning. In chapter 5 we will introduce an algorithm that combines the two basic

methods of chapters 3 and 4 in an elegant way. Chapter 6 will then show how

a tight integration of these approaches naturally gives rise to another new and

powerful algorithm for noise handling in Inductive Logic Programming. Chap-

ter 7 then compares all of the discussed algorithms, in particular the three new

methods, on a variety of natural and arti�cial test problems. The main results

are summarized and discussed in chapter 8.



Chapter 2

Inductive Logic Programming

Inductive Logic Programming (ILP) can be viewed as research in the intersection

of Logic Programming and Inductive Machine Learning. Informally speaking

the �eld is concerned with the induction of PROLOG programs. As we have

seen in chapter 1, being able to express the discovered knowledge in a �rst-order

logic representation language can overcome some of the limitations of classical

learning algorithms. Most of them learn from an attribute-value representation

of the input data and their representational power thus is restricted to decision

trees as in the ID3 family [Quinlan, 1983] or propositional Horn clauses as in AQ

[Michalski et al., 1986] or CN2 [Clark and Niblett, 1989]. ILP algorithms, on the

other hand, can not only test attributes for speci�c values, but also make use of

relations (like equality) between the di�erent attributes.

Inductive Logic Programming has quickly developed to a very active research

�eld. The expressiveness of �rst order logic has lead to many di�erent research

areas within ILP.

Relational Learning (also called Empirical ILP) will be the main emphasis of

the research presented in this thesis. Relational learning algorithms learn

classi�cation rules for a concept. The program typically receives a large

collection of positive and negative examples from real-world databases as

well as background knowledge in the form of relations. The prototypical

example for this research is Foil [Quinlan, 1990] and its various successors,

but there are several other approaches like LINUS [Lavra�c et al., 1991] and

Golem [Muggleton and Feng, 1990].

Theory Revision systems are not so much concerned with the induction of

a useful theory, but with the maintenance of a complete and consistent

theory. Theory revision systems constantly monitor the performance of

their theory and attempt to generalize it when is unable to explain an

observation and specialize it when one of its predictions does not turn

6
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out to be correct. Typical revision systems are MIS [Shapiro, 1982],

CIGOL [Muggleton, 1988], CLINT [De Raedt, 1992], KRT (MOBAL)

[Wrobel, 1994], Forte [Richards, 1992] and AUDREY [Wogulis, 1991].

Predicate Invention is an important research direction aiming at introduc-

ing new background knowledge in order to gain expressiveness or to

make the resulting theory more understandable [Stahl, 1993]. Com-

mon methods to invent new predicates include detecting data dependen-

cies [Flach, 1993] or clause completion heuristics [Kijsirikul et al., 1992].

Many systems try to invert deductive reasoning and are able to invent

new predicates that way. Some invert one step of a resolution proof

[Muggleton and Buntine, 1988, Wrobel, 1989, Rouveirol and Puget, 1990],

i.e. they are basically given a consequent and preconditions and try to

guess a rule that can prove the consequent from the preconditions. To

invent recursive predicates, typically all resolution steps involving the re-

cursive predicate should be considered at once, a process that has been

called inverting implication [Muggleton, in press, Lapointe et al., 1993].

Discovery is a very new branch of ILP which di�ers frommost other approaches

in that there is no particular goal concept speci�ed in advance, but the

program tries to �nd interesting regularities by itself. The most prominent

systems are Claudien [De Raedt and Bruynooghe, 1993] and LaGrange

[D�zeroski and Todorovski, 1993].

Of course, several systems would �t into more than one category. An ex-

cellent overview of the history of the �eld can be found in [Sammut, 1993],

a selection of some of the most important papers in [Muggleton, 1992].

[Lavra�c and D�zeroski, 1993] is an introductory book on Inductive Logic Pro-

gramming with a strong focus on relational learning systems, in particular on

LINUS [Lavra�c et al., 1991] and mFoil [D�zeroski and Bratko, 1992a]. Other in-

troductory texts include [De Raedt and Lavra�c, 1993], [Muggleton, 1993], and

[Muggleton and De Raedt, 1994].

2.1 Relational Learning

The main concern of this thesis will be Relational Learning or Empirical

Inductive Logic Programming. Learning systems of this category typically are

designed to learn classi�cation rules from real-world databases. Main charac-

teristics of real-world databases are that they are large and unreliable. Algo-

rithms designed to work on them must therefore be e�cient and noise-tolerant

[Matheus et al., 1993].
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Given:

� a set of positive and negative training examples for the target relation

� background knowledge (typically in the form of relational tables)

Find:

� a logic program that is able to derive all of the positive and none

of the negative training examples using the relations provided in the

background knowledge.

Figure 2.1: A Generic Relational Learning Task

Relational Learning systems are designed for this purpose and have

already been applied to various real-world problems, like �nite-element

mesh design [Dol�sak and Muggleton, 1992, D�zeroski and Bratko, 1992a], medi-

cal diagnosis [Lavra�c et al., 1993, Petta, 1994], chess endgames [Morales, 1992,

Muggleton et al., 1989, Quinlan, 1990, D�zeroski and Bratko, 1992a],

natural language understanding [Zelle and Mooney, 1993], document recognition

[Esposito et al., 1993b] etc. Some of the systems even produced new knowl-

edge that was of considerable interest for researchers in the application domain

and has been published in journals of their subject area [Muggleton et al., 1992,

Sternberg et al., 1992, King et al., 1992]. For an overview of applications of em-

pirical ILP systems consult [Bratko and King, 1994].

The learning task for most relational learning systems is shown in �gure 2.1.

We will exemplify it with a short example. In �gure 2.2 the learning system has

the task of learning the concept father. It already knows about female and

male persons and it knows that christopher and penelope are the parents

of arthur and victoria.

1

The user now tells the system that christopher is

the father of his children while penelope is not and that christopher is not

the father of penelope. The learner's task is to �nd a de�nition for the target

relation. In our example the result would hopefully be

father(A,B) :- male(A), parent(A,B).

Di�erent methods have been found to solve this problem:

1

The known literal and target parts of the background knowledge tell the system what

clauses of the background knowledge it should use and what the target concept is. They

also contain information about types, modes and symmetries of the arguments, which will be

explained in section 2.3.3. More details about the syntax of known literal and target can

be found in appendix B.
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% Target relation

target(father(A,B),[A-person,B-person]).

% Training instances

pos_instance(father(christopher,arthur)).

pos_instance(father(christopher,victoria)).

neg_instance(father(penelope,arthur)).

neg_instance(father(christopher,penelope)).

% Relations in the background knowledge

known_literal(male(X),[X-person],[+],[]).

known_literal(female(X),[X-person],[+],[]).

known_literal(parent(X,Y),[X-person,Y-person],[+,+],[]).

% Definition of the background knowledge

parent(christopher,arthur).

parent(penelope,arthur).

parent(christopher,victoria).

parent(penelope,victoria).

male(christopher).

male(arthur).

male(colin).

female(victoria).

female(penelope).

Figure 2.2: Example input for a relational learner
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Top-Down Induction: This method is most common and will be our main

concern in this research. It tries to �nd a complete and consistent theory

by iterative specialization of the most general (empty) theory. The proto-

type system of this approach is Foil [Quinlan, 1990]. We will discuss this

approach in more detail in section 2.2.

Bottom-Up Induction: As opposed to top-down induction, the bottom-up

approaches search for a complete and consistent theory by iterative gen-

eralization of clauses. The most common generalization operators are

based on inverse resolution as in CIGOL [Muggleton and Buntine, 1988]

or on relative least general generalization [Plotkin, 1971] as in Golem

[Muggleton and Feng, 1990]. A generic framework for bottom-up induction

can be found in [Rouveirol et al., 1993].

Representation Change: The systems of this class approach the problem

by reformulating it in a language that conventional Machine Learning

systems can use. Prototypical for this approach is the LINUS sys-

tem [Lavra�c et al., 1991] that transforms the relational learning problem

into an attribute-value representation that can be used by propositional

learning algorithms like CN2 [Clark and Niblett, 1989] and ASSISTANT

[Cestnik et al., 1987].

All three approaches impose di�erent restrictions on the class of programs they

can learn. LINUS e.g. is not able to learn recursive predicates, while Golem is

limited to a restricted form of ground background knowledge. Top-down induc-

tion methods have similar constraints, which we will discuss in more detail in the

next section.

2.2 Separate-and-Conquer Rule Learning Al-

gorithms

Many ILP algorithms address the relational learning task speci�ed in �gure 2.1

with the so-called separate-and-conquer strategy which is well-known from propo-

sitional learning algorithms. It has its roots in the early days of Machine

Learning in the covering algorithm of the famous AQ family [Michalski, 1980,

Michalski et al., 1986]. CN2 [Clark and Niblett, 1989, Clark and Boswell, 1991]

eliminated AQ's dependence on an initial seed example and employed the

separate-and-conquer strategy for the �rst time. The term separate-and-conquer

has been coined by [Pagallo and Haussler, 1990] in the context of learning deci-

sion lists. Finally, it was �rst used in the Foil algorithm for e�ciently inducing

logic programs [Quinlan, 1990], which pioneered signi�cant research in the �eld

of relational learning. Although the work reported here will be mainly presented
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procedure SeparateAndConquer(Examples)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

Cover = Examples

while Negative(Cover) 6= ;

Clause = Clause [ FindLiteral(Clause; Cover)

Cover = Cover(Clause,Cover)

Examples = Examples � Cover

Theory = Theory [ Clause

return(Theory)

Figure 2.3: A Separate-and-Conquer Rule Learning Algorithm

in the relational learning framework, we think that parts of this thesis are also

very relevant for propositional learning algorithms that employ the same or a

similar learning strategy.

2.2.1 The Basic Algorithm

Figure 2.3 shows the basic SeparateAndConquer rule learning algorithm.

It constructs rules by successively adding conditions in the form of PROLOG

literals with a certain variabilization to the right-hand side of the current rule.

Each relation of the background knowledge with each possible variabilization is

considered and the most promising one is selected with a greedy search heuristic.

This process is repeated until enough conditions have been found to rule out all

of the negative examples. All positive examples covered by this rule are then

separated from the training set and the next rule is learned from the remaining

examples (hence the name separate-and-conquer). Rules are learned in this way

until no positive examples are left. This method guarantees that each positive

example is covered by at least one rule (completeness) and that no rule covers a

negative example (consistency).

2.2.2 Search Heuristics

The remaining question is how a literal with a certain variabilization is selected as

a condition for a rule in the FindLiteral subroutine. There are several search

heuristics known from decision tree learning, most of them perform similarly

(see e.g. [Mingers, 1989b, Buntine and Niblett, 1992]). [Lavra�c et al., 1992b]

and [Lavra�c et al., 1992a] list a selection of several search heuristics for Foil-

like empirical ILP system (see �gure 2.4).
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Probability P (c) =

p

p+n

Laplace Estimate P (c) =

p+1

p+n+2

m-Estimate P (c) =

p+m

P

P+N

p+n+m

Information I(c) = log

2

1

P (c)

Gain HG(c) = H(c)�H(c

0

)

Weighted WHG(c) = w �H(c)

(e.g. w =

p

p

0

or w = p)

Figure 2.4: Search Heuristics for Foil-like ILP algorithms

The simplest heuristic is to estimate the probability that an example covered

by the current clause c will be positive.

2

This probability is commonly estimated

with the relative frequency of the positive examples covered by c, i.e. the pro-

portion of positive (p) examples of the total number of examples (p+ n) covered

by c. If P (c) = 1 then only positive and no negative examples are covered and

the clause can be completed with the current literal.

The Laplace and m-estimates try to improve the estimation of P (c). In the

Laplace estimate a correction term is introduced to improve the quality of the

relative frequency probability estimate for low sample sizes, while the m-estimate

tries to trade o� between the a posteriori distribution (

p

p+n

) and the a pri-

ori distribution (

P

P+N

) of the positive and negative examples.

3

The improved

probability estimates can be used in any of the other search heuristics. mFoil

[D�zeroski and Bratko, 1992a] uses them directly for the simple probability search

heuristic. [Cestnik, 1990] gives a closer analysis of these two heuristics.

The information heuristic estimates the amount of information necessary to

specify that an example covered by the clause is positive. This estimate can

simply be calculated by taking the logarithm of the inverse of the probability

P (c).

While the probability and information heuristics estimate the quality of a

clause using the population of examples covered by it, gain heuristics try to esti-

mate the improvement that would be gained by adding a literal to an incomplete

clause c

0

. They calculate the heuristic value (using any of the above heuristics)

of c

0

and subtract it from the heuristic value of the clause c which results from

adding the current literal to c

0

. The literal which maximizes this di�erence will

be chosen.

2

c is assumed to be the current incomplete clause plus the literal under scrutiny.

3

The a priori distribution is estimated with the relative frequency of positive examples (P )

in the training set (P + N ) before learning.
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Several approaches also tried to incorporate di�erent search biases by assign-

ing di�erent weights to di�erent candidate literals. Usually weights are chosen

that give a higher value to literals that cover many positive examples in order to

avoid very speci�c rules (i.e. rules that only cover a few examples). The example

of section 2.2.3 shows why this can be very useful in some cases.

The heuristic used in Foil itself is weighted information gain. It uses the

di�erence in information between the clause with or without the current literal

and multiplies it with the number of positive examples covered by the former.

2.2.3 Example

We will look at a short example (�gure 2.5) that illustrates the behavior of a

Foil-like algorithm. It tries all literals with all possible variabilizations using the

variables of the head of the clause (father(A,B)) and counts how many positive

and negative examples would be covered by the clause consisting of the head and

the literal added to the body. For example the clause

father(A,B) :- male(A).

would be true for both positive examples of the training set, but also for one

of the negative examples. With a the simple probability heuristic the literals

male(A), \+female(A)

4

, and parent(A,B) all three would be estimated with a

heuristic value of 2/3. All three of them could be equally useful for constructing a

de�nition for the concept father. In our example the �rst of them is (arbitrarily)

chosen as the �rst literal in the clause and the three examples that are covered

by this literal form the new training set. Note that one of the negative examples

has already been ruled out by this literal.

With the new training set Foil performs a second pass and again examines

all literals

5

. We now have two literals that cover some positive examples and no

negative examples | male(B), and parent(A,B). The former only covers 1 posi-

tive example, while the latter covers both. Using the simple probability heuristic,

both literals would be equally valid choices (both of them have a heuristic value

of 1), although the former would be a bad choice. The resulting clause

father(A,B) :- male(A), male(B).

would only \explain" one of the positive training examples, namely

father(christopher,arthur). In this case the program would remove this

4

Read as not female(A).

5

It would not be necessary to re-examine the literals that already appear in the clause, i.e.

the literal male(A).
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| ?- foil(father(A,B),Clauses).

2 positive and 2 negative instances left.

male(A): covers 2 + and 1 -

\+male(A): covers 0 + and 1 -

male(B): covers 1 + and 1 -

\+male(B): covers 1 + and 1 -

female(A): covers 0 + and 1 -

\+female(A): covers 2 + and 1 -

female(B): covers 1 + and 1 -

\+female(B): covers 1 + and 1 -

parent(A,A): covers 0 + and 0 -

\+parent(A,A): covers 2 + and 4 -

parent(A,B): covers 2 + and 1 -

\+parent(A,B): covers 0 + and 1 -

parent(B,A): covers 0 + and 0 -

\+parent(B,A): covers 2 + and 4 -

parent(B,B): covers 0 + and 0 -

\+parent(B,A): covers 2 + and 4 -

Chose literal male(A).

2 positive and 1 negative instances left.

male(A): covers 2 + and 1 -

\+male(A): covers 0 + and 1 -

male(B): covers 1 + and 0 -

\+male(B): covers 1 + and 1 -

female(A): covers 0 + and 0 -

\+female(A): covers 2 + and 1 -

female(B): covers 1 + and 1 -

\+female(B): covers 1 + and 0 -

parent(A,A): covers 0 + and 0 -

\+parent(A,A): covers 2 + and 4 -

parent(A,B): covers 2 + and 0 -

\+parent(A,B): covers 0 + and 1 -

parent(B,A): covers 0 + and 0 -

\+parent(B,A): covers 2 + and 4 -

parent(B,B): covers 0 + and 0 -

\+parent(B,A): covers 2 + and 4 -

Chose literal parent(A,B).

Found clause: father(A,B):-male(A),parent(A,B)

Clauses = [(father(A,B):-male(A),parent(A,B))] ?

yes

| ?-

Figure 2.5: Trace of a Foil-like algorithm
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example from the training set and would learn a second (presumably equally

meaningless) rule for the remaining example.

However, if we choose the weighted probability heuristic for our program,

it would give preference to the second literal, parent(A,B), because it covers

2 positive examples instead of only 1 for the literal male(B). In this case the

algorithm has discovered a complete and consistent program.

2.3 Problems

The separate-and-conquer learning strategy has proven to be very e�cient and

powerful in learning simple logic programs. However, the simplicity of this ap-

proach has its limitations and causes several problems that have to be solved.

2.3.1 Introducing New Variables

As the reader may have noticed, in example 2.5 only the variables that already

appeared in the head of the clause were used for the literals in the body. For the

current example this was su�cient to induce a correct concept description. But

if the goal were to learn the concept

grandparent(A,B) :- parent(A,C), parent(C,B).

the program would need to be able to introduce new intermediate variables

like C. In fact this particular example would cause no problems for Foil. It is

highly characteristic for grandparents that they are parents as well. So the feature

of being a parent is quite likely to discriminate between grandparents and some

(but not all) people who are not grandparents. When the literal parent(A,C) is

selected, adding parent(C,B)would perfectly discriminate between grandparents

and other people.

6

However, if we consider the seemingly equivalent task of learning the de�nition

grandchild(A,B) :- child(A,C), child(C,B).

6

A prerequisite for this is that the values for C can be determined from the background

knowledge. Usually background knowledge is represented as PROLOG ground facts, so that

the values to which A will be bound in the literal parent(A,C) determine the values of the

new variable C. There are two di�erent approaches how subsequent literals are evaluated: Foil

counts the proofs, i.e. whenever a literal using one of the new variables is added to the clause,

all possible instantiations of this variable will be considered and it is counted how many of

them will prove the current instantiation of the head of the clause. A more e�cient method is

to merely count the instances, i.e. it is only checked whether there is a substitution that would

prove the head or not. Both variants seem to be reasonable choices.
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a problem occurs: everybody is the child of somebody. Being a child does

not discriminate between grandchildren and other people. Adding the literal

child(A,C) to the body of the clause would therefore not exclude any negative

examples and the heuristic value of adding the literal to the body of the clause

would be very low for all of the greedy heuristics listed in �gure 2.4.

In [Quinlan, 1991] a solution is proposed that works for a powerful subclass

of the problematic cases, the so-called determinate literals. Whenever no liter-

als with a heuristic gain above a certain threshold can be found, Foil tries to

improve the situation by adding determinate literals and thus introducing new

variables. A literal containing new variables is called determinate if it has ex-

actly one instantiation that proves each of the positive training instances, and if

at most one instantiation proves each of the negative training examples. Determi-

nate literals include commonly used PROLOG predicates such as plus(X,Y,Z),

multiply(X,Y,Z), append(X,Y,Z) and many more. However, the grandchild

example could not be solved with determinate literals either, because each child

usually has two parents, i.e. child(A,C)would have more than one instantiation

for each example for a grandchild and would therefore not be determinate.

The algorithms discussed here will in general ignore this problem and only

use heuristic gain as criterion for adding literals to a clause.

2.3.2 Recursion and Cut

Learning recursive predicate de�nitions is no fundamental limitation for Foil. It

is able to learn recursive concepts like

ancestor(A,B) :- parent(A,B).

ancestor(A,B) :- parent(A,C), ancestor(C,B).

This is handled easily by including the instances of the target relation into

the background knowledge that can be added to the right hand side of a clause.

However, one has to take care that not all variabilizations of recursive predicates

are valid. Otherwise the program would very elegantly discover the \solution"

ancestor(A,B) :- ancestor(A,B).

There are many other pitfalls for a program that learns recursive de�nitions.

[Cameron-Jones and Quinlan, 1993a] extensively discuss this problem and pro-

vide a fairly general solution. However, we feel that being able to learn recursive

predicates is not a major issue in learning in real-world domains and have re-

stricted our programs to non-recursive concept de�nitions.
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Similarly, we are not concerned with learning cuts in our PROLOG programs.

However, contrary to recursion, learning cuts seems to be a very hard problem.

The main reason for this is that a cut only has a procedural meaning and there-

fore cannot be easily induced from declarative data [Bergadano et al., 1993]. In

particular Foil-like algorithms that learn one clause at a time will have di�cul-

ties in learning cuts, because many cuts only makes sense in the context of the

whole program.

2.3.3 Search Space

The more relations there are in the background knowledge and the more variables

there are in the target relation, the more possible literals have to be examined at

each step. Although both the number of background relations and the number

of variables are usually beyond the control of the user, several provisions can be

made to cut down the size of the search space.

Types: One way of restricting the number of literals that have to be evaluated

at each step is to use type restrictions. For each relation (including the

target) the type of the arguments is speci�ed. Only variables of the same

7

type are considered as possible variabilizations for the arguments of the

background relations. With this mechanism it could e.g. be enforced that

only arguments of the type number are tried for the < relation. In the ex-

ample of �gure 2.2 the second arguments of the target and known literal

predicates are used to specify that all arguments of the speci�ed relation

are of the type person.

Modes: Mode declarations are a simple way of restricting the places at which

new variables can be introduced in the relations of the background knowl-

edge. In �gure 2.2 the third argument of the known literal predicate is

used to specify the mode of the argument of the predicate. A + indicates

that only old variables should be used for the corresponding argument,

while a - would allow a new variable at this place.

Symmetries: A third way for reducing the search space is to specify symmetries

in the arguments of a background relation. It would be unnecessary work

e.g. to examine plus(Y,X,Z) if we already had evaluated plus(X,Y,Z),

because both literals can be considered identical. The fourth argument of a

known literal declaration can be used to specify a list of pairs of variables

that are symmetrical (like [X-Y] in our example).

As relational learners are targeted for learning from large amounts of real-

world data, e�ciency is a major issue. Therefore the above mechanisms for

7

A similar mechanism could be proposed for incorporating type hierarchies.
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restricting the search space have been included into our implementations of all

learning algorithms discussed later on. A description of the interface to these

methods can be found in appendix B.

2.3.4 Noise

The simple SeparateAndConquer algorithm of �gure 2.3 has a severe draw-

back for learning from real-world data. As already discussed in section 1.3, real-

world data may be imperfect. Some instances may be erroneously classi�ed, or

some of the attribute values may be missing or wrong. In short, the data may be

noisy. Noisy data are a problem for many learning algorithms, because it is hard

to distinguish between rare exceptions and erroneous examples. The fundamen-

tal algorithm of �gure 2.3 tries to explain all of the positive examples and none

of the negative examples, i.e. in the presence of noise it will �nd explanations

for negative examples that are erroneously considered to be positive and try to

exclude positive examples that are believed to be negative. Typically this results

in a very complex theory that is hard to understand and is not very predictive

on unseen examples.

8

Pruning is a standard way of dealing with noise in concept learning (see e.g.

[Mingers, 1989a] or [Esposito et al., 1993a]). We can distinguish two fundamen-

tally di�erent approaches [Cestnik et al., 1987]:

Pre-Pruning means that during concept generation some training exam-

ples are deliberately ignored, so that the �nal concept description does

not classify all training instances correctly. In decision tree learning

these pre-pruning approaches include ID3 [Quinlan, 1986] or ASSISTANT

[Bratko and Kononenko, 1986].

Post-Pruning means that �rst a complete and consistent concept description

is generated from a proportion of the training data. The resulting con-

cept is then analyzed with the remaining, unseen examples and, if neces-

sary, is generalized to improve the accuracy on these examples. In decision

tree learning post-pruning approaches have e.g. been used in Reduced Er-

ror Pruning [Quinlan, 1987], CART [Breiman et al., 1984] or ASSISTANT

[Cestnik et al., 1987].

The main concern of the research reported in this thesis will be e�cient prun-

ing methods for rule learning algorithms. In chapters 3 and 4 we will review some

of the pruning methods that have been adopted for relational concept learning

8

Figure 4.2 shows an example in the KRK chess endgame domain with arti�cial noise added.

A correct domain de�nition and some good approximations can be found in Appendix A.
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systems. We also present our relational learner Fossil that employs a new search

heuristic based on statistical correlation and e�ectively combines it with a very

simple and e�cient pre-pruning heuristic. In chapter 5 we then show how pre-

pruning can be used for improving the e�ciency and accuracy of post-pruning

by relaxing the condition of generating a complete and consistent theory �rst.

Finally, in chapter 6, we introduce a method that actually integrates both ap-

proaches by using post-pruning methods as a pre-pruning criterion.



Chapter 3

Pre-Pruning

Being able to deal with noisy domains is a must for learning algorithms that are

meant to learn concepts from real-world data (see section 2.3.4). Pre-pruning

deals with this problem by relaxing the constraint of being complete and consis-

tent with the training data and thus admitting over-general concept de�nitions.

In this chapter we will �rst introduce several pre-pruning approaches known

from the ILP literature (section 3.1). Then we will present Fossil, our own Foil-

like algorithm that uses a new search heuristic based on statistical correlation

(section 3.2). One of the nice features of this heuristic is that it gives a reliable

measure of the heuristic value of a literal on a uniform scale. We show empirically

that this feature can advantageously be used for dealing with noise by pre-pruning

all literals that have a heuristic value below a certain threshold. We also present

empirical evidence that this threshold is robust in the sense that a good value

for this parameter is independent of the number of training examples and of the

amount of noise in the data (section 3.3).

Parts of this chapter have been previously published in a somewhat di�erent

form in [F�urnkranz, 1993a] and [F�urnkranz, 1994b].

3.1 Pre-Pruning in Relational Learning

As we have discussed in section 2.3.4, noise in the data is a problem for the

simple SeparateAndConquer rule learning algorithm of �gure 2.3, because

it tries to �nd explanations for every single example in the training set, includ-

ing the erroneous examples. Explanations for noisy examples typically are very

complicated and will decrease predictive accuracy when used to classify unseen

examples. It has been suggested by [Holte et al., 1989] that a large proportion of

the overall classi�cation error of a theory can be attributed to clauses that cover

only a small number of positive examples. This problem is known as the Small

20
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procedure PrePruning(Examples)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

Cover = Examples

while Negative(Cover) 6= ;

NewClause = Clause [ FindLiteral(Clause; Cover)

if StoppingCriterion(Theory,NewClause,Cover)

exit while

Clause = NewClause

Cover = Cover(Clause,Cover)

Examples = Examples � Cover

Theory = Theory [ Clause

return(Theory)

Figure 3.1: A Rule Learning Algorithm Using Pre-Pruning

Disjuncts Problem . In the particular context of learning in noisy domains it is

also known as over�tting the noise.

One remedy for this problem is to try to increase the predictive accuracy by

considering not only complete and consistent theories, but also simple theories

that may be over-general on the training examples. It will be allowed to delib-

erately cover some negative training examples and leave some positive training

examples uncovered in order to learn simpler and more predictive theories.

Figure 3.1 shows an adaptation of the simple SeparateAndConquer al-

gorithm that includes a pre-pruning heuristic. It can easily be seen that the

algorithm is identical to the one of �gure 2.3 except that in the inner while loop

contains a call to the subroutine StoppingCriterion. A stopping criterion is

a heuristic that determines when to stop adding conditions to a rule, and when

to stop adding rules to the concept description. If the current clause with the

new literal added ful�lls the stopping criterion the inner while loop is terminated

and the incomplete clause will be added to the concept description. Note that if

this clause is empty, no positive (and no negative) examples are covered and the

outer loop will terminate as well. In addition (not shown in �gure 3.1) many pre-

pruning rule learning algorithms use a simple mechanism to monitor the quality

of the over-general clauses. Foil e.g. requires that a certain minimumpercentage

(usually 80%) of the covered examples has to be positive. Otherwise the clause

is rejected and no further clauses will be learned.

Most Foil-like algorithms employ stopping criteria for noise handling. The

most commonly used among them are

� Encoding Length Restriction: This heuristic used in Foil itself
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[Quinlan, 1990] is based on the Minimum Description Length principle

[Rissanen, 1978]. It tries to avoid learning complicated rules that cover only

a few examples by making sure that the number of bits that are needed to

encode the current clause is less than the number of bits needed to encode

the instances covered by it.

1

� Signi�cance Testing was �rst used in the propositional CN2 induction al-

gorithm [Clark and Niblett, 1989, Clark and Boswell, 1991] and later on in

the relational learner mFoil [D�zeroski and Bratko, 1992a]. It tests for sig-

ni�cant di�erences between the distribution of positive and negative exam-

ples covered by a rule and the overall distribution of positive and negative

examples by comparing the likelihood ratio statistic

2

to a �

2

distribution

with 1 degree of freedom at the desired signi�cance level. Insigni�cant rules

are rejected.

Both of these stopping criteria require additional computation to determine

when to stop learning. In section 3.2.3 we will introduce a much simpler stopping

criterion, the cuto� , that has been realized in our new relational learning system

Fossil. But �rst we will look at some of the features of Fossil's correlation

search heuristic (section 3.2.1) that are a prerequisite for the use of the cuto�

stopping criterion (section 3.2.2).

3.2 Fossil

Fossil is a SeparateAndConquer rule learning algorithm that uses a search

heuristic based on statistical correlation. In this section we will introduce this

heuristic and point out some of the features that distinguish it from other search

heuristics used in empirical ILP (see �gure 2.4).

3.2.1 The Correlation Heuristic

Fossil's evaluation function is based on the concept of statistical correlation.

The correlation coe�cient of two random variables X and Y is de�ned as

corr(X;Y ) =

E((X � �

X

)(Y � �

Y

))

�

X

� �

Y

=

E(X � Y )� �

X

� �

Y

�

X

� �

Y

(3:1)

1

The number of bits needed to encode the training instances is log

2

(n)+ log

2

(

�

n

p

�

) where

n is the number of training instances and p positive instances are covered by the current

clause. Literals can be encoded by specifying the relation (log

2

(# relations) bits), the variables

(log

2

(# variabilizations) bits) and whether it is negated or not (1 bit). The sum of these terms

for all literals has to be reduced by log

2

(n!) since the ordering of these literals within the clause

is in general irrelevant.

2

LRS = 2� (p log

�

p

p+n

P

P+N

�

+ n log

�

n

p+n

N

P+N

�

)
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where � and � are expected value and standard deviation, respectively, of the

random variables X and Y . This correlation coe�cient measures the degree of

dependence of two series of points on a scale from �1 (negative correlation) to

+1 (positive correlation). In the following we will describe its adaptation as a

search heuristic for a SeparateAndConquer rule learning algorithm.

T’T’

T’

T T

p’

n’

p

n

p

n

a) b)

c)

Figure 3.2: Illustration to the Correlation Heuristic

Suppose Fossil has learned a partial clause c

0

, which currently covers the

example set T

0

, containing p

0

positive and n

0

negative instances (see �gure 3.2.a).

3

We now assume to have a candidate literal L that may be appended to c

0

to form

a new clause c. c will then cover a set of T � T

0

instances, p of them positive and

n of them negative. The set

�

T = T

0

nT on the other hand contains �p positive and

�n negative examples (�gure 3.2.b and c). The ideal situation would occur when

all positive instances and none of the negative instances are covered by c, i.e. T

is equal to the set of positive examples covered by c

0

(n = 0) and

�

T is equal to

the set of negative examples covered by c

0

(�p = 0). In short, p is the number of

3

As in �gure 2.4 we denote variables that describe the incomplete clause that is currently

examined with a

0

.
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the true positive examples in T', and �n the number of the true negatives. �p and

n denote the number of false positives and false negatives respectively.

For each instance we now arbitrarily assign the numeric values +1 to positive

examples and �1 to negative examples and substitute the series S

0

of the signs

of the examples in T

0

for the variable X in (3.1). Similarly we form a series S

by assigning +1 to all instances of T and �1 to all instances in

�

T and substitute

it for the variable Y . We now can compute the correlation of these two series of

values.

4

The expected values in (3.1) will be estimated by the mean values of S

0

and S

respectively. Standard deviation will be approximated by the empirical variance.

Thus we get

�

0

=

p

0

� n

0

jT

0

j

; �

02

= E(S

02

)� E(S

0

)

2

= 1� �

02

;

� =

jT j � j

�

T j

jT

0

j

; �

2

= 1� �

2

(3.2)

The last remaining term to be computed is E(S

0

�S). The p positive examples

that are covered by c contribute a +1 to this expected value, as do the �n negative

examples that are not covered c. Positive examples that are not covered (�p) and

negative examples that are covered (n) contribute a �1. Thus

E(S

0

� S) =

p+ �n� n� �p

jT

0

j

(3:3)

The partial results of above now only need to be substituted into the formula

for the correlation coe�cient (3.1). As �

0

and �

0

only need to be evaluated once

for each example set T

0

, the evaluation of this formula is not as complicated

as it may seem at �rst sight. Also notice that with this approach no separate

calculation for negated literals has to be performed, as a high negative correlation

indicates a high dependence on the negated literal.

5

The literal L with the highest absolute value of the correlation coe�cient (or

\+L if the sign of the coe�cient is negative) is �nally chosen to extend c

0

to

form the new clause c. This is based on the assumption that its high correlation

with the instances in the current training set T

0

indicates some form of causal

relationship between the target concept and L.

4

Of course the two series of signs assigned to the examples have to be in the same order,

e.g. the order in which the examples appear on the data �le.

5

When new variables are introduced in the body of the clause this symmetry will only hold

if the algorithm counts the proofs and not only the instances (see the footnote on page 15).
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3.2.2 Interesting Properties of the Correlation Heuristic

Figure 3.3 shows a trace of Fossil on the example �le of �gure 2.2. Following

this trace we will shortly discuss some interesting properties of the correlation

heuristic.

| ?- fossil(father(A,B),Clauses).

2 positive and 2 negative instances left.

male(A): Correlation: 0.5774 (covers 2 + and 1 -)

male(B): Correlation: 0.0000 (covers 1 + and 1 -)

\+female(A): Correlation: 0.5774 (covers 2 + and 1 -)

female(B): Correlation: 0.0000 (covers 1 + and 1 -)

parent(A,A): Correlation: 0.0000 (covers 0 + and 0 -)

parent(A,B): Correlation: 0.5774 (covers 2 + and 1 -)

parent(B,A): Correlation: 0.0000 (covers 0 + and 0 -)

parent(B,B): Correlation: 0.0000 (covers 0 + and 0 -)

Chose literal male(A).

male(A): Correlation: 0.0000 (covers 2 + and 1 -)

male(B): Correlation: 0.5000 (covers 1 + and 0 -)

female(A): Correlation: 0.0000 (covers 0 + and 0 -)

\+female(B): Correlation: 0.5000 (covers 1 + and 0 -)

parent(A,A): Correlation: 0.0000 (covers 0 + and 0 -)

parent(A,B): Correlation: 1.0000 (covers 2 + and 0 -)

parent(B,A): Correlation: 0.0000 (covers 0 + and 0 -)

parent(B,B): Correlation: 0.0000 (covers 0 + and 0 -)

Chose literal parent(A,B).

Found clause: father(A,B):-male(A),parent(A,B)

Clauses = [(father(A,B):-male(A),parent(A,B))] ?

yes

| ?-

Figure 3.3: Fossil trace

� The �rst thing that becomes obvious when comparing �gure 3.3 to the

behavior of Foil (�gure 2.5) is that Fossil only examines a literal or its

negation, but not both. In Foil, the heuristic value of each literal and
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of its negation have to be calculated separately. Fossil, however, is able

to do this in one computation: A high positive correlation indicates that

the literal under scrutiny is good in reproducing the signs of the positive

and negative training examples, while a high negative correlation indicates

that it is good in reproducing the inverse signs. The correct signs can

in that case be obtained by negating the literal and the heuristic value

of this negated literal is the absolute value of the computed correlation.

This can be seen clearly from the beginning of the example trace, where

Fossil �nds high correlation with male(A) and an equally high negative

correlation with female(A). Consequently it will only consider the negated

literal \+female(A).

� Fossil's correlation coe�cient | after taking absolute values and choos-

ing the appropriate (positive or negative) literal | allows to compare the

candidate literals on a uniform scale from 0 to 1. This is di�erent from

e.g. Foil, where the weight used in its information gain heuristic directly

depends on the number of the training examples and therefore does not

have an absolute upper bound (see section 2.2.2).

� The correlation function is symmetric and gives equal consideration to cov-

ering many positive and excluding many negative examples. As we have

seen in �gure 2.5 the unweighted probability heuristic would not be able to

decide between the literals male(B) and parent(A,B) in the second pass

of the algorithm. We had to use a weighted heuristic to get the desired

behavior. Fossil accomplishes the same by not only considering the p+ n

examples that the new clause c covers, but also taking into account the

�p+ �n examples that it no longer covers.

� The correlation between an example set and a literal that has at least one

true instantiation for each example is unde�ned, because � will be 1 and

thus � will be 0. Note that this will happen for the problematic cases

discussed in section 2.3.1. The problem was that literals that only serve

the purpose of computing a dependent value often compute a value for all

input values. Thus the truth value of the literal is the same for positive

and negative examples and it is therefore not able to discriminate between

them. Fossil o�ers a exible way of handling this problem: De�ning

the heuristic value of these literals as 1 puts all of them into the clause

body. Irrelevant literals could be removed later in a post-processing phase.

Values between 0 and 1 result in a behavior similar to that described in

[Quinlan, 1991]: until a literal with a correlation above a preset value is

found, these problematic literals will be added to the clause body in the

hope that the new variables they introduce will improve the situation. In

most of the experiments reported in this thesis introducing new variables

was turned o� with mode declarations (see section 2.3.3) and therefore the
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unde�ned cases would have been useless and were consequently treated as

having correlation 0.

The next section describes how Fossil's correlation heuristic can be used for

a new and simple, but nevertheless powerful stopping criterion.

3.2.3 The Cuto� Stopping Criterion

Fossil is able to judge the relevance of all literals on the same uniform scale

from 0 to 1. This allows the user to require the literals that are considered for

clause construction to have a certain minimum correlation value | the cuto�

parameter .

This can be used as a simple, but robust criterion for �ltering out noise, as it

can be expected that tuples originating from noise in the data will only have a

low correlation with predicates in the background knowledge. If no literal with

a correlation above the cuto� can be added to the current clause, this clause is

considered to be complete. Similarly, if no literal can be found that can start a

new clause, the concept de�nition is considered to be complete. Note that it may

happen that Fossil \refuses" to learn anything in cases where no predicate in

the background knowledge has a signi�cant correlation with the training data.

6

Di�erent settings of the values will cause di�erent amounts of pre-pruning. A

setting of Cuto� = 0:0 results in learning a theory that is complete and consistent

for the current training set, because every literal has a correlation > 0:0. On the

other hand, at Cuto� = 1:0 in general an empty theory will be learned, because

only trivial learning problems have background literals with a correlation � 1:0

(like e.g. parent(A,B) :- child(B,A).). In noisy domains, it can be expected

that Fossil will over-generalize at high cuto� values, while it will over�t the noise

in the data at low settings of this parameter. Thus Fossil's cuto� parameter

may be viewed as a means for directly controlling the Over�tting Avoidance Bias

[Scha�er, 1993, Wolpert, 1993]. Finding a good value for the cuto� is therefore an

important problem. Section 3.3 will show some empirical evidence that setting the

cuto� to 0:3 is a good heuristic, while chapter 5 will show ways for automatically

adjusting the cuto� parameter.

One problem that may arise with permitting incomplete clauses (the basic

principle of all pre-pruning heuristics), is that they can still be very inaccurate.

Foil's strategy in these cases is to ensure that a certain user-de�nable percentage

| usually 80% | of the examples covered by a clause is positive (see page 21).

If the current clause does not ful�ll this criterion, Foil rejects the clause and

6

This has actually happened several times, and is evident in the result with 50% Noise (i.e.

random classi�cation) in table 3.2, where Fossil did not learn a single clause in any of the 10

training sets.
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assumes that no other reasonable clause can be learned. Fossil takes a more

cautious approach to solve this problem: If a clause covers more negative than

positive examples, it will not be added to the concept description. If a clause

passes this criterion it is guaranteed that | on the training set | the accuracy

of the concept with the clause will be better than the accuracy of the concept

without the clause. The second di�erence is that if a clause is pruned because

of the above criterion, Fossil will not stop, but continue to learn from the

remaining examples, i.e. from the positive examples that have not been covered

by the pruned clause.

3.3 Experimental Evaluation of Fossil

For most of the experiments in this thesis we have used the domain of recognizing

illegal chess positions in the king-rook-king (KRK) endgame which is described

in detail in appendix A.

3.3.1 Setup of the Experiments

The experiments in this section were performed with arti�cial noise

added to the data following the Classi�cation Noise Process described in

[Angluin and Laird, 1988]. In this model a noise level of � means that the sign

of each example is reversed with a probability of �. This means that �% of the

data have been wrong at training time. Note that this may di�er from other

results in the ILP literature, where a noise level of � means that, with a prob-

ability of �, the sign of each example is randomly chosen. Thus a noise level of

� in our experiments is roughly equivalent to a noise level of 2� in the results

reported in [Lavra�c and D�zeroski, 1992, D�zeroski and Bratko, 1992b]. Noise was

added incrementally, i.e. instances which had a reversed sign at a noise level �

1

also had a reversed sign at a noise level �

2

> �

1

. Similarly, training sets with

n examples were fully contained in training sets with m > n examples. In all

experiments the induced rules were tested against sets of 5000 randomly chosen

noise-free instances.

For the experiments used in this section, typing constraints were used to speed

up the search, but no information about modes and symmetries was given, so that

the programs could introduce new variables.

7

We have also recorded the number

of clauses in the induced concept and the average number of literals per clause

to measure the complexity of the learned concept description.

7

The correct domain theory, given in �gure A.2, however, does not require the introduction of

new variables. The reason for this setup is that experiments in this section were performed with

a preliminary version of Fossil that was not yet able to use mode and symmetry information.
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3.3.2 Finding a Good Cuto� Value

The �rst series of experiments were aimed at determining an appropriate value

for the cuto� parameter for further experimentation. 10 training sets of 100

instances each were used at three di�erent noise levels (5%, 10% and 20%). We

examined 6 di�erent settings for the Cuto� parameter. The average results from

the 10 runs are reported in table 3.1 and plotted in �gure 3.4.

Cuto�

Noise 0.0 0.1 0.2 0.25 0.3 0.4

Accuracy 93.05 93.05 93.32 93.58 95.57 93.86

5% Clauses 6.3 6.3 6.2 5.8 4.2 2.7

Lits/Clause 2.25 2.25 2.25 2.19 2.02 1.87

Accuracy 87.77 87.77 90.0 93.44 93.52 83.18

10% Clauses 8.2 8.2 6.3 4.5 3.8 1.8

Lits/Clause 2.74 2.74 2.52 2.24 2.24 1.53

Accuracy 80.21 80.21 85.21 86.87 87.00 72.48

20% Clauses 11.4 11.4 6.0 4.1 3.2 0.7

Lits/Clause 3.09 3.09 2.80 2.76 2.67 0.85

Table 3.1: Experiments with di�erent settings for the Cuto� .

The following observations can be made from these graphs:

� A good setting for Cuto� in this domain seems to be somewhere around 0.3

for all three noise levels. Coincidentally, the learned concepts are of about

equal complexity at this point.

� The curve for the predictive accuracy is U-shaped, similar to some results on

pruning decision trees to various degrees (see e.g. [Breiman et al., 1984]).

� There is a transition from over�tting the noise to over-generalizing the rules.

A low setting of Cuto� has a tendency to �t the noise, because most of

the literals will have a correlation above the threshold. Conversely, too

optimistic a setting of Cuto� results in over-generalization as only a few

literals will have a correlation above the threshold.

� The complexity of the learned concepts monotonically decreases with an

increase of the cuto� parameter.

� The inuence of a bad choice of the cuto� is more signi�cant in data con-

taining a larger amount of noise.

All of this seems to con�rm our hypothesis that the cuto� is a means of

controlling the amount of allowed over�tting. In section 3.3.3 we will compare

the noise tolerance of Fossil to that of Foil.
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3.3.3 Comparison with Foil

We conducted two experiments to compare Fossil's performance to the per-

formance of Foil. In the �rst series we compared the behavior of the

two systems on 10 training sets of 100 instances each at di�erent noise lev-

els, which has been the standard procedure for evaluating many ILP sys-

tems [Quinlan, 1990, D�zeroski and Lavra�c, 1991, D�zeroski and Bratko, 1992b,

Muggleton et al., 1989]. In the second experiment we evaluated both programs

at a constant noise level of 10%, but with an increasing number of training in-

stances. According to the results of section 3.3.2 we set Cuto� = 0:3 and never

changed this setting.

Comparison at di�erent noise levels

In this experiment we compared Foil4

8

to Fossil at di�erent noise levels. In

order to have a fair comparison to Fossil, we used two versions of Foil, regular

Foil4 and a new version, Foil-NBT, where some of Foil4's enhancements

9

were not allowed. Surprisingly this version performed better than the original

Foil4 in noisy data as can be seen from the results of table 3.2.

An analysis of the result shows that Fossil performs best in most of the tests.

However the di�erences are probably not statistically signi�cant. A comparison

of the average number of induced clauses and of the average literals per clause

shows evidence that Fossil over-generalized at the high noise levels. A lower

value of the cuto� parameter may result in better performance in the case of 30%

noise, although it is unlikely that a useful theory would be learned. An interesting

detail is that Fossil did not learn anything at a noise level of 50%, i.e. with

totally random data. Thus the cuto� mechanism seems to be a primitive, but

e�cient means of distinguishing noise from useful information.

On the other hand, Foil4 seems to perform worse than both Foil-NBT and

Fossil. The complexity of the concepts learned by Foil4 increases with the

amount of noise in the data, which is clear evidence for over-�tting noise in the

data. The next experiment was designed to con�rm this hypothesis.

Comparison at di�erent training set sizes

In this series of experiments we compared Foil without backtracking to Fossil

at training sets of di�erent sizes with 10% noise. We decided to use Foil-NBT

8

Foil is available by anonymous ftp from ftp.cs.su.oz.au (129.78.8.1). The current

version (as of September 1994) is 6.2.

9

Foil4 has several features that improve the basic algorithm. In particular it is able to save

backup points and restart the search at these whenever the greedy search leads to poor de�ni-

tions. It also relearns entire clauses in some cases. A detailed description of these improvements

can be found in [Quinlan and Cameron-Jones, 1993].
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Di�erent Noise

Noise Levels 0% 5% 10% 15%

Accuracy 98.32 95.26 92.12 90.26

Foil4 # Clauses 3.5 4.2 5.4 5.9

Lits/Clause 1.64 1.98 2.41 2.47

Accuracy 98.11 95.00 92.98 91.76

Foil-NBT # Clauses 3.5 4.1 4.2 4.2

Lits/Clause 1.64 1.98 2.34 2.48

Accuracy 98.54 95.57 93.52 92.83

Fossil (0.3) # Clauses 3.7 4.3 3.8 4.2

Lits/Clause 1.62 2.02 2.24 2.29

20% 25% 30% 50%

Accuracy 85.21 79.83 71.53 53.00

Foil4 # Clauses 5.7 6.6 8.0 7.9

Lits/Clause 2.66 2.98 3.03 3.45

Accuracy 87.12 79.42 76.32 55.33

Foil-NBT # Clauses 4.5 5.4 5.0 5.2

Lits/Clause 2.67 2.80 2.79 3.08

Accuracy 87.00 81.63 70.59 (67.07)

Fossil (0.3) # Clauses 3.2 2.7 0.7 0.0

Lits/Clause 2.67 2.69 0.85 0.0

Table 3.2: A comparison of Foil and Fossil on di�erent levels of noise.

instead of Foil4, because it performed better in the previous series of tests.

Besides, the version without backtracking naturally runs faster, which proved to

be important. However, we have done a few sample runs with Foil4 to con�rm

that its results would not be qualitatively di�erent from those of Foil-NBT.

Again, we used 10 di�erent training sets and averaged the results. The out-

comes of these experiments are summarized in table 3.3 and �gure 3.5.

Di�erent Training Set Training Set Size

Sizes (10% Noise) 100 250 500 750 1000 2000

Accuracy 92.98 90.97 92.63 93.58 94.02 |

Foil-NBT Clauses 4.2 7.7 11.5 16.7 22.0 |

Lits/Clause 2.34 3.31 3.61 3.89 4.15 |

Accuracy 93.52 92.68 92.79 96.33 98.05 98.41

Fossil (0.3) Clauses 3.8 3.7 3.1 3.0 3.0 3.0

Lits/Clause 2.24 3.01 2.63 1.94 1.5 1.4

Table 3.3: A Comparison of Foil and Fossil with di�erent training set sizes

The most important �nding is that Foil clearly �ts the noise, while Fos-

sil avoids this and learns a slightly over-general, but much more useful theory
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illegal(A,B,C,D,E,F):-adj(A,E),adj(B,F).

illegal(A,B,C,D,E,F):-C==E.

illegal(A,B,C,D,E,F):-D==F.

Figure 3.6: An approximate theory for the KRK domain (98.54% correct).

instead. Foil's �tting the noise has several disadvantages:

Accuracy: The more examples there are in the noisy training set, the more spe-

cialized are the various clauses in the concept description, which decreases

the predictive ability of each clause learned by Foil. We have already

recognized this as the Small Disjuncts Problem (page 21).

E�ciency: Foil grows an increasing number of clauses with an increasing num-

ber of literals. Also, several of the literals chosen to �t the noise introduce

new variables, which leads to an explosion of the size of the tuple set. In

fact, the C implementation of Foil could complete none of the ten exper-

iments with 2000 training examples within 500 minutes of CPU time on a

SUN SPARCstation IPX, while the PROLOG implementation of Fossil

only needed about 15 minutes of CPU time for each of the training sets.

Understandability: It is a widely acknowledged principle that the more com-

plex a concept de�nition is, the less understandable it will be, in particular

when both de�nitions describe the same data set. While the descriptions

induced by Foil for large training sets often consisted of 20 or more clauses

and were totally incomprehensible to the author, Fossil converged towards

a simple, approximate theory. From 8 of 10 training sets with 2000 exam-

ples it learned the theory given in �gure 3.6 (theory B from appendix A)

which is 98.45% correct (see table A.2), while from the other two sets it

learned theory F which is still 97.98% correct.

What seems to be responsible for the drastic increase in the complexity of the

learned clauses is that Foil's stopping criterion, the Encoding Length Restriction

(p. 21), is dependent on the size of the training set. In the KRK domain it

performs very well on sample sizes of 100 training examples. The more this

number increases, the more bits are allowed for the theory to explain the data.

However, more examples do not necessarily originate from a more complex theory.

In fact, Foil very often chooses the same literals as Fossil for the �rst clauses

of its concept de�nition, but then continues to add literals and clauses, where

Fossil stops.

Fossil uses a statistical stopping criterion based on the assumption that

each literal in an explanation must have a signi�cant correlation with the set
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of training examples. Statistical measures usually improve with the size of the

training sets and so does the quality of the rules induced by Fossil. While both

Foil and Fossil successively improve their predictive accuracy with increasing

training set sizes, only Fossil converges towards a useful theory.

3.3.4 Comparison with mFoil

mFoil [D�zeroski and Bratko, 1992a] is an algorithm based on Foil that has

adapted several features from the CN2 learning algorithm, such as the use of

the Laplace and m-estimate as a search heuristic (see �gure 2.4) and the use of

signi�cance testing as a stopping criterion (see section 3.1). These methods have

proved very e�ective for noise handling. In additionmFoil uses beam search (de-

fault beam width 5) and can make use of mode and type information to constrain

the search space (see section 2.3.3). The following experiments used mFoil to

its full capacity, but were performed with an early version of Fossil that did not

support search space restrictions with modes and symmetry information.

10

The values of the m parameter were increased until a maximum performance

was reached in the sets of 100 training examples. We then used the same values

for testing with 1000 training examples. The results can be found in table 3.4.

mFoil Fossil

m = 0:01 Laplace m = 8 m = 16 m = 32 Cuto� = 0:3

100 89.77 89.84 93.03 93.06 91.46 93.52

1000 91.54 92.51 95.70 97.10 98.48 98.05

Table 3.4: Comparison with mFoil

Fossil seems to be at least equal at an example size of 100, unless a con-

siderably better theory has been missed somewhere around m = 16. However,

mFoil's strengths come to bear at an example size of 1000. The results reported

here are probably not yet the peak of its performance, as with m = 32 mFoil

has learned some theories with a predictive accuracy of above 99% which Fossil

has not achieved so far. Increasing the m further might well improve the bad

theories learned, while keeping the good ones.

However, one of the points to make here is that a good value of the m pa-

rameter is not only dependent on the amount of noise (as can be seen from the

results given in [D�zeroski and Bratko, 1992a] and [D�zeroski and Bratko, 1992b]),

but also on the size of the example set. The higher the noise level is, the higher

10

The current version achieves 98.44% on the same data sets with 1000 examples.
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one should choose the value of m. Our experiments on the other hand suggest

that the value of m should also increase with training set size. Assuming that

a certain level of noise in a certain domain requires a certain value of m, the

following illustrates why larger training set sizes may require larger values of m

to produce the same heuristic value of the m-estimate (see �gure 2.4).

Assume that we apply the learning algorithm to a certain data set. Then we

repeat the experiment by presenting each example twice. Ideally the result of the

heuristic evaluation for each literal should not change in that case. However, for

establishing

p +m

1

�

P

P+N

p + n+m

1

=

2p +m

2

�

2P

2P+2N

2p + 2n +m

2

you also have to adjust the m parameter accordingly (m

2

= 2m

1

). Similarly,

Foil's information gain heuristic would not produce the same value. Fossil's

correlation heuristic on the other hand would calculate the same heuristic value in

both cases as can be easily seen from formulas (3.1) to (3.3). It should therefore

not be surprising that the same setting of the cuto� parameter does reasonably

well at di�erent levels of noise and at di�erent training set sizes.

3.4 Summary

In this chapter we have been mainly concerned with pre-pruning methods for

separate-and-conquer rule learning algorithms. Pre-pruning deals with noise in

the data by relaxing the constraint that a complete and consistent program has

to be learned. With pre-pruning heuristics (also called stopping criteria), the

program can decide when a clause can be considered complete although it still

covers negative examples and when to stop adding clauses to a theory although

not all of the positive examples are explained yet.

In section 3.2 we have described a new system, Fossil. Its new search heuris-

tic based on statistical correlation allows the use of a very simple and e�cient

stopping criterion, the cuto� . We see the main advantages of this approach in

its

E�ciency: There is no separate calculation of a heuristic function for negated

literals and the amount of computing involved in calculating the stopping

criterion is reduced to a mere comparison.

Robustness: A good value of the cuto� parameter seems to be independent of

the amount of noise and the number of training examples. It is nevertheless

domain-dependent.
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Simplicity: The close relation of the cuto� to the correlation search heuristic

makes it easy to adjust the cuto� to an appropriate value. The cuto� can

be seen as a direct means of controlling the Over�tting Avoidance Bias. We

will further investigate this in chapter 5.

A comparison with the most common relational learning system, Foil, has

shown that Fossil's noise handling capabilities are superior, because Foil's

stopping criterion is dependent on the number of examples in the training set.

However, mFoil, another relational learner, seems to do a little better in terms

of classi�cation error, but a good value of its m-parameter depends on the size

of the training set and on the amount of noise contained in it. Fossil's cuto�

parameter on the other hand invariably gives good results at Cuto� = 0:3.



Chapter 4

Post-Pruning

Contrary to the pre-pruning approaches to achieving noise tolerance in ILP that

try to avoid over�tting during rule generation, post-pruning approaches at �rst

ignore the problem of over�tting the noise and learn a complete and consistent

concept description. The result is subsequently analyzed and (if necessary) sim-

pli�ed and generalized in order to increase its predictive accuracy on unseen data.

Post-pruning approaches have been commonly used in the decision tree learn-

ing algorithms CART [Breiman et al., 1984], ID3 [Quinlan, 1987] and ASSIS-

TANT [Niblett and Bratko, 1986]. An overview and comparison of various ap-

proaches can be found in [Mingers, 1989a] and [Esposito et al., 1993a]. This chap-

ter will �rst review how Reduced Error Pruning [Quinlan, 1987] can be adapted

for a rule learning algorithm (section 4.1). We will then outline several problems

with this simple method (section 4.2) and present an improved algorithm known

from the literature (section 4.3) that solves some of them. However, we will see

that even this improved version still has its shortcomings that have motivated

the research presented in the following chapters (section 4.4).

4.1 Reduced Error Pruning

Post-pruning algorithms typically consist of two phases:

1. Generate an overly speci�c concept description

2. Generalize it to an appropriate level

While phase 1. basically is identical for all algorithms, there are two prin-

cipal methods for phase 2. Several algorithms (like Minimal Error Pruning

[Niblett and Bratko, 1986] or Pessimistic Error Pruning [Quinlan, 1987]) ana-

lyze the performance of decision trees on the same data set from which they have

38
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procedure PostPruning(Examples, SplitRatio)

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Theory = SeparateAndConquer(GrowingSet)

loop

NewTheory = SimplifyTheory(Theory,PruningSet)

if Accuracy(NewTheory,PruningSet) <

Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory

return(Theory)

Figure 4.1: A Post-Pruning algorithm

been learned. For simplifying the resulting over-speci�c theory it is more com-

mon, however, to use a di�erent set of examples that were not known in the initial

learning phase (e.g. Error Complexity Pruning [Breiman et al., 1984], Iterative

Pruning [Gelfand et al., 1991] and Critical Value Pruning [Mingers, 1989a]).

4.1.1 The Algorithm

The most common among these methods is Reduced Error Pruning (REP)

[Quinlan, 1987]. This simple algorithm has been adapted for a propo-

sitional rule learning framework by [Pagallo and Haussler, 1990] and subse-

quently been introduced to noise handling in Inductive Logic Programming by

[Brunk and Pazzani, 1991]. At the beginning the training data are split into two

subsets: a growing set (usually 2/3) and a pruning set (1/3). In the �rst phase no

attention is paid to the noise in the data and a concept description that explains

all of the positive and none of the negative examples is learned from the growing

set. The resulting theory is then simpli�ed by greedily deleting conditions and

rules from the theory until any further deletion would result in a decrease of

predictive accuracy measured on the pruning set. A pseudo-code version of this

algorithm can be found in �gure 4.1.

The subroutine SimplifyTheory usually tries several simpli�cation opera-

tors at all applicable points of the over�tting theory and selects the one that

produces the theory with the highest accuracy on the pruning set. This is re-

peated with the new theory until the accuracy of the best pruned theory is below

that of its predecessor.

Di�erent implementations have used di�erent simpli�cation operators. The

most commonly used operators are:



4.1. REDUCED ERROR PRUNING 40

delete-any-literal: This operator tries to delete each single literal from the

current theory. It is very expensive to use, as at each step the algorithm

has to evaluate one new theory for each literal of the old theory.

delete-last-literal: This operator only tries to delete the last literal of each

clause. [Brunk and Pazzani, 1991] argue that this more e�cient operator

is suitable for separate-and-conquer rule learning algorithms, because the

order in which the literals of a clause are considered for pruning is inverse

to the order in which they have been learned.

delete-last-sequence: This operator, used e.g. in [Cohen, 1993], selects the

best of all theories that result from deleting a sequence of literals from

the end of the clause. Each iteration is equally expensive as with the

delete-any-literal operator, but one may arrive faster at the �nal the-

ory, because this operator can prune several literals in the same iteration.

delete-clause: This simple operator examines all theories that result from

deleting a clause from the old theory. It is very e�cient and needs only

few iterations. However, it should only be used in connection with one of

the three other operators that are able to do the �ne-tuning of the individual

clauses.

Reduced Error Pruning in its original form [Brunk and Pazzani, 1991] uses

delete-last-literal and delete-clause for pruning the overly speci�c theo-

ries generated in phase 1.

4.1.2 Experiments

[Brunk and Pazzani, 1991] show in a series of experiments in the KRK domain

that REP improves upon pre-pruning with Foil's Encoding Length Stopping

Criterion. We have performed similar experiments in the KRK domain which is

described in detail in appendix A. The setup of the experiments was basically the

same as described in section 3.3.1. All training sets contained 10% misclassi�ed

examples in order to simulate noise and the learned theories were tested on 5000

noise-free examples.

Each row of table 4.1 shows the average performance and standard devi-

ation of each algorithm in a series of 10 experiments with di�erent training

sets of the same size. Only 6 experiments were performed for the sets of size

1000. We have compared the currently newest version of Foil with a PRO-

LOG implementation of Reduced Error Pruning that used our own implemen-

tation of Foil as the basic induction module. Of course, no stopping crite-

rion was implemeted for the latter version in order to be able to over�t the

data as described in [Brunk and Pazzani, 1991]. REP made use of all search
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optimization of section 2.3.3. The results are comparable to those reported in

[Brunk and Pazzani, 1991]: REP performs better than Foil. We have also in-

cluded the accuracies of the intermediate unpruned theories, because they show

the signi�cant increase that post-pruning brings in terms of accuracy.

1

Training REP Foil6.1

Set Size Unpruned Pruned

100 85.29 � 4.76 91.77 � 9.05 89.48 � 6.02

250 83.79 � 2.33 96.29 � 1.94 90.78 � 1.74

500 84.29 � 2.72 97.62 � 0.95 92.88 � 1.42

750 85.17 � 2.87 97.47 � 1.44 93.55 � 0.77

1000 85.65 � 2.04 98.01 � 1.38 94.70 � 1.65

Table 4.1: Reduced Error Pruning in the noisy KRK domain.

An interesting detail is that in the Unpruned column, the results with only a

few (100) examples are superior to those using bigger training sets (and thus more

information) for learning. This phenomenon also appeared in �gure 3.5. On the

other hand there is big increase in accuracy on the pruned theories of sizes > 100.

Apparently the theories generated from 100 examples did not capture as much

information as the theories learned from bigger training set sizes, but generalized

better nevertheless, because the little information that was captured is not as

much obfuscated by unnecessary rules as when learning from more examples.

4.2 Problems with Reduced Error Pruning

REP has been shown to be quite e�ective in raising predictive accuracy in noisy

domains. Nevertheless, this method has several shortcomings, which we will

discuss in this section.

1

Strictly speaking we should have included a column of accuracies for an algorithm that

uses no pruning at all and learns from the entire set of training data. The numbers we have

given are the results from the initial rule growing phase of REP and thus only used the growing

set (2/3 of the training set) as input data. Using the entire set for input might give a better

accuracy, but it will still be below that of REP. This can be seen when we consider that e.g.

the Unpruned column for size 750 actually contains results for learning an unpruned theory

from about 500 examples. Comparing these values to the values of the other algorithms shows

that pruning is necessary in this domain.
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4.2.1 E�ciency

In [Cohen, 1993] it was shown that the worst-case time complexity of REP is as

bad as 
(n

4

) on random data (n is the number of examples). The growing of the

initial concept, on the other hand, is only 
(n

2

log n). The derivation of these

numbers as given in [Cohen, 1993] rests on the following assumptions:

1. Random data are incompressible. Therefore each example has to be ex-

plained by a separate rule. The resulting concept description before pruning

will therefore contain O(n) rules altogether.

2. Each rule has O(log n) conditions, because each literal will cover about half

of the random instances.

3. The costs of adding 1 literal to a rule are O(n), because each of the constant

number of candidate relations in the background knowledge

2

has to be

tested once against each of the n instances in the growing set.

3

4. The size of the �nal (pruned) theory will not depend on the number of

training examples, i.e. will be constant. As the best explanation for ran-

dom training examples should be the empty theory, this is a reasonable

assumption, provided the algorithm works.

5. Each rule in the intermediate concept description will be modi�ed or deleted

at least once until the �nal theory of constant size has been found.

From the �rst two assumption we see that there will be about O(n log n) liter-

als in the concept description, each of them costs O(n) (assumption 3). Therefore

we have a total cost of the order of O(n

2

log n) for the growing phase.

In each step of the pruning phase each of the O(n) clauses can be simpli�ed

by deleting the last literal or deleting the whole clause

4

. The O(n) rules of each

of these O(n) simpli�cations have to be tested against the O(n) examples in the

pruning set

5

. According to 5. this simpli�cation loop has to be performed at least

n times. Therefore we get a total cost of 
(n

4

). A more detailed proof can be

found in [Cohen, 1993].

2

While the number of relations is constant, the number of variabilizations for each literal

might be increasing with the introduction of new variables. In this case we have to assume that

the number of variables is bounded by a constant.

3

By remembering which examples are covered so far, one can avoid to test the clause against

all n instances after adding a new literal. However, the clause has to be tested against all of

the negative instances, and so we still have costs of O(n).

4

Using more expensive pruning operators like delete-any-literal would further increase

the cost.

5

As the complexity of the concepts steadily decreases, the number of rules and the number

of simpli�cations decrease as well. However they are still O(n), when assuming that in the �rst

half of the iterations the size of the concepts is greater than a constant fraction of n (e.g. n=2).
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illegal(A,B,C,D,E,F):-adj(A,E),adj(B,F),\+lt(E,A).

illegal(A,B,C,D,E,F):-C==E,lt(D,F).

illegal(A,B,C,D,E,F):-D==F,\+lt(B,D),\+A==C.

illegal(A,B,C,D,E,F):-D==F,lt(A,E),\+A==C.

illegal(A,B,C,D,E,F):-A==C,adj(B,F),\+B==F.

illegal(A,B,C,D,E,F):-\+lt(D,F),adj(A,E),adj(B,F).

illegal(A,B,C,D,E,F):-D==F,\+lt(B,D),\+lt(A,E).

illegal(A,B,C,D,E,F):-C==E,\+lt(D,B).

illegal(A,B,C,D,E,F):-\+adj(B,F),\+adj(A,C),lt(E,A),\+adj(C,E),

lt(B,F),\+lt(D,B),B==D.

illegal(A,B,C,D,E,F):-D==F,\+adj(A,C),\+adj(B,D),\+lt(A,C).

illegal(A,B,C,D,E,F):-\+adj(B,F),\+lt(D,F),lt(D,B),lt(A,E),

\+adj(B,D),\+A==C.

illegal(A,B,C,D,E,F):-\+adj(C,E),\+adj(B,F),\+lt(D,F),\+lt(A,C),

\+adj(A,C),B==D.

illegal(A,B,C,D,E,F):-\+adj(C,E),D==F,lt(A,C).

illegal(A,B,C,D,E,F):-\+adj(C,E),adj(A,E),lt(E,A),\+lt(B,D).

illegal(A,B,C,D,E,F):-\+adj(B,F),lt(C,E),D==F.

illegal(A,B,C,D,E,F):-\+adj(B,F),lt(C,E),\+adj(C,E),\+lt(A,E),

\+adj(B,D),\+adj(A,E).

illegal(A,B,C,D,E,F):-\+lt(D,B),\+adj(B,F),\+adj(C,E),lt(C,E),

adj(B,D),lt(B,F),lt(A,C).

illegal(A,B,C,D,E,F):-A==E,lt(B,D),\+adj(A,C).

illegal(A,B,C,D,E,F):-lt(F,B),lt(B,D),lt(E,A),\+adj(A,E).

Figure 4.2: Theory learned from noisy KRK examples without pruning.

It has also been pointed out there that this result for random data generalizes

to data containing noise, i.e. a constant fraction of random and thus incompress-

ible data. Figure 4.2 shows a theory that has been learned by the �rst phase

of REP in one of the experiments of section 4.1 in the KRK domain with 250

examples. To get a useful rule most of the rules and conditions of this theory

have to be pruned. In fact the best that REP can do in this case is to use the �rst

two literals of the �rst rule and the �rst literal of rules 2 and 3 and to remove all

other rules. This way it constructed the theory of �gure 3.6. The same theory

has also often been found by Fossil in the experiments of section 3.3 without

the overhead of generating and pruning the complicated theory of �gure 4.2.

From the above analysis it can be concluded that in the long run the costs of

pruning will by far outweigh the costs of generating the initial concept description,

which already are higher than the costs of using a pre-pruning algorithm that

entirely avoids over�tting.
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4.2.2 Split of the Training Data

Another disadvantage of REP is that the training data have to be split into

two sets, a growing set (usually 2=3) and a pruning set (usually 1=3). A two-

fold problem results from this: As learning occurs from examples in the growing

set only, the algorithm might miss to learn important rules if some or most of

the examples for this rule are in the pruning set and not in the growing set.

On the other hand, each learned rule has to have support in the pruning set,

because otherwise some relevant rules | although learned correctly | might

be pruned or deleted altogether. Thus a bad split of the given examples can

have a negative inuence on the behavior of both the learning and the pruning

algorithm. As mentioned in section 4.1 there are several alternative post-pruning

algorithms that do not use a separate pruning set and thus are not subject to

this problem. However, there is some evidence that algorithms using a separate

pruning set perform better than those that have to estimate the amount of over-

�tting exclusively from the training data [Mingers, 1989a].

4.2.3 Separate-and-Conquer Strategy

In decision tree learning usually a divide-and-conquer strategy is used. This

means that the training set is split into disjoint sets according to the outcome of

the test chosen for the top level decision. After this, the algorithm is recursively

applied to each of these sets independently. Greedy covering algorithms like Foil

follow a separate-and-conquer strategy (see section 2.2). This method �rst learns

a rule from the whole training set and subsequently removes all examples that

are covered by this rule. Then the algorithm recursively tries to �nd rules that

explain the remaining examples.

Although the separate-and-conquer approach shares many similarities with

the divide-and-conquer strategy, there is one important di�erence: Pruning of

branches in a decision tree will never a�ect the neighboring branches, whereas

pruning of literals of a rule will a�ect all subsequent rules. Figure 4.3 (a) illus-

trates how post-pruning in decision tree learning works. The right half of the

initially grown tree covers the sets C and D of the training instances. When the

pruning algorithm decides to prune these two leaves, their ancestor node becomes

a leaf that now covers the examples C [D. The left branch of the decision tree

is not inuenced by this operation.

Pruning a literal from a clause on the other hand means that the clause is

generalized, i.e. it will cover more positive instances along with some negative

instances. Consequently those additional positive and negative instances should

be removed from the training set so that they cannot inuence the learning of

subsequent clauses. However, the initial growing phase of REP does not know
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Pruning

Training
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Pruning
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Figure 4.3: Post-Pruning in (a) Divide-and-Conquer and (b) Separate-and-

Conquer learning algorithms.

which of the instances are noisy and will henceforth carry along instances that

should already be covered by one of the previous clauses.

In the example of �gure 4.3 (b) the �rst of three rules is simpli�ed and now

covers not only the examples its original version has covered, but also all of the

examples that the third rule has covered and several of the examples that the

second rule has covered. While the third rule could easily be removed by the

pruning algorithm, in general it need not be the case that the second rule or one

of its pruned versions will be good explanations for the remaining set of examples

B2, because B2 is a subset of the original set B and pruning operators can only

generalize the concept, i.e. increase the set of covered examples. It might well

be that an explanation for B2 needs a totally di�erent set of literals than an

explanation for its superset B.
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Another way of looking at this problem may be to view a PROLOG program

as a decision list .

6

Each body of a clause of the program corresponds to a node

in the decision list. If the body is true, the head is proven and we arrive at

a leaf node. Otherwise we try the next node in the list, i.e. the next clause

in the program. Classical decision tree pruning would only allow to prune the

nodes bottom up, i.e. only apply a delete-last-clause operator. Reduced

Error Pruning, however, not only allows to prune any (instead of only the last)

node, but also to prune the conditions of the rules associated with each node with

the delete-literal operators. Changing the test associated with a node in a

decision tree will in general change the split it induces on the examples and thus

could lead to the generation of di�erent subtrees for its children. However, as

the delete-literal operators change the test at pruning time (after learning),

REP has to keep the subtree that has been previously learned from a di�erent

set of examples.

Thus it is clear that the initial over�tting phase of post-pruning algorithms

may in the best case only lead to the generation of some additional clauses that

will be pruned in the pruning phase (like the third rule in the example). In the

worst case, however, the instances that will be covered by a pruned rule, but are

not covered by its unpruned original (the sets C and B1 in our example) may

lead the learner down a garden path. They may change the evaluation of the

candidate literals in subsequent learning and thus the \correct" literals might

not be selected. A wrong choice of a literal cannot be undone by pruning.

4.2.4 Bottom-Up Hill-Climbing

REP employs a greedy hill-climbing strategy: Literals and clauses will be deleted

from the concept de�nition so that predictive accuracy on the pruning set is

greedily maximized. When each possible operator leads to a decrease in predictive

accuracy, the search process stops at this local maximum.

However, in noisy domains it can be expected that the theory that has been

generated in the growing phase is much too speci�c, i.e. REP will have to do a

lot of pruning and therefore has ample opportunity to go wrong (compare e.g.

the theory of �gure 4.2 with the theory of �gure 3.6 which will (ideally) be left

after pruning). REP's speci�c-to-general search can be expected to be slow and

imprecise for noisy data, because it has to prune a signi�cant portion of the

theory previously generated in the growing phase and is likely to prematurely

stop at a lower local maximum during this process.

For several problems, including the KRK examples of section 4.2.1 it would be

much more suitable to search for the �nal, pruned theory in a top-down, general-

6

A decision list is a binary decision tree, where each node's children contain at least one

leaf.
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to-speci�c fashion in order to avoid over-specialization. Of course, a top-down

method would risk to over-generalize the same way that a bottom-up algorithm

risks to over-specialize, but the argument is that in many cases the �nal theory is

closer to the empty theory than to the theory generated by the over�tting phase

of REP (see also �gure 5.3). Section 4.3 will further discuss this issue and present

an alternative post-pruning algorithm that searches in a top-down fashion.

4.3 The Grow Algorithm

In [Cohen, 1993] some of the problems of section 4.2 | in particular e�ciency|

have been recognized. Cohen has then proposed Grow, a post-pruning algorithm

based on a technique used in [Pagallo and Haussler, 1990]. Like REP, the Grow

algorithm �rst �nds a theory that over�ts the data. But instead of pruning the

intermediate theory until any further deletion results in a decrease in accuracy

on the pruning set, in a �rst step the intermediate theory is augmented with

generalizations of all its clauses. In a second step, clauses from this expanded

theory are iteratively selected to form the �nal concept description until no further

clause that improves predictive accuracy on the pruning set can be found. The

generalizations of the clauses of the intermediate theory are formed by repeatedly

deleting a �nal sequence of conditions from the clause so that the error on the

growing set goes up the least. For a detailed description of the Grow algorithm

see [Cohen, 1993].

This algorithm solves some of problems of section 4.2:

� Under the assumptions of section 4.2.1 the costs of pruning on random

data are reduced to O(n

2

log n): Each clause contains about log n literals

(assumption 2.), each of which can be the last literal in a generalized clause.

So in the worst case we get a total of O(n log n) clauses in the augmented

intermediate theory, because there are O(n) clauses (assumption 1.). Each

of them is tentatively added to the initially empty �nal theory and the

resulting set of clauses is tested on the O(n) training examples. This is

repeated until all clauses in the �nal concept description (which is assumed

to be of constant size by 4.) have been found.

7

Therefore the costs of

this algorithm are O(n

2

log n). Again, consult [Cohen, 1993] for a detailed

proof. However, it should be intuitively clear that it will be less work to

grow the theory of �gure 3.6 from the empty theory (as Grow does) than

to get there by successively pruning the theory of �gure 4.2 (as REP does).

7

However, in [Cameron-Jones, 1994] it has recently been shown that this assumption is not

quite correct and that the asymptotic time complexity of the Grow post-pruning method is

also above the complexity of the initial rule growing phase. We will discuss this in a little more

detail in section 6.3. In all practical experiments, however, the run-time of Grow has been

small compared to the run-time of the over-�tting phase.
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� Grow replaces the bottom-up hill-climbing search of REP (see sec-

tion 4.2.4) by a top-down approach. It does not remove the most useless

clause or literal from the speci�c theory, but instead adds the most promis-

ing generalization of a rule to an initially empty theory. This results in

a signi�cant gain in e�ciency, along with a slight gain in accuracy as the

experiments in [Cohen, 1993] show. As we have already discussed, an expla-

nation for this could be that top-down hill-climbing starts from the empty

theory, which in many domains is much closer to the correct theory than

the most speci�c one. Thus it is more likely that the bottom-up approach

will over-specialize than that the top-down approach will over-generalize.

Table 4.2 shows a comparison of REP and Grow on the same data sets that

have been used for the experiments reported in table 4.1. Along with the average

accuracies and the standard deviations that the algorithms were able to achieve

on these sets, we also report the run-times for the initial rule-growing phase,

which is identical for both, REP and Grow, and the time needed by each of

the algorithms for post-pruning. So the total run-times for REP and Grow can

be obtained by adding the column Over�tting to the columns REP and Grow.

Run-times are measured in CPU seconds on a SPARCstation IPX. All programs

were implemented by the author in SICStus PROLOG (see appendix B).

Training Accuracy Run-time

Set Size REP Grow Over�tting REP Grow

100 91.77 � 9.05 91.60 � 10.71 8.63 2.44 1.66

250 96.29 � 1.94 95.91 � 4.44 91.31 104.98 19.81

500 97.62 � 0.95 98.17 � 0.72 456.56 1578.16 100.81

750 97.47 � 1.44 98.31 � 0.79 1142.78 7308.84 361.41

1000 98.01 � 1.38 98.30 � 0.77 2129.89 23125.34 806.89

Table 4.2: REP and Grow in the noisy KRK domain.

As in [Cohen, 1993] the basic �ndings are that Grow's top-down search strat-

egy prunes signi�cantly faster than REP and is also able to gain a little accuracy,

although these di�erences are not statistically signi�cant. However, Grow does

not attempt to solve the problems with bad splits (section 4.2.2) and with the

separate-and-conquer strategy (section 4.2.3). [Srinivasan et al., 1992] use an al-

gorithm similar to Grow to select a subset of clauses with an evaluation criterion

based on theMinimum Description Length Principle [Rissanen, 1978] which does

not require a separate test set for evaluating theories. But no matter what cri-

terion it uses, the overall costs of the Grow algorithm still include the cost

of over�tting the data and thus are much higher than the costs of pre-pruning

approaches that directly construct the �nal theory.
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4.4 Summary

In this chapter we have reviewed several post-pruning approaches to

noise-tolerant rule learning algorithm. Reduced Error Pruning (REP)

[Brunk and Pazzani, 1991] is the best-known among these approaches and has

been shown to achieve good results in terms of accuracy. However, this simple

algorithm has several shortcomings as we have pointed out in section 4.2, most no-

tably e�ciency and incompatibility with the separate-and-conquer learning strat-

egy. We have further presented a modi�ed pruning algorithm by [Cohen, 1993]

that prunes more e�ciently and is also a little more accurate than REP. However

the Grow algorithm still su�ers from the fact that it has to generate an overly

speci�c theory �rst.

[Cohen, 1993] has tried to improve his Grow algorithm by adding two stop-

ping heuristics to the initial stage of over�tting, and thus achieved a further

speed-up of the algorithm. We will introduce an alternative way of combining

pre-pruning and post-pruning methods in chapter 5 in order to avoid excessive

over�tting. Chapter 6 will then proceed to present an alternative approach that

integrates pre-pruning and post-pruning in a way that prevents the expensive

initial phase of over�tting altogether.



Chapter 5

Combining Pre- and

Post-Pruning

In chapter 4 we have discussed several shortcomings of typical post-pruning al-

gorithms, in particular of Reduced Error Pruning (REP). Most importantly we

have seen from �gure 4.2 that the intermediate theory resulting from the initial

over�tting phase can be much more complex than the �nal theory. Post-pruning

is very ine�cient in this case, because almost all of the work done by the learning

phase has to be undone in the pruning phase.

A natural solution to this problem would be to start the pruning phase with

a simpler theory. This idea has �rst been investigated in [Cohen, 1993], where

the e�cient post-pruning algorithm Grow (see section 4.3) has been combined

with some weak pre-pruning heuristics to speed up the learning process. The

goal of pre-pruning in this context is not to entirely prevent over�tting (as it

has been the case in all approaches discussed in section 3.1), but to reduce the

amount of over�tting so that a subsequent post-pruning phase has to do less work

and is thus less likely to go wrong. However, there is always the danger that a

prede�ned stopping criterion will over-generalize the theory.

In this chapter we will discuss an alternative approach based on Fossil that

combines pre- and post-pruning. Its advantage is that it can automatically dis-

cover the right amount of pre-pruning by systematically varying Fossil's cuto�

parameter (section 5.1). We then suggest Top-Down Pruning, an algorithm that

exploits this approach by searching for a theory that is a little too speci�c, but

can be e�ciently generalized with post-pruning methods (section 5.2). Again

we report some experiments in the KRK domain (section 5.3) and subsequently

summarize our �ndings (section 5.4).

Parts of this chapter have been previously published in [F�urnkranz, 1994d].
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5.1 Generating a Series of Concept Descrip-

tions

One advantage of the simple and e�cient cuto� stopping criterion described in

section 3.2.3 is its close relation to the search heuristic. While Foil (encoding

length restriction) and mFoil (signi�cance test) have to do separate calculations

to determine when to stop learning, Fossil needs to do a mere comparison

between the heuristic value of the best candidate literal and the cuto� value.

This property makes it easy to experiment with Fossil, because we can directly

examine the heuristic values of literals that are known to be relevant in order

to determine appropriate values for the cuto� parameter. This would be much

harder in other relational learning systems, where the search heuristics and the

stopping criteria are usually independent of each other.

5.1.1 The Algorithm

However, when there is no information about the relevance of literals at hand

(which usually will be the case) Fossil can be extended nicely to generate all

theories that could be learned by Fossil with any setting of the cuto� parameter

(see �gure 5.1).

Cuto� = 1:0

Theories = ;

while (Cuto� > 0:0) do

Theory = Fossil(Examples,Cuto�)

Cuto� = MaxPrunedCorr(Theory)

Theories = Theories [ Theory

return(Theories)

Figure 5.1: Algorithm to generate all theories learnable by Fossil

The basic idea behind this algorithm is the following: Assume that you are

trying to learn a theory with a cuto� of 1.0. Unless there is one literal in the

background knowledge that perfectly discriminates between positive and negative

examples (which will only be the case in trivial examples such as parent(A,B)

:- child(B,A).), we will not �nd a literal with a correlation of 1.0 and thus

learn an empty theory.

However, we can remember the literal that had the maximum correlation and

use this information in the following way: If we make another call to Fossilwith

the cuto� set to exactly this maximum correlation value, at least one literal
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(the one that produced this maximum correlation) will be added to the theory.

However, as our experience with shows, this is very often not the only change.

Usually several more literals that have a correlation value higher than the new

cuto� will be added, because adding a literal to the current concept de�nition

will change the example distribution and thus the heuristic values for subsequent

literals.

At this new setting of the cuto� parameter a new theory will be learned

and again the maximum correlation of the literals that have been cut o� will

be remembered. Obviously, for all values between the old cuto� and the new

maximum, the same theory would have been learned. Thus we can choose this

value as the cuto� for the next run. It can also be expected that the new theory

will be more speci�c than the previous one. This process is repeated until at a

certain setting of the Cuto� no further literal is cut o� (i.e.MaxPrunedCorr

= 0:0) and thus the most speci�c theory has been reached.

5.1.2 An Example

In �gure 5.2 we see an example of how Fossil generates a series of theories from

1000 noise free examples in the KRK domain (see Appendix A). It is interesting

to see how the quality of the learned concept steadily improves until it arrives at

a 99.32% correct theory. At this point, clauses (1), (5) and (6) try to categorize

positions with white rook and black king on the same �le. Clause (1) is correct,

while clauses (5) and (6) only �t the examples in the training set.

Clause (2) on the other hand, says that all positions with white rook and

black king on the same rank are illegal, which is too general, because it misses the

positions where the white king blocks the check of the white rook (see �gure A.1 c)

for an example of this type of position). At the next re�nement, Fossil �nds a

new rule (2) which is symmetric to rule (1) and incorporates the literal not A=C

that was previously not considered because of its relatively low correlation of

0:3871. Because of the addition of this literalFossil \forgets" the already learned

clauses (4) to (6) of the last theory, as the starting literals of those rules do not

have a high enough correlation under the new circumstances. This goes hand in

hand with a decrease in predictive accuracy.

Lowering the cuto� once again, however, rediscovers the rules that have been

\forgotten" in the previous theory. The �nal theory completely explains all of

the training examples. No literal has been cut o� in this theory, and no further

re�nement is possible; thus MaxPrunedCorr = 0:0. As these theories have

been learned from noise-free data, the most speci�c theory is also the most accu-

rate one. In noisy domains it is more likely the the �nal theory over�ts the noise

and that one of its predecessors is the most accurate.



5.1. GENERATING A SERIES OF CONCEPT DESCRIPTIONS 53

C = 1.0

illegal(A,B,C,D,E,F) :- fail.

67.04 % correct (0 % positive, 100 % negative)

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not X < A.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- C = E, A < Y, not B < F.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not Z < A.

88.42 % correct (65.53 % positive, 99.67 % negative)

97.60 % correct (93.39 % positive, 99.67 % negative)
99.36 % correct (98.48 % positive, 99.79 % negative)

99.32 % correct (98.60 % positive, 99.67 % negative)

97.42 % correct (92.60 % positive, 99.79 % negative)

C = 0.5101

C = 0.4995

C = 0.3871

C = 0.3927

C = 0.3607

C = 0.0

Figure 5.2: Generating a series of theories in the KRK domain
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A very important property of the described algorithm is that it will gener-

ate a series of theories in a (roughly) general to speci�c order:

1

High values of

the cuto� will cause over-generalization, while lower values are likely to �t the

characteristics of the training set which may be the cause for over�tting in noisy

domains (see also sections 3.2.3 and 3.3.2). However, we have already seen in our

example that this order is not strict: Lowering the cuto� does not necessarily

result in a more speci�c theory, because adding a literal to the current concept

de�nition will change the example distribution for subsequent literals and thus

change the correlation values of the literals at all subsequent choice points.

5.1.3 Experiments

In a preliminary series of experiments we have used the simple algorithm of

�gure 5.1 in the following way: The same training sets with 10% noisy used in

the experiments described in section 3.3.3 were randomly split into two sets of

equal size. The �rst set was used for learning all theories down to a cuto� of

0.15 with the algorithm described in the last section.

2

From these theories the

one with the best predictive accuracy measured on the examples of the second

set was selected as the �nal theory. The results are shown in table 5.1.

Di�erent Training Set Training Set Size

Sizes (10% Noise) 100 250 500 750 1000 2000

Accuracy 93.52 92.68 92.79 96.33 98.05 98.41

Fossil (0.3) Clauses 3.8 3.7 3.1 3.0 3.0 3.0

Lits/Clause 2.24 3.01 2.63 1.94 1.5 1.4

Accuracy 88.96 92.48 95.73 95.16 95.14 98.25

Minimal Error Clauses 4.3 3.5 4.2 4.8 3.9 3.2

Selection Lits/Clause 1.81 2.37 2.31 2.63 2.48 1.51

Table 5.1: Selecting the theory with minimal error

This simple method of generating all theories Fossil can learn and selecting

the one that has the lowest error on a separate test set performs a little worse

than Fossil with a cuto� of 0.3. It is better at example size 500 and worse

1

Note that we use the terms \general" and \speci�c" in an intuitive way. We consider the

empty theory to be most general, because \Everything is false." is a very general statement.

However, our \most speci�c" theory will cover more ground instances than the empty theory,

and thus may be considered (extensionally) more general. See [Flach, 1992] for a discussion of

related matters.

2

The restriction for admitting only theories with a cuto� above 0:15 was only made for

reasons of e�ciency. From the results of table 3.1 we already know that theories below 0.15 are

likely to over�t the noise and will thus have a low classi�cation accuracy.
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at sizes 100 and 1000. At other training set sizes it performs about the same,

although it practically only learns from half of the training examples.

On the other hand, the Minimal Error Selection method invariably selects a

theory at least as good as the theory that Fossil with a �xed cuto� would have

learned from a training set of the same size. To see this we have to compare the

values of the Minimal Error Selection method with the corresponding values of

Fossil at half the training set size.

Our conclusion from these experiments is that setting the cuto� to 0.3 gives

a very good average performance for Fossil, but there is some advantage that

can be gained by adjusting the cuto� parameter to the particular characteristics

of the training set at hand.

5.1.4 Important Properties

While the naive approach of section 5.1 might be too crude to be applied in prac-

tice, the experiments (table 5.1) have convinced us that there is some potential

for re�nement. There are several characteristics of this algorithm which can be

used for further improvements:

Series of Rules: A major advantage of our algorithm is that we get a series of

concept descriptions pruned to di�erent degrees from which a theory with

an appropriate level of generality can be selected. Research in decision

tree learning has developed several methods for automating this selection

[Breiman et al., 1984, Mingers, 1989a, Weiss and Indurkhya, 1994]. Most

of these methods can be easily adapted for rule learning algorithms, once

we have series of theories with di�erent degrees of generality.

Completeness: With the above algorithm we can examine all theories that

Fossil can generate with any setting of the cuto� parameter.

Top-Down Search: Our algorithm generates the theories in a general to speci�c

order (top-down). This is contrary to the bottom-up approach of most post-

pruning methods (including those for decision tree pruning) that generate

a most speci�c theory �rst and then successively generalize it. We have

already discussed similar issues in section 4.2.4.

E�ciency: There are two reasons why we believe that the above approach can

be very e�cient:

� With increasing example set sizes and increasing noise levels, gener-

ating a most speci�c starting theory for pruning becomes more and

more expensive (see the run-times for initial growing phase of REP

and Grow in table 4.2). Generating a simple general theory is much
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less expensive. In the experiments described in section 5.1.3, typically

the best theory has been found within the �rst �ve theories that have

been generated. A lot of work can be saved by not generating the

more speci�c theories.

� E�ciency can be further increased, because a clever implementation

doesn't have to learn an entirely new theory. It can use the part of

the last theory up to the point where the cuto� of the literal with the

maximum correlation has occurred and continue learning from there.

In the next section we will show how to exploit these characteristics for a sim-

ple algorithm that combines pre- and post-pruning by selecting a better starting

theory for post-pruning from the space of pre-pruned theories generated by dif-

ferent settings of Fossil's cuto� parameter.

5.2 Top-Down Pruning

As we have seen, the algorithm of �gure 5.1 generates a series of di�erent concept

descriptions in a | roughly | general to speci�c order (top-down). Figure 5.3

shows the accuracies and complexities of a complete series of theories learned by

this algorithm from 500 training examples of the noisy (10 %) KRK domain. It

can be clearly seen that

� the most accurate theories are learned after a few iterations

� the lower the cuto� will be the more complex will the theories be and the

smaller will be the distance between the cuto� values of two neighbouring

theories

If we could �nd a way to realize when the learned theories get worse, we could

stop earlier and avoid learning many of the speci�c theories. This may save a

lot of work, as �gure 5.3 indicates. We have also noted in the last section that

usually several clauses | up to the point where the highest cuto� has occurred

| can be reused from the previous run, so that the total cost of generating a

series of concept description may not be much more than the cost of generating

the most speci�c theory only.

Based on the above ideas, we have implemented the algorithm shown in �g-

ure 5.4. It tries to �nd the most speci�c among all reasonably good theories,

and subsequently generalizes it with Reduced Error Pruning. Because of the

initial general-to-speci�c search for a good theory, we have named the method

Top-Down Pruning (TDP). Basically the algorithm does the following:
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Figure 5.3: Accuracy and Complexity vs. Cuto�

1. Split the training set into a growing set and a pruning set (usually 2=3 and

1=3).

2. Generate a series of concept descriptions from the examples in the growing

set.

3. Evaluate each theory on the pruning set.

4. When the measured accuracy of one of the theories falls below the mea-

sured accuracy of the best theory so far minus the Standard Error for

classi�cation

3

, stop generating theories and return the last theory within

the 1 SE margin.

3

This is based on an idea in CART [Breiman et al., 1984], where the most general pruned

decision tree within one SE of the best will be selected. The standard classi�cation error can

be computed with SE =

q

p�(1�p)

N

where p is the probability of mis-classi�cation (estimated

on the pruning set) and N is the number of examples in the pruning set.



5.2. TOP-DOWN PRUNING 58

procedure TDP(Examples, SplitRatio)

Cuto� = 1:0

BestTheory = ;

BestAccuracy = 0:0

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

repeat

NewTheory = Fossil(GrowingSet,Cuto�)

NewAccuracy = Accuracy(NewTheory,PruningSet)

if NewAccuracy > BestAccuracy

BestTheory = NewTheory

BestAccuracy = NewAccuracy

LowerBound = BestAccuracy � StandardError(BestAccuracy,PruningSet)

Cuto� = MaximumPrunedCorrelation(NewTheory)

until (NewAccuracy < LowerBound) or (Cuto� = 0:0)

loop

NewTheory = SimplifyTheory(Theory,PruningSet)

if Accuracy(NewTheory,PruningSet) < Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory

return(Theory)

Figure 5.4: Combining Pre- and Post-Pruning with Top-Down Pruning.

5. Prune the theory obtained in step 4. using Reduced Error Pruning as de-

scribed in chapter 4.

If this algorithm succeeds in �nding a starting theory that it close to the �nal

theory, we can expect our algorithm to be faster than Reduced Error Pruning.

The reason is that it will

� speed up the growing phase, because the most expensive theories will not

be generated,

4

� speed up the pruning phase, because pruning starts from a simpler theory

and thus the number of possible pruning operations is much smaller.

In the example of �gure 5.5 that was taken from a run of TDP in the KRK

endgame domain with 10% noise and 1000 training examples, the best theory

is the third theory examined (including the empty theory). This theory is a

reasonable approximation of the target concept (98.45% accurate on noise-free

4

This argument, of course, only apply to noisy domains. In non-noisy domains the most

speci�c theory will in general be the most precise and thus our algorithm will be slow, because

it has to generate all theories down to a cuto� of 0.0.
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test data), although the �rst two rules are over-generalizations and one important

rule is missing (see appendix A).

5

However, the theory that Fossil generates

next already starts to �t the noise in the data. Therefore the 3-rule theory found

is the best. This theory does not require any further changes in the subsequent

post-pruning process. If we compare �gure 4.2 with �gure 5.5 we see that TDP

generates fewer clauses and literals than REP. This di�erence would be much

bigger when REP's starting theory would have been learned from 1000 training

examples as well (and not only from 250 as in �gure 4.2).

CUTOFF has been set to 1.0000

New Best Theory: 63.66%

CUTOFF has been set to 0.4256

illegal(A,B,C,D,E,F):-C==E

illegal(A,B,C,D,E,F):-D==F

New Best Theory: 81.98%

CUTOFF has been set to 0.3737

illegal(A,B,C,D,E,F):-C==E

illegal(A,B,C,D,E,F):-D==F

illegal(A,B,C,D,E,F):-adj(B,F),adj(A,E)

New Best Theory: 89.19%

CUTOFF has been set to 0.2460

illegal(A,B,C,D,E,F):-C==E,\+A==C,\+lt(B,F)

illegal(A,B,C,D,E,F):-D==F

illegal(A,B,C,D,E,F):-C==E,\+adj(B,F),\+adj(A,C)

illegal(A,B,C,D,E,F):-adj(B,F),adj(A,E),\+lt(A,C),\+A==E

illegal(A,B,C,D,E,F):-adj(B,F),adj(A,E)

Theory (86.79%) below Standard Error (1.70%) from Best (89.19%)

Figure 5.5: Trace of the Top-Down Pruning Algorithm

Unfortunately TDP doesn't always work as well as shown in �gure 5.5. In

preliminary experiments it turned out that sometimes one over-general clause

will specialize to several more speci�c clauses which together cover most of the

examples the general clause had covered, but exclude some of the negative exam-

ples (compare e.g. theories 4 and 6 of �gure 5.2). However, if there are only a few

of the speci�c clauses found in the next theory, the overall accuracy may drop

5

In �gure 5.5 the theory is estimated as being 89.19% correct. The reason for this is that the

examples in the pruning set are noisy, because TDP of course separates them form its original

(noisy) training set.
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drastically, because too few examples are covered (as at theory 5 of �gure 5.2). To

avoid this problem we have added the requirement that only theories that cover

more than 50% of the positive examples in the growing set will be evaluated on

the pruning set. If a theory does not ful�ll this criterion, it will be improved by

adding more clauses. This is achieved by lowering the cuto� to the value that

would be needed to start a new clause. Note that this method may yield a theory

that is not learnable by the original Fossil as the value of the cuto� parameter is

changed during the generation of the theory. This modi�cation is similar to the

common criterion that only clauses covering a certain percentage of the training

data are permitted (see section 3.2.3), but it deals with the whole theory and

not with single clauses. However, the criterion is somewhat ad hoc, and we are

thinking about improving the system in that respect.

5.3 Experiments

We compared Top-Down Pruning (TDP) to Reduced Error Pruning (REP) in

terms of accuracy and run-time on the chess king-rook-king endgame domain

(appendix A). Both algorithms split the supplied data sets into the same grow-

ing (ca. 2=3) and pruning sets (ca. 1=3). Both algorithms used Reduced Error

Pruning as described in section 4.1 for their post-pruning phase. All programs

were implemented in SICStus PROLOG 2.1 and the run-times were measured on

a SUN SPARCstation IPX.

The experiments in the KRK domain followed the setup described in sec-

tion 3.3. Experiments were performed with 10% of the examples having their

classi�cation reversed. Testing was done on sets of 5000 noise-free examples.

REP and TDP were both given the same 10 training sets for each of the 4 di�er-

ent training set sizes. Mode, type and symmetry information (see section 2.3.3)

was used to reduce the search space.

In order to exclude possible inuences from the underlying learning algo-

rithm, we did not use the version of REP that was used in the experiments of

section 4.1.2. Instead of generating the initial theory for REP with an imple-

mentation of Foil we used Fossil with a cuto� of 0.0 for that purpose, so that

both, REP and TDP, had to rely on the same underlying learning algorithm. The

version using Fossil did better than the version using Foil (compare tables 4.1

and 5.2).

Table 5.2 con�rms that TDP is not worse than REP in terms of predictive

accuracy. REP was only better at a training set size of 250, where TDP heavily

over-pruned in one of the 10 cases: TDP started o� with a theory that was 98.42%

correct, but unfortunately one of the literals had no support in the pruning set

and consequently was pruned, thus yielding a theory with a mere 81:34%. This

did not happen to REP because it got caught in a 91:36% correct theory, and
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Average Accuracy 100 250 500 750

REP Before Pruning 84.84 86.88 87.11 89.21

After Pruning 94.67 96.72 97.80 98.51

TDP Before Pruning 89.15 91.02 95.89 95.85

After Pruning 95.14 95.93 98.29 98.70

Table 5.2: Accuracy in the KRK domain with 10% noise.

did not even get to the 98:42% theory. With increasing training set sizes TDP

seems to be slightly superior to REP, although the di�erences are probably too

small to be statistically signi�cant.

Comparing the accuracies of the intermediate theories shows that TDP starts

with signi�cantly better theories than REP (see the �rst line of table 5.2). Obvi-

ously the top-down search for better starting theories is successful. In particular

at higher training set sizes, REP sometimes gets stuck in a local optimum and

returns bad theories. However, we have seen above that REP may pro�t from

this in some rare cases. TDP is less likely to get stuck in a local optimum dur-

ing pruning because it starts with an initial theory that is already quite close to

the �nal theory. The problem of local optima with greedy hill-climbing is also

not likely to appear in TDP's top-down search for a starting theory, because (at

least in this domain) the intermediate theories usually appear after only a few

iterations of TDP's top-level loop (see section 4.2.4 for a discussion of the merits

of a top-down search).

The top-down search for a good theory (without pruning) could even yield

better results if we did not use the most speci�c theory within one standard

error of the best theory, but the best itself as we have done in section 5.1.3.

However, this could lead to over-generalization. Starting with an overly speci�c

theory is less dangerous, because over�tting can be corrected by the subsequent

post-pruning process.

Comparing the run-times of REP and TDP (table 5.3), it can be seen that

TDP is much faster than REP. In fact it is even faster than REP's initial phase

of over�tting alone. The reason for this is that TDP only has to �nd a few

fairly general theories, while TDP generates huge theories that �t all the noisy

examples. With increasing training set sizes, the costs of REP are dominated by

the pruning process. This result is consistent with the analysis of section 4.2.1.

TDP on the other hand, even manages to decrease pruning time with growing

training set sizes (250 to 500). The signi�cant run-time increase from 500 to 750

examples is mainly due to one of the 10 sets, where a much too speci�c theory

was learned in 855.94 CPU secs. growing and 1399.35 CPU secs. pruning time.
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Average Run-time 100 250 500 750

REP Growing 6.66 75.22 397.17 845.76

Pruning 2.93 91.46 1248.48 2922.66

Total 9.59 166.68 1645.65 3768.42

TDP Growing 7.23 51.37 80.17 190.66

Pruning 1.24 22.49 16.39 151.52

Total 8.47 73.86 96.56 342.18

Table 5.3: Run-time in the KRK domain with 10% noise.

For the remaining 9 sets the average run-time was 116.74 CPU secs. for growing

and 12.88 CPU secs. for pruning.

The explanation for this surprising result can be found in two reasons:

1. TDP converges faster towards good theories. With increasing training set

sizes the top-down search is less likely to return over�tting starting theo-

ries, because the estimation of their accuracy improves and the size of the

allowed Standard Error decreases (see footnote 3). Decreasing the amount

of allowed over�tting with increasing training set sizes is useful because

Fossil's learning and noise-handling capabilities increase with training set

sizes.

2. Because of 1. the starting theories learned by Fossil become increasingly

more accurate as the training set grows, so that less and less pruning has to

be done table 5.2). This explains why TDP's pruning times may decrease

with increasing training set sizes.

This supports the two hypotheses stated in the last section. TDP will decrease

learning time (1.) and pruning time (2.).

5.4 Summary

We have shown that the relational learning algorithm Fossil (described in sec-

tion 3.2) is able to generate a series of theories in a top-down fashion. This

method can be extended to �nd a good starting theory for a subsequent post-

pruning process. Ideally this theory will be more speci�c than the most accurate

theory found so far (to avoid over-generalization), but will nevertheless be close

to the �nal theory, so that only a limited amount of post-pruning has to be per-

formed. Thus this method | Top-Down Pruning | e�ectively combines pre-
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and post-pruning. TDP brings a signi�cant speed-up compared to Reduced Error

Pruning without losing accuracy. Contrary to the speed-up gained by Grow

(section 4.3) which concentrated on reducing the pruning costs only, the entire

process of TDP may be signi�cantly faster than REP's growing phase alone,

because TDP can avoid excessive over�tting.

It should also be mentioned that the approach described above could not

be taken by other relational learning systems that use pre-pruning, because it

crucially depends on the use of the cuto� stopping criterion which in turn re-

quires some important properties of Fossil's correlation heuristic. mFoil (see

section 3.3.4), another system that uses a parameter to adjust itself to the noise

level in the data, requires some experimentation to determine an appropriate

value of the m parameter. Also, a good value for m depends on the training set

size as well as on the amount of noise in the data. The easiest approach is to try

the standard settings used in the literature and choose the m that results in the

best theory according to an independent test set. However, this approach does

not guarantee that one does not miss a better theory with a di�erent m. An

automated approach that generates all theories for all possible settings of the m

parameter is not as easy as it is for Fossil`s cuto� parameter, because there is

no upper bound for the m and, more importantly, the relation between the values

of m, the heuristic values of the literals and mFoil's signi�cance-based stopping

criterion is not obvious. On the other hand, Foil e.g. could be easily adapted to

use some form of Fossil's cuto� stopping criterion (only literals with an infor-

mation gain above a certain percentage of the maximum gain will be added to a

clause). Whether this is useful or not remains to be investigated.

In the next chapter we will introduce a method for tightly integrating pre-

and post-pruning. This algorithm | Incremental Reduced Error Pruning | is

independent of the used search heuristic and most relational learning systems can

be adapted to make use of this method.



Chapter 6

Integrating Pre- and

Post-Pruning

In chapter 5 we have presented an approach that combines pre- and post-pruning.

An initial top-down search was able to �nd theories that are close to the intended

�nal theory and could be used in a subsequent post-pruning phase. In this chapter

we will investigate an alternative approach that will tightly integrate pre- and

post-pruning into an e�cient new algorithm that solves the problems mentioned

in section 4.2. Contrary to Top-Down Pruning, the applicability of which to

search heuristics other than Fossil's correlation heuristic is not yet clear, the

algorithm introduced in this chapter will interleave learning and pruning in a way

that is independent of the underlying search heuristic.

Excerpts of this chapter have been previously published in

[F�urnkranz and Widmer, 1994].

6.1 Incremental REP

The new algorithm that we will present in this chapter was motivated by the ob-

servation that post-pruning is incompatible with the separate-and-conquer learn-

ing strategy as we have discussed in section 4.2.3. The problem is that pruning

literals from a clause and thus generalizing it changes the situation for subsequent

clauses in the theory. Some of them may become redundant, others may contain

irrelevant conditions that have been selected based on examples that are now

covered by the generalized clause (see �gure 4.3). While redundant clauses are

no problem (they will be removed in the next iteration of the post-pruning loop),

a wrong choice of a literal cannot be undone by pruning.

The basic idea of Incremental Reduced Error Pruning (I-REP) is that instead

of �rst growing a complete concept description and pruning it thereafter, each

64
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procedure I-REP (Examples, SplitRatio)

Theory = ;

while Positive(Examples) 6= ;

Clause = ;

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Cover = GrowingSet

while Negative(Cover) 6= ;

Clause = Clause [ FindLiteral(Clause; Cover)

Cover = Cover(Clause,Cover)

loop

NewClause = SimplifyClause(Clause,PruningSet)

if Accuracy(NewClause,PruningSet) < Accuracy(Clause,PruningSet)

exit loop

Clause = NewClause

if Accuracy(Clause,PruningSet) � Accuracy(fail,PruningSet)

exit while

Examples = Examples � Cover

Theory = Theory [ Clause

return(Theory)

Figure 6.1: Integrating Pre- and Post Pruning with Incremental Reduced Error

Pruning

individual clause will be pruned right after it has been generated. This ensures

that the algorithm can remove the training examples that are covered by the

pruned clause before subsequent clauses are learned. Thus it can be avoided that

these examples inuence the learning of the following clauses.

A pseudo-code version of the algorithm can be found in �gure 6.1. Before

learning a clause, the current set of training examples is split into a growing

(usually 2/3) and a pruning set (usually 1/3) as in many post-pruning algorithms.

After learning a clause from the growing set, literals will be deleted from this

clause in a greedy fashion until any further deletion would decrease the accuracy of

this clause on the pruning set. The resulting rule will then be added to the concept

description and all covered positive and negative examples will be removed from

the training | growing and pruning | set. The remaining training instances are

then redistributed into a new growing and a new pruning set to ensure that each of

the two sets contains the prede�ned percentage of the remaining examples. From

these sets the next clause will be learned. When the predictive accuracy of the

pruned clause is below the predictive accuracy of the empty clause (i.e. the clause

with the body fail), the clause will not be added to the concept description and

I-REP returns the learned clauses. Thus the accuracy of the pruned clauses on

the pruning set also serves as a stopping criterion. Post-pruning methods are

used as pre-pruning heuristics.
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As this algorithm does not prune on the entire set of clauses, but prunes each

one of them successively, we have named it Incremental Reduced Error Pruning

(I-REP). We can expect I-REP to improve upon the post-pruning algorithms

REP (section 4.1) and Grow (section 4.3), because it is aimed at solving the

problems of section 4.2:

E�ciency: I-REP does not generate an intermediate concept description. Thus

the costs of I-REP are roughly the costs of generating the �nal theory, while

REP and Grow have to generate a more speci�c theory �rst. As in REP,

growing one clause from purely random data costs n log n (see section 4.2.1).

I-REP considers every literal in the clause for pruning, i.e. each of the log n

literals has to be tested against n examples until the �nal clause has been

found, i.e. at most log n times. Thus the costs of pruning one clause are

n log

2

n. As the size of the �nal theory is assumed to be constant, the

overall costs are also of the order n log

2

n. This is signi�cantly lower than

the complexity of growing an over�tting theory which has been shown to

be 
(n

2

log n) in section 4.2.1. Thus I-REP can be expected to be faster

than both Grow and REP.

Split of Training Data: I-REP redistributes its pruning and growing sets after

a clause has been found. This ensures that the examples are split according

to the user-speci�ed proportions (usually 2=3 of the examples are in the

growing and 1=3 in the pruning set). Thus the scope of the problems dis-

cussed in section 4.2.2 is limited to the learning of a single clause. However,

it may happen that a clause learned from a bad growing set or evaluated on

a bad pruning set appears worse than the empty clause, which might cause

I-REP to prematurely stop learning, while REP would continue learning

and prune the bad clause later on.

Separate-and-Conquer Strategy: I-REP learns the clauses in the order in

which they will be used by a PROLOG interpreter. Before subsequent

rules will be learned, each clause is completed (learned and pruned) and all

covered examples are removed. For this reason the problems discussed in

section 4.2.3 cannot appear in I-REP.

Bottom-Up Hill-Climbing: Similarly to Grow, I-REP uses a top-down ap-

proach instead of REP's bottom-up search: Final programs are not found

by removing unnecessary clauses and literals from an overly speci�c theory,

but by repeatedly adding clauses to an initially empty theory. However,

Grow still has to generate an intermediate, speci�c concept description,

while I-REP directly constructs the �nal theory. In cases where the correct

concept de�nition is fairly simple, the top-down approach can be expected

to be less sensitive to local optima as discussed in section 4.2.4.
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illegal(A,B,C,D,E,F):-adj(A,E),adj(B,F),\+lt(E,A)

Found clause: illegal(A,B,C,D,E,F):-adj(A,E),adj(B,F)

illegal(A,B,C,D,E,F):-D==F,lt(C,E),\+adj(B,D)

Found clause: illegal(A,B,C,D,E,F):-D==F

illegal(A,B,C,D,E,F):-C==E,lt(B,F)

Found clause: illegal(A,B,C,D,E,F):-C==E

illegal(A,B,C,D,E,F):-B==D,A==C

Found clause: illegal(A,B,C,D,E,F):-B==D,A==C

illegal(A,B,C,D,E,F):-lt(F,B),\+lt(A,E),\+lt(D,B),\+adj(C,E),A==E

Found clause: illegal(A,B,C,D,E,F):-fail

Found Theory (99.57% correct):

illegal(A,B,C,D,E,F):-adj(A,E),adj(B,F)

illegal(A,B,C,D,E,F):-C==E

illegal(A,B,C,D,E,F):-D==F

illegal(A,B,C,D,E,F):-B==D,A==C

Figure 6.2: I-REP learning from noisy KRK examples.

Most of the e�ciency of the I-REP algorithm comes from the integration

of pre-pruning and post-pruning by de�ning a stopping criterion based on the

accuracy of the pruned clause on the pruning set. Thus I-REP does not need

REP's delete-clauseoperator (see section 4.1.1), because the clauses of the �nal

theory are constructed directly and learning stops when no more useful clauses

can be found. However, this may also cause problems: Whenever the pruned

clause does not have an accuracy above the accuracy of the empty clause, no

more clauses will be learned. If this accuracy is not estimated accurately, either

because there are not enough remaining examples or because of a bad split, I-REP

will be prone to over-generalization. Using the terminology of [Scha�er, 1993,

Wolpert, 1993], I-REP has a strong Over�tting Avoidance Bias, which can be

detrimental in some domains (see [Murphy and Pazzani, 1994] for experiments

along related lines).

6.2 An Example

Figure 6.2 shows an example run of I-REP in the KRK domain. The data

it has learned from are the same 250 examples that have been used to generate

the overly speci�c theory from �gure 4.2. As the same initial split into growing

and pruning sets has been used, the �rst clause that has been learned is the
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same in both examples. However, I-REP generalizes this clause appropriately

by immediately pruning its last literal (\+lt(E,A)). After this it redistributes

the remaining training examples into a new growing and a new pruning set to

ensure that the next clause can be learned from the speci�ed percentage of the

remaining examples. The next three clauses are learned with the same method.

The last learned clause contains only useless literals. Consequently its accuracy is

not higher than that of the empty clause and learning stops at this point without

adding this clause to the theory.

The resulting 4-clause theory is 99.57% correct (see also �gure A.3). If we

compare the resulting theory with the theory of �gure 4.2 we see that the �rst

3 clauses are contained in clauses of the over�tting theory and thus could be

uncovered by a post-pruning algorithm like REP or Grow. The last clause,

however, could not be found by a post-pruning algorithm, because the pair of lit-

erals (B==D,A==C) is not contained in a single clause of the theory in �gure 4.2.

Therefore the best theory a post-pruning algorithm can �nd is the 98.45% cor-

rect theory consisting only of the �rst 3 clauses (see section A.2). There are two

possible explanations for this: Either REP could not �nd this clause (or a spe-

cialization of it) because the previous clauses have distorted the space of training

examples (see section 4.2.3) or the original split of the training examples has

been unfortunate so that none or too few of the examples supporting this clause

have been in the growing set (see section 4.2.2). Whatever the problem has been,

I-REP seems to have solved it.

Of course, this example was speci�cally chosen to illustrate the possible gain

of using I-REP. However, the next section will demonstrate that this example

was nevertheless characteristic, and that I-REP is able to gain e�ciency as well

as accuracy compared to post-pruning algorithms.

6.3 Experiments

We have tested I-REP on the KRK chess endgame domain used in the previous

chapters and described in detail in appendix A. We used 5 di�erent training set

sizes containing 10% of arti�cial class noise, i.e. 10% of the training examples

were misclassi�ed. For each training set size we used 10 di�erent example sets

except for the sets with 1000 examples, which were only tested on 6 sets because

of the high run-times of this task. Accuracies were measured on 5000 noise-free

examples. The training and test data were the same for all algorithms.

6.3.1 Implementation of the Algorithm

We have tested two di�erent implementations of I-REP, which di�er in the way

they prune the clauses. Let p (n) be the number of positive (negative) examples
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covered by the current clause from a total of P (N) positive (negative) examples

in the current pruning set, then

I-REP prunes clauses so that the number of covered positive examples plus the

number of not covered negative examples is maximized (

p+(N�n)

P+N

). The ac-

curacy of the empty clause (i.e. the clause with the body fail) is

N

P+N

.

Whenever the accuracy of the best pruned clause is below this value, learn-

ing stops.

I-REP-2 prunes clauses so that the \purity" of each clause (

p

n+p

) is maximized.

As the purity of the empty clause is meaningless (p = n = 0), we have

adopted the following stopping criterion: Only clauses that cover more

positive than negative examples (

p

n+p

> 0:5) are permitted, as only those

may increase the overall accuracy of the concept.

For comparison, REP and Grow were implemented as described in

[Cohen, 1993] with the exception that delete-last-literal was used as a

clause pruning operator (as in [Brunk and Pazzani, 1991]) instead of Cohen's

delete-last-sequence operator that deletes a �nal sequence of literals from a

clause (see section 4.1.1).

1

I-REP uses delete-any-literal for pruning a clause.

In order to have a comparison to the original version of REP we used information

gain as a search heuristic. Consequently, we also implemented this heuristic in

the I-REP algorithms to make sure that all di�erences can be attributed to the

used pruning method. There is, however, no fundamental requirement for using

this method. Any other heuristic, in particular Fossil's correlation heuristic,

could have been used as well.

All algorithms were implemented in SICStus PROLOG and had major parts of

their implementations in common. In particular they shared the same interface

to the data and used the same procedures for splitting the training sets into

growing (2=3) and pruning (1=3) sets. All programs made use of mode, type

and symmetry information about the background relations to restrict the search

space. Run-times were measured in CPU secs. on a SUN SPARCstation IPX.

6.3.2 Results

Table 6.1 shows a comparison of the run-times of the di�erent algorithms. The

column Initial Rule Growth refers to the initial growing phase that REP and

1

Cohen used his delete-last-sequence operator in both REP and Grow, while we have

used delete-last-literal in both algorithms. However, [Cohen, personal communication]

has pointed out that his implementation of Grow in most cases produces all generalizations

that would be produced when using delete-last-literal instead.
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Grow have in common

2

, while the columns REP and Grow give the results for

the pruning phases only. Thus the total run-time of REP (Grow) is the run-time

of Initial Rule Growth plus the run-time of REP (Grow). Figure 6.3 illustrates

the e�ect of training set size on the total run-time of all algorithms in the KRK

domain.

Domain

Initial

Rule Growth REP Grow I-REP I-REP-2

KRK-100 (10%) 8.36 2.44 1.66 4.20 4.37

KRK-250 (10%) 91.31 104.98 19.81 17.30 18.09

KRK-500 (10%) 456.56 1578.16 100.81 46.32 57.05

KRK-750 (10%) 1142.78 7308.84 361.41 83.64 118.99

KRK-1000 (10%) 2129.89 23125.34 806.89 115.35 178.26

Table 6.1: Average Run-Time

It is obvious that I-REP is usually signi�cantly faster than the post-pruning

algorithms. In fact, it is always faster than the initial growing phase that both

REP and Grow have in common, because I-REP does not have to learn an in-

termediate over�tting theory. It can also be seen that Grow's pruning algorithm

is much faster than REP's, which con�rms the results of section 4.3.

Domain

Initial

Rule Growth REP Grow I-REP I-REP-2

100-250 2.61 4.11 2.71 1.54 1.55

250-500 2.32 3.91 2.35 1.42 1.66

500-750 2.26 3.78 3.15 1.46 1.81

750-1000 2.16 4.00 2.79 1.12 1.41

Table 6.2: Log-log analysis of the run-times on noisy KRK data.

In order to get an idea on the asymptotic complexity of the various algorithms

we have performed a log-log analysis as has been done in [Cameron-Jones, 1994].

Dividing the logarithm of the run-time by the logarithm of the training set size

2

As in the over�tting phase only 2=3 of the training data are used for learning, the Initial

Rule Growth column should only be used with caution for comparing pruning to non-pruning

approaches, in particular with respect to the accuracy results. However, one could choose to

compare e.g. the Initial Rule Growth results for 750 examples with the results of the pruning

algorithms for 500 examples to get an idea how much improvement in terms of accuracy pruning

brings in this domain.
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Figure 6.4: Log-log Plot of the Run-Times.

results in the slope of the log-log plot. Calculating this value for a polynomial

function would yield the degree of the highest order term in this polynomial. We

have tabulated the slopes for adjacent training set sizes in table 6.2. Note that

contrary to �gure 6.4, where the logarithms of the complete algorithms (initial

over�tting and post-pruning) are plotted, the analysis of REP and Grow in

table 6.2 was performed for the post-pruning phases only.

The main result for our study is that I-REP in fact seems to have a sub-

quadratic time complexity. This is consistent with our conjecture of section 6.1,

where we estimated I-REP to have a time complexity of O(n log

2

n). Thus it is

signi�cantly faster than the initial over�tting phase of both REP and Grow.

In general the results we get are consistent with the analysis performed in

[Cameron-Jones, 1994] for random data. In particular the evidence supports

that REP has a complexity of 
(n

4

) and that the initial rule growing phase is
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O(n

2

log n) as shown in [Cohen, 1993] (see also section 4.1). It also con�rms the

main result of [Cameron-Jones, 1994], namely that the asymptotic complexity of

Grow is not below the asymptotic complexity of the initial rule growing phase

as has been claimed in [Cohen, 1993]. However, in all experiments of this section,

the absolute values for the run-time of Grow has been negligible compared to

the run-time of the over-�tting phase.

In terms of accuracy (table 6.3) I-REP also is superior to the post-pruning

algorithms, although it seems to be more sensitive to small training set sizes

(see also �gure 6.3). The reason for this is that a bad distribution of growing

and pruning examples may cause I-REP's stopping criterion to prematurely stop

learning. Redistributing the examples into new growing and pruning sets before

learning a new clause cannot help here, as there is little redundancy in the data

because of the small sample size. However, at larger example set sizes I-REP

does better than the other algorithms.

Domain

Initial

Rule Growth REP Grow I-REP I-REP-2

KRK-100 (10%) 85.29 91.77 91.60 84.55 85.37

KRK-250 (10%) 83.79 96.29 95.91 98.34 97.93

KRK-500 (10%) 84.29 97.62 98.17 98.48 95.67

KRK-750 (10%) 85.17 97.47 98.31 98.86 98.49

KRK-1000 (10%) 85.65 98.01 98.30 99.55 98.30

Table 6.3: Average Accuracy

REP often gets caught in local maxima and is not able to generalize to the

right level. Interestingly, despite its top-down search strategy, Grow also oc-

casionally over�ts the noise in the data: Some of the highly specialized clauses

in the intermediate theory sometimes also �t a few noisy examples in the prun-

ing set and thus will be added to the concept description. This argument has

been formalized in [Cameron-Jones, 1994]. In I-REP this is less likely to hap-

pen, because for each individual clause there is a high chance that if it �ts noisy

examples in the growing set it will not �t noisy examples in the pruning set.

In REP and Grow, however, a large number of these clauses are investigated,

which makes it more probable that this will happen for one of them. This is also

the main reason why Grow has a higher asymptotic time complexity than the

initial over�tting phase [Cameron-Jones, 1994]. I-REP, on the other hand, will

stop generating clauses whenever it has found a clause that has no support in

the pruning set. Contrary to REP and Grow, I-REP can be expected to have

very fast run-times on purely random data, because there is a high chance that

the �rst clause will not �t any of the examples in the pruning set. This will stop
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the algorithm immediately without accepting a single clause and thus e�ectively

avoid over�tting.

In general it seems to be the case that Grow outperforms REP and that

I-REP is better than REP and Grow. I-REP-2 seems to be worse than I-REP.

Its purity criterion for evaluating a clause seems to have a preference for more

speci�c clauses than I-REP (which can also be seen from the higher run-times).

6.4 Summary

In this chapter we have introduced a new method of integrating pruning and

learning | Incremental Reduced Error Pruning (I-REP). This algorithm im-

proves upon well-known post-pruning methods in the following ways:

E�ciency: The complexity of our algorithm, due to its new method of integrat-

ing pruning into learning, is of the order n log

2

n. Experiments con�rm the

signi�cant run-time improvement over REP and Grow, although I-REP

uses the more expensive, but presumably more powerful pruning operator

delete-any-literal.

3

Separate-and-Conquer Strategy: In section 4.2.3 we argued that the

separate-and-conquer strategy of many relational learning algorithms may

lead to problems when used for over�tting noisy data. Our algorithm avoids

this problem because the rules are pruned right after they are generated.

Thus they are immediately adjusted to the right level of generality and the

learning of subsequent clauses cannot be disturbed by the inuence of an

overly speci�c �rst clause.

Split of Training Data: The performance of the above algorithms depends on

a reasonable split of the training set into a growing and a pruning set.

I-REP is also susceptible to this problem, but its method of redistributing

the examples after a clause has been learned may help to stabilize the

behavior of the algorithm.

I-REP's e�ciency stems from the tight integration of post-pruning and pre-

pruning. Whenever the algorithm learns a clause that is worse than the empty

3

Preliminary experiments using delete-any-literal in the Grow algorithm indicate that

its usage may not only result in an increase in run-time, but surprisingly also in a decrease

in accuracy. [Brunk and Pazzani, 1991] also claim that in Foil and similar systems the more

expensive delete-any-literal operator is not needed, because of the order in which the

literals are added to the body of a clause. In addition in the example of section 6.2 we have

seen that REP could not have found I-REP's theory with any pruning operator, because it was

not part of its intermediate concept description.
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clause, learning stops. However, at small training set sizes this may cause the

algorithm to over-generalize because in those cases there is low redundancy in the

data and chances that an unfortunate split of the training data might cause I-REP

to stop prematurely are high. Similar problems can be expected in a domains with

a rather speci�c underlying theory. Con�rmation for this hypothesis in the form of

additional experimental evidence can be found in [F�urnkranz and Widmer, 1994]

and in chapter 7.



Chapter 7

Experimental Evaluation

After having presented an overview of new and old pruning methods for relational

concept learning, we will now try to empirically evaluate and compare these

methods in various test domains. We will mostly concentrate on comparing the

approaches we have discussed in this thesis to each other, but will occasionally

also include other learning systems into the tests to have a comparison to some

well-known algorithms.

Parts of this chapter have previously been presented in [F�urnkranz, 1994a]

and [F�urnkranz, 1994c].

7.1 Summary of the Experiments in the KRK

Domain

We have tested several algorithms in the domain of recognizing illegal chess po-

sitions in the KRK chess endgame [Muggleton et al., 1989]. This domain has

become a standard benchmark problem for relational learning systems, because

it cannot be solved in a trivial way by propositional learning algorithms. A

detailed description of this domain can be found in appendix A.

In this series of experiments the signs of 10% of the training instances were

deliberately reversed to generate noise in the data. The learned concepts were

evaluated on test sets with 5000 noise-free examples. Although the training

sets used are the same as in all previous chapters, some results may di�er. In

particular we used the up-to-date version (6.1) of Foil

1

, and the version of Fossil

was also newer than the one used for the experiments of chapter 3. The most

important di�erence is that the old version of Fossil was not able to make use

1

The current version of Foil is available by anonymous ftp from ftp.cs.su.oz.au or

129.78.8.1 �le name pub/foilN.sh for some integer N.

76
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of mode, type and symmetry information (see section 2.3.3) and that it counted

the proofs for the covered instances (see the footnote on page 15), while the

new version counts the instances itself (which is more e�cient, but causes some

problems with new variables).

The algorithms were trained on identical sets of sizes from 100 to 1000 exam-

ples. All reported results were averaged over 10 runs, except for the training set

size 1000, where only 6 runs were performed, because of the complexity of this

task for some algorithms.

The tested algorithms were

� the pre-pruning systems Foil 6.1 [Quinlan and Cameron-Jones, 1993] and

Fossil with a cuto� of 0.3 (section 3.2),

� the post-pruning systems REP (section 4.1) and Grow (section 4.3),

� the combined system TDP (section 5.2),

� and the integrated system I-REP (section 6.1).

All algorithms were implemented by the author in PROLOG (see appendix B)

except for Foil 6.1 which is written in C. Foil 6.1 was used with its default

settings except that the -V 0 option was set to avoid the introduction of new

variables which is not necessary for this task. The PROLOG systems had all of

their argument modes declared as input, which has the same e�ect. The only

di�erence in search space between the PROLOG systems and Foil 6.1 was that

the former did not consider recursive literals for e�ciency reasons. Foil 6.1 would

probably have been faster if this had been enforced, but no signi�cant di�erence

in accuracy can be expected as can be seen from the experiments in chapter 3.3.3

where the code of Foil 4 was modi�ed to prevent recursion. Run-times for

most algorithms were measured in CPU seconds for SUN SPARCstations ELC.

The experiments with Fossil, Foil 6.1 and TDP, however, were performed on

a SUN SPARCstation IPX, which gave the other algorithms a 5 : 6 advantage

(empirically estimated on a few test runs on both machines).

Figure 7.1 shows curves for accuracy and run-times over 5 di�erent training

set sizes. I-REP | after a bad start with only 84.55% accuracy on 100 exam-

ples | achieves the highest accuracy. In predictive accuracy, Foil did poorly.

Its stopping criterion is dependent on the training set size and thus too weak

to e�ectively prevent over�tting the noise as we already have discussed in sec-

tion 3.3.3. From 1000 examples Foil learns concepts that have more than 20

rules and are incomprehensible. I-REP on the other hand consistently produces

the 99.57% correct, understandable 4-rule approximation of the correct concept

description of �gure A.3. This theory correctly identi�es all illegal positions, ex-

cept the ones where the white king is between the black king and the white rook
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and thus blocks a check that would make the position illegal, because white is

to move (see �gure A.1 c)). The post-pruning approaches REP and Grow both

are about equal, and TDP does not lose accuracy compared to them. All three,

however, only rarely �nd the 4th rule of �gure A.3. It can also be seen that the

pre-pruning approach taken by Fossil needs many examples in order to make

its heuristic pruning decisions more reliable.

Accuracy Run-time

Algorithm Pre Post Pre Post Total

Foil 6.1 94.70 | 127.17 | 127.17

Fossil (0.3) 98.27 | 44.39 | 44.39

REP 85.65 98.01 2129.89 23125.34 25255.23

Grow 85.65 98.30 2129.89 806.89 2936.78

TDP 96.56 98.50 433.54 162.25 595.79

I-REP | 99.55 | | 115.35

Table 7.1: KRK domain (10% noise), 1000 examples

Fossil, on the other hand, is the fastest algorithm. Foil, although imple-

mented in C, is slower, because with increasing training set sizes it learns more

clauses than Fossil as we have seen in section 3.3.3. REP proves that its prun-

ing method is very ine�cient. Grow has an e�cient pruning algorithm, but

still su�ers from the expensive over�tting phase. TDP brings a little speed-up

compared with REP and Grow, which is mainly due to the fact that it is able

to start post-pruning with a much better theory than REP or Grow, as can be

seen from table 7.1. I-REP, however, learns a much better theory and is faster

than both the growing and the pruning phase of TDP.

In fact, I-REP, where post-pruning is integrated into a pre-pruning criterion,

is only a little slower than Fossil, but much more accurate. Thus it can be said

that it truly combines the merits of post-pruning (accuracy) and pre-pruning

(e�ciency). This becomes also apparent in �gure 7.2, where accuracy (with

the standard deviations observed in the di�erent runs) is plotted against the

logarithm of the run-time.

In summary, conventional pre-pruning methods are very e�cient, but not al-

ways as accurate as post-pruning methods. The latter, however, tend to be very

expensive, because they have to learn an over-specialized theory �rst. I-REP in-

tegrates pre- and post-pruning into one criterion. Our experiments show that this

approach e�ectively combines the e�ciency of pre-pruning with the accuracy of

post-pruning in domains with high redundancy. As real-world databases typically

are large and noisy, and thus require learning algorithms that are both e�cient

and noise-tolerant, I-REP seems to be an appropriate choice for this purpose.
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7.2 The Mesh Domain

We have also tested our algorithms on the �nite elementmesh design problem �rst

studied and described in detail in [Dol�sak and Muggleton, 1992]. The problem

of mesh design is to break complex objects into a number of �nite elements in

order to be able to compute pressure and deformations when a force is applied

to the object. The basic problem during manual mesh design is the selection

of the correct number of �nite elements on the edges of the structure. Several

authors have tried ILP methods on this problem [Dol�sak and Muggleton, 1992,

D�zeroski and Bratko, 1992a, Quinlan, 1994].The available background knowledge

consists of an attribute-based description of the edges and of topological relations

between the edges.

The setup of our experiments was the same as in [Quinlan, 1994], i.e.

we learned rules from four of the �ve objects (A { E) in the data set and

tested the learned concept on the �fth object. The learned theories were

tested as in [Quinlan, 1994], which is a little di�erent from the setup used in

[D�zeroski and Bratko, 1992a]: Instead of actually predicting a value for the num-

ber of �nite elements on an edge, we merely checked for all possible values whether

this value could be derived from the learned rules or not. The basic di�erence is
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that we tested on ground instances, whereas [D�zeroski and Bratko, 1992a] tested

the target predicate with an unbound value for the number of �nite elements for

positive examples. The two procedures yield the same result when we assume

that the rules are not overlapping, which, of course, cannot be guaranteed. The

�ve results from testing on each of the �ve objects (and learning from the other

four) are presented in tables 7.2 and 7.3. In table 7.2 two numbers are given for

each of the �ve sets: the �rst number is the accuracy on the positive examples

only, while the second number shows the accuracy when testing on the negative

examples as well.

Algorithm A B C

D E Average

Fossil (0.05) 43.64 88.92 30.95 87.01 25.00 87.76

28.07 83.92 28.12 86.77 31.16 86.88

Fossil (0.3) 0.00 91.17 0.00 90.91 0.00 90.48

0.00 90.92 0.00 91.36 0.00 90.97

No Pruning 38.18 88.76 33.33 88.96 32.14 86.05

19.30 86.94 34.38 86.41 31.47 87.42

REP 40.00 92.13 33.33 89.61 21.43 88.10

28.07 87.90 11.46 85.96 26.86 88.74

Grow 38.18 92.13 26.19 90.04 21.43 88.44

29.82 88.06 3.12 87.67 23.75 89.27

No Pruning (TDP) 40.00 92.13 28.57 88.74 21.43 86.73

26.32 87.42 28.12 89.92 28.89 88.99

TDP 43.64 92.46 21.43 88.74 21.43 88.44

29.82 87.74 3.12 88.21 23.89 89.12

I-REP 36.36 89.57 14.29 91.77 28.57 89.12

29.82 92.20 3.12 88.03 22.43 90.14

I-REP-2 0.00 90.85 14.29 91.77 17.86 91.84

29.82 92.20 2.08 91.54 12.81 91.64

Table 7.2: Accuracies in the mesh domain

Some of the results reported here di�er a little from the ones we have reported

previously [F�urnkranz, 1993b, F�urnkranz, 1994d, F�urnkranz and Widmer, 1994],

because the previous results are from di�erent phases of our research which used

no or di�erent constraints on the search space. However, the general picture

remains the same: I-REP is clearly faster and a little more accurate than all of

the other algorithms (with the exception of Fossil (0.3)). The advantage in terms

of accuracy of I-REP is not as signi�cant as in [F�urnkranz and Widmer, 1994].

However, I-REP-2, the version of I-REP that prefers purity over accuracy (see

section 6.3.1), is better than I-REP in this domain. It usually learns only a few

simple rules, and is the only algorithm that is able to improve upon the default

accuracy (which is the result of Fossil (0.3) for reasons that we will discuss

below). Fossil with a cuto� of 0.05 (this value was empirically established in
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Algorithm A B C D E Average

Fossil (0.05) 13126.42 3990.41 9427.06 1977.22 3616.08 6427.44

Fossil (0.3) 15.94 13.84 21.63 13.02 12.54 15.99

No Pruning 9284.98 3712.14 7982.03 7541.57 3257.74 6355.69

REP 29669.36 19757.67 42305.26 38442.16 11144.54 28263.80

Grow 14437.17 6649.63 12225.26 11769.10 4320.45 9880.32

No Pruning (TDP) 2364.68 3833.84 6743.36 4521.52 1351.28 3762.94

TDP 3686.85 15622.16 18592.36 11104.58 1550.42 10111.27

I-REP 892.70 290.77 512.35 443.83 216.60 471.25

I-REP-2 132.01 293.15 234.09 443.51 352.84 291.12

Table 7.3: Run-times in the mesh domain

[F�urnkranz, 1993b]) achieves a relatively good performance on unseen positive

examples. Its overall accuracy, however, is very bad.

The post-pruning algorithms are very ine�cient

2

. Grow is more e�cient

and more accurate than REP. TDP clearly outperforms REP because it can

start post-pruning with simpler and better theories. TDP's pruning time is not

as low as in [F�urnkranz, 1994d], but still signi�cantly lower than REP's. The

time needed for �nding the starting theory is also lower than the time needed for

over�tting. It might be worthwhile to further speed up TDP by using Grow for

the post-pruning phase. An interesting phenomenon is that pruned theories are

more accurate, but cover fewer positive examples. The reason is that the post-

pruning process usually removes a lot of rules that cover a few positive examples,

but also an equal or greater number of negative examples. In some domains,

however, this simple evaluation of the quality of a clause might be undesirable.

[Kononenko and Bratko, 1991] discuss some alternatives to an accuracy-based

evaluation of classi�ers that could easily be adapted for pruning algorithms. Cost-

sensitive pruning has recently been tried in [Knoll et al., 1994].

The only algorithm faster than I-REP is Fossil with a cuto� of 0.3. The

reason for this is simply that Fossil couldn't discover any signi�cant regulari-

ties in the data and thus consistently learned empty theories (all literals in the

background knowledge had a correlation below 0.3). However, it is still second

best in terms of accuracy which again shows how poorly ILP algorithms do in

this domain.

One of the reasons why ILP algorithms do not perform well in this domain is

that there are not enough training examples. Certain numbers of �nite elements

on an edge appear in only one of the �ve objects. Thus rules for these classes

cannot be learned from the other objects. Only examples for classes 1 and 2 are

present in all �ve objects. For this reason recently �ve new objects have been

2

The given run-times are the total run-times (learning and pruning).
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included into the database. Preliminary results reported in [Dol�sak et al., 1994]

show signi�cant improvements compared to previous results using only �ve ob-

jects.

Another reason for the bad performance of ILP algorithms on this problem is

that many of them (including our implementations) are not really able to make

use of the provided topological relations, because of the problems discussed in

section 2.3.1. For algorithms like Golem [Muggleton and Feng, 1990] and Foil

[Quinlan and Cameron-Jones, 1993] the topological relations have been made de-

terminate, i.e. it has been enforced that each topological relation has at most one

output value for each set of input values. [D�zeroski and Bratko, 1992a] report

experiments that forced mFoil to use one of the topological relations at the

beginning of the clause. This did not help much for the �rst four objects, but sig-

ni�cantly improved the quality of the learned rules for object E. In section 3.2.2

we have discussed that Fossil's correlation heuristic is unde�ned for many of

the problematic cases and we have sketched a method how we can exploit this

characteristic in order to deal with the problem. We hope to signi�cantly improve

our results in this domain by working out these ideas and by using them on the

new data set [Dol�sak et al., 1994] which contains a total of 10 objects (and thus

provides more redundancy).

7.3 Propositional Data Sets

The purpose of the series of experiments reported in this section is that we want

to compare our algorithms on a variety of natural data sets in order to get more

information about their applicability to real-world problems. Therefore, in ad-

dition to the experiments performed in the relational mesh domain (section 7.2)

we have experimented with data sets from the UCI repository of Machine Learn-

ing databases that have previously been used to compare propositional learning

algorithms. Propositional data do not challenge the underlying relational learn-

ing algorithms to their full extent. However, we are primarily concerned with the

comparison of pruning methods, and for these it should not make much di�erence

what sort of conditions | relational or propositional | are pruned. This holds

in particular for those algorithms that clearly separate the learning and pruning

phases.

A side e�ect of using propositional data is that we can compare propositional

and relational learning algorithms and con�rm that the quality of the concepts

learned by the latter is not below the quality of the theories learned by the for-

mer (see [Cameron-Jones and Quinlan, 1993b] for more experiments along these

lines). The appendix of [Holte, 1993] gives a summary of the results achieved

by various algorithms on some of the most commonly used data sets of the UCI

repository and a short description of these sets. We selected 9 of them for our
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experiments. The remaining sets were not used because either the description

of the data sets was unclear or they had more than two classes, which cannot

be handled by our current implementation of the learning algorithms. In the

Lymphography data set we removed the 6 examples for the classes \normal �nd"

and \�brosis" in order to get a 2-class problem. All other data were used as

described in [Holte, 1993]. For all data sets the task was to learn a de�nition for

the minority class.

In all datasets the background knowledge consisted of < and = relations with

one variable and one constant argument. Wherever appropriate, comparisons

between two di�erent variables of the same data type were allowed as well. In-

troduction of new variables was not allowed. In all experiments the value of

Fossil's cuto� parameter was set to 0:3. Run-times for all datasets were mea-

sured in CPU seconds for SUN SPARCstations ELC except for the Mushroom

and KRKPa7 datasets which are quite big and thus had to be run on a con-

siderably faster SPARCstation S10. All experiments followed the setup used in

[Holte, 1993], i.e. the algorithms were trained on 2=3 of the data and tested on

the remaining 1=3. However, only 10 runs were performed for each algorithm on

each data set.

The results can be found in tables 7.4, 7.5, and 7.6. Each line shows the

average accuracy on the 10 sets, its standard deviation and range (di�erence

between the maximum and the minimum accuracy encountered), and the run-

time of the algorithm. The results of C4.5, a state-of-the-art decision tree learning

system with extensive noise-handling capabilities [Quinlan, 1993], are taken from

the experiments performed in [Holte, 1993] and are meant as an indicator of the

performance of state-of-the-art decision tree learning algorithms on these data

sets.

A short look shows that the results vary in terms of accuracy, but are quite

consistent in run-times: I-REP is the fastest algorithm in 6 of the 9 test problems,

while it is second-best in 2 of the remaining 3. The tables also con�rm that Grow

is usually faster than REP. TDP's results are not consistent, but it is faster than

REP and Grow in some cases, which indicates that its initial top-down search

for a good starting theory does not over�t the data as much as the initial rule

growing phase of REP and Grow does. Fossil's run-times are very unstable.

It is the fastest algorithm on some datasets, but by far the slowest on other data

sets. The explanation for this probably lies in the fact that all algorithms except

for Fossil only learn from 2=3 of the training data and use the remaining 1=3

for pruning. If not much pruning has to be done, it can be expected that Fossil

is slower than the other algorithms.

Most di�erences in accuracies are not statistically signi�cant.

3

Signi�cant

di�erences can be found in the KRKPa7 chess endgame domain, where TDP and

3

We have used a range test which can be used to quickly determine signi�cant di�erences

between medium values for small (N < 20) sample sizes [Mittenecker, 1977]. For N = 10 the
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Breast Cancer Accuracy Stnd. Dev. Range Time

C4.5 71.96 4.36 | |

Fossil 73.33 4.56 17.66 19.68

No Pruning 65.39 4.21 13.27 169.70

REP 69.97 3.80 12.16 257.29

Grow 68.46 4.72 15.39 183.67

No Pruning (TDP) 67.98 5.56 20.62 154.05

TDP 71.74 3.79 12.43 173.31

I-REP 70.89 5.23 19.58 28.97

I-REP-2 70.89 5.23 19.58 27.69

Hepatitis Accuracy Stnd. Dev. Range Time

C4.5 81.23 5.12 | |

Fossil 76.07 5.77 23.43 217.40

No Pruning 73.66 4.99 17.12 101.66

REP 76.96 3.93 10.80 102.28

Grow 76.45 4.24 11.14 102.39

No Pruning (TDP) 76.33 3.40 10.92 115.41

TDP 79.42 3.88 11.87 116.24

I-REP 78.66 2.80 7.34 60.40

I-REP-2 78.66 2.80 7.34 62.07

Sick Euthyroid Accuracy Stnd. Dev. Range Time

C4.5 97.69 0.40 | |

Fossil 97.58 0.40 1.35 891.40

No Pruning 96.25 0.51 1.70 4554.65

REP 97.55 0.32 1.06 5040.23

Grow 97.52 0.47 1.64 4635.26

No Pruning (TDP) 97.37 0.51 1.78 2965.51

TDP 97.49 0.43 1.21 3010.97

I-REP 97.48 0.50 1.70 970.70

I-REP-2 97.40 0.65 2.02 1114.92

Table 7.4: Results in the Breast Cancer, Hepatitis, and Sick Euthyroid domains.
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Glass (G2) Accuracy Stnd. Dev. Range Time

C4.5 74.26 6.61 | |

Fossil 77.32 4.79 15.96 216.42

No Pruning 75.24 5.26 18.15 91.89

REP 77.76 4.31 14.73 93.31

Grow 75.63 4.69 16.97 93.11

No Pruning (TDP) 77.23 4.01 12.64 85.56

TDP 75.90 6.18 20.51 87.39

I-REP 76.31 4.89 15.95 63.01

I-REP-2 76.04 4.16 14.00 68.18

Votes Accuracy Stnd. Dev. Range Time

C4.5 95.57 1.31 | |

Fossil 95.35 1.17 3.34 105.22

No Pruning 94.69 1.89 6.55 50.45

REP 95.84 1.39 3.92 57.41

Grow 95.63 1.36 3.92 53.84

No Pruning (TDP) 95.33 1.22 4.48 60.88

TDP 95.22 1.54 4.49 62.17

I-REP 94.75 1.75 6.95 22.43

I-REP-2 94.94 1.52 4.81 30.57

Votes (VI) Accuracy Stnd. Dev. Range Time

C4.5 89.36 2.45 | |

Fossil 89.07 2.64 8.13 88.94

No Pruning 86.46 2.01 7.36 124.47

REP 86.72 3.46 10.78 163.26

Grow 87.49 3.35 10.93 137.49

No Pruning (TDP) 87.57 1.36 4.29 105.67

TDP 85.85 2.62 9.21 113.05

I-REP 87.25 3.27 10.75 38.78

I-REP-2 87.21 2.77 10.01 43.53

Table 7.5: Results in the Glass and Votes domains.
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KRKPa7 Accuracy Stnd. Dev. Range Time

C4.5 99.19 0.27 | |

Fossil 95.17 2.66 8.63 2383.61

No Pruning 97.92 0.58 1.85 4063.80

REP 97.84 0.54 2.01 4243.08

Grow 97.48 0.41 1.06 4219.00

No Pruning (TDP) 96.26 1.85 4.74 2368.28

TDP 96.41 1.87 4.74 2376.28

I-REP 97.74 0.36 1.32 1785.50

I-REP-2 97.58 0.99 3.26 3148.28

Lymphography (2 classes) Accuracy Stnd. Dev. Range Time

C4.5 (on all 4 classes) 77.52 4.46 | |

Fossil 87.22 4.39 17.23 20.79

No Pruning 83.25 4.79 16.03 17.05

REP 81.85 4.86 16.83 18.81

Grow 82.10 5.28 17.53 18.42

No Pruning (TDP) 83.73 5.50 17.53 18.66

TDP 81.86 4.39 12.39 20.27

I-REP 79.17 4.42 15.30 10.14

I-REP-2 80.27 6.45 25.06 10.39

Mushroom Accuracy Stnd. Dev. Range Time

C4.5 100.00 0.00 | |

Fossil 99.96 0.03 0.11 3538.19

No Pruning 100.00 0.01 0.04 1878.51

REP 99.97 0.05 0.15 1931.75

Grow 99.57 0.66 1.56 2088.81

No Pruning (TDP) 100.00 0.01 0.04 4595.23

TDP 99.97 0.05 0.15 4656.31

I-REP 99.97 0.04 0.11 2493.77

I-REP-2 99.97 0.04 0.11 2482.93

Table 7.6: Results in the Chess (KRKPa7), Lymphography, and Mushroom do-

mains.



7.3. PROPOSITIONAL DATA SETS 88

Fossil performed signi�cantly (1%) worse than all other algorithms. Fossil was

signi�cantly (5%) better than TDP in the Votes (VI) domain

4

and outperformed

(5%, sometimes 1%) all other algorithms in the Lymphography domain. In general

C4.5 seems to be a little superior to the other algorithms (one cannot count the

results on Lymphography where the rule learning algorithms had a presumably

easier 2-class task.). However, the relational algorithms seem to be competitive.

To allow a more structured analysis we have grouped the 9 domains into 3

subclasses: Table 7.4 contains all domains where over�tting seems to be harmful,

i.e. where REP's post-pruning phase signi�cantly (at least 5%) improves upon

the concepts learned by the initial over�tting phase.

5

Table 7.5 contains domains

where pruning does not make a signi�cant di�erence and �nally table 7.6 con-

tains all domains where pruning cannot be recommended as exempli�ed by the

Mushroom data, where the over�tting phases learned 100% correct concept de-

scriptions that were signi�cantly better (5%) than those learned by all pruning

algorithms. The Mushroom and KRKPa7 domains are known to be free of noise,

while the medical domains of table 7.4 are noisy. Therefore we suspect that our

grouping of the domain corresponds to the amount of noise contained in the data.

Summary Table 7.4 Table 7.5 Table 7.6 Total

C4.5 83.63 86.40 92.24 87.42

Fossil 82.33 87.25 94.12 87.90

No Pruning 78.43 85.46 93.72 85.87

REP 81.49 86.77 93.22 87.16

Grow 80.81 86.25 93.05 86.70

No Pruning (TDP) 80.56 86.71 93.33 86.87

TDP 82.88 85.66 92.75 87.10

I-REP 82.34 86.10 92.29 86.91

I-REP-2 82.33 86.06 92.61 87.00

Table 7.7: Average performances of the algorithms

Table 7.7 shows the average performances of the algorithms in each of the

three di�erent groups and a total comparison. Fossil seems to a good choice for

value of L =

�

1

��

2

R

1

+R

2

has to be > 0:152 for a signi�cance level of 5% and > 0:210 for a signi�cance

level of 1%. (�

i

are medium values and R

i

are ranges. Both can be found in tables 7.4 { 7.6.)

4

This is the Votes domain with the most signi�cant attribute removed.

5

It might be (justi�ably) argued here that we should have used a separate run with no

pruning on all of the data for a comparison. Our main purpose, however, was to compare

di�erent pruning approaches and not evaluate the merits of pruning by itself. The results for

the initial over�tting phases of REP, Grow and TDP may nevertheless be an indicator for the

latter (and they come at no additional cost).
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all domains. I-REP's comparative performance seems to decrease when the noise

level in the data decreases. This is probably due to its very strong Over�tting

Avoidance Bias, which may lead to over-generalizations in noise-free domains.

REP is better with lower noise levels for the opposite reason: Its speci�c-to-

general search strategy may get stuck in a local optimum, which can lead to

over-specializations some cases.

In summary, it has been con�rmed that I-REP provides a signi�cant speed-

up and is the most e�cient algorithm. However, in terms of accuracy it only

proved useful in noisy domains. The pre-pruning approach taken by Fossil

exhibits considerable stability. In general, the relational learning systems seem

to be competitive with the well-known decision tree learning system C4.5 in

propositional domains.



Chapter 8

Conclusion

This thesis has been concerned with pruning in relational learning, a subarea of

the rapidly growing �eld of Inductive Logic Programming. In many real-world

problems not only the values of the attributes, but also relations between them

may be relevant for the de�nition of the target concept. Relational learning

algorithms extend classical propositional learning systems like CN2 and ID3 with

the ability to include this kind of knowledge. From a set of positive and negative

examples and background knowledge in the form of PROLOG relations, relational

learners will try to �nd a PROLOG program that can derive the positive, but

not the negative examples. As real-world problems very often contain erroneous

values and incomplete or misclassi�ed examples, noise handling is an important

problem that has to be faced. Pruning is the common framework for avoiding

this problem of over�tting the noise in the data. The basic idea is to incorporate

a bias towards more general and simpler theories in order to avoid �tting overly

speci�c theories that try to �nd explanations for noisy examples.

Pre-pruning methods deal with noise during learning. Instead of trying to

�nd a theory that is complete and consistent with the given training data, they

use heuristics | so-called stopping criteria | to relax this constraint by stopping

the learning process although some positive examples might not yet be explained

by the current theory and it might still explain some of the negative examples.

We have reviewed some of the basic algorithms that use this approach, most

importantly Foil which is the ancestor of most relational learning algorithms.

Thereafter we have introduced a new system, Fossil. Although it uses the

same basic separate-and-conquer learning strategy as Foil, Fossil employs a

new search heuristic based on statistical correlation which has several interesting

properties that distinguish it from other approaches. Most importantly, we show

how the correlation heuristic can e�ectively deal with noise when used with the

simple cuto� stopping criterion. This new simple and e�cient criterion does not

depend on the number of training examples or on the amount of noise in the data

and thus seems to be more robust than alternative approaches.

90
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Another family of algorithms deals with noise after learning. These post-

pruning algorithms typically �rst induce a theory that is complete and consistent

with the training data. Then this theory is examined and clauses and literals

that only explain characteristics of the particular training set used and thus do

not reect true regularities of the domain are discarded. The quality of the

found clauses and literals is commonly evaluated on a separate set of training

examples that have not been seen during learning. We have reviewed two common

post-pruning methods, Reduced Error Pruning (REP) and a variant that uses a

top-down search, Grow. While both methods prove to be very e�ective in noise-

handling, they are also very ine�cient.

One of the reasons for the ine�ciency of post-pruning methods is that the

intermediate theory resulting from the initial over�tting phase can be much more

complex than the �nal theory. Thus a lot of time has to be wasted in generating

and subsequently simplifying this intermediate theory. One way for reducing

this problem is to combine pre- and post-pruning. For this purpose pre-pruning

heuristics are used to reduce (not entirely prevent) the amount of over�tting,

so that learning and pruning will be more e�cient. Our method, Top-Down

Pruning (TDP), uses Fossil's simple cuto� stopping criterion to systematically

vary the over�tting avoidance bias. Theories pruned to di�erent degrees are

generated in a top-down, general-to-speci�c order. The accuracies of the theories

are evaluated on a separate set of data and the most speci�c theory with an

accuracy comparable to the accuracy of the best theory so far will be submitted

to a subsequent post-pruning phase. Experiments show that this initial top-down

search for a better starting theory can be more e�cient than the over�tting phase

of classical post-pruning algorithms. As this search will typically return a theory

that is closer to the �nal theory, we can also achieve a signi�cant speed-up in the

post-pruning phase along with a slight gain in accuracy.

Motivated by the success of this method, we have developed a more rigor-

ous approach that tightly integrates pre- and post-pruning. Instead of learning

an entire theory and pruning it thereafter, Incremental Reduced Error Pruning

(I-REP) prunes single clauses right after they have been learned. This new algo-

rithm entirely avoids the learning of an over�tting theory by using post-pruning

methods as a pre-pruning stopping criterion and thus signi�cant speedups can

be achieved in noisy domains. As it avoids some problems with other approaches

that incorporate post-pruning, I-REP also learns more accurate theories.

In an extensive series of experiments in natural domains we have tried to

con�rm the quality of our algorithms. In all noisy domains, I-REP was superior

in terms of both, accuracy and e�ciency. However, this advantage was not as clear

in propositional domains as it was in domains that require relations. In noise-

free propositional domains, I-REP's strong over�tting avoidance bias often over-

generalizes. Pre-pruning as used in Fossil appears to be the most stable method

and should be used when nothing is known about the domain. A setting of 0.3 for
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the cuto� parameter has yielded good results in almost all tested domains, which

illustrates the robustness of this algorithm against varying noise levels and varying

training set sizes. REP counterintuitively compares well to other approaches at

low noise levels. The reason for this is that at higher noise levels, where the

initial theory has to be pruned a lot, REP's speci�c-to-general search strategy

may get stuck at too speci�c theories. Grow e�ectively avoids this problem

by replacing REP's bottom-up pruning algorithm with a top-down version. The

search for a good starting theory as performed in TDP leads to a stable behavior.

It brings speed-up and a high accuracy at higher noise levels, while it will still yield

good results at low noise levels, although its general-to-speci�c search strategy is

inappropriate then and may lead to higher run-times.

A severe de�ciency of all approaches that incorporate post-pruning methods

is that they usually separate a certain percentage of the available training data in

order to have an independent test set on which the learned concepts can be evalu-

ated and pruned. In particular in domains where training instances are expensive

or rare, this method is wasteful. One approach to avoid this problem could be

to use cross-validation or bootstrap methods for evaluating the accuracy of the

theories (see e.g. [Bailey and Elkan, 1993]). In particular for the e�cient I-REP

the additional computational costs caused by this method might still be bearable.

The well-known Minimum Description Length (MDL) principle [Rissanen, 1978]

that trades o� the complexity of a theory against its classi�cation performance

may prove to be an e�cient alternative that allows to assess the quality of a

theory without evaluating it on a separate test set.

However, the experiments in the mesh domain have exhibited another pos-

sible de�ciency of many pruning algorithms: Their evaluation criterion | ac-

curacy on the pruning set | gives equal consideration to covering positive and

not covering negative examples. This may cause the percentage of correctly

classi�ed positive examples to go down, while the overall accuracy increases.

[Kononenko and Bratko, 1991] discusses why this can be problematic and give

an alternative to an accuracy-based evaluation of classi�ers that could easily be

adapted for pruning algorithms. Methods for including misclassi�cation costs

into pruning have already been incorporated into propositional learning systems

[Knoll et al., 1994].

We also feel that Fossil's ability to generate logic theories of various degrees

of generality should be further explored. One possible application might be not

to select a single theory, but to use all of them simultaneously for classi�cation.

This approach | averaging | has already been tried on propositional learning

systems and has yielded encouraging results (see e.g. [Oliver and Hand, 1994]).

During the writing of this thesis the implementation of the learning systems

has been continuously improved. In fact, the current version is already able to

handle multiple classes by incorporating an approach similar to that suggested in

the relational learner HYDRA [Ali and Pazzani, 1993]: For each class a separate
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concept description will be learned considering all examples for other classes as

negative examples for the class to learn. Then the program orders the clauses of

the resulting theories according to some heuristic in order to avoid conicts caused

by overlapping rules. A closer evaluation of the approach and a comparison

to other approaches (e.g. the MDL based method used in C4.5 for generating

rules from decision trees [Quinlan, 1993]) still has to be performed. Two other

improvements that have been on the agenda since the �rst days of this project

are to incorporate a simple beam search into Fossil and to elaborate the ideas

for avoiding the problem with the introduction of new variables. In particular in

the mesh domain that contains non-determinate background relations it can be

expected that the latter will lead to a further improvement of the performance of

Fossil. However, these issues are not directly relevant to pruning methods for

relational learning and will therefore be discussed elsewhere.
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Appendix A

The KRK Domain

The KRK domain was �rst used in [Muggleton et al., 1989]. Since then it has

become a standard test bed for ILP algorithms such as Foil [Quinlan, 1990],

Golem [Muggleton and Feng, 1990], Linus [Lavra�c et al., 1991], mFoil

[D�zeroski and Bratko, 1992a], NM-Golem [Bain, 1991], and Fossil. The goal

is to distinguish legal from illegal positions in a chess endgame with white king,

white rook and black king on the board. In all positions white is to move. There-

fore all positions where the black king is in check are illegal. Figure A.1 a) is a

legal position and therefore a negative example. Position b) on the other hand is

illegal, because the white rook is on the same row as the black king who therefore

is in check. In position c) the white king blocks the check of the white rook

which makes the position legal again. However, if he does so on a square that is

adjacent to the black king (thus both being in check) the position is illegal again

as in �gure A.1 d). Also illegal are positions where two or more pieces are on the

same square.

This problem has become a standard benchmark problem for relational learn-

ing algorithms, because its solution requires the use of relations like equal or

adjacent, and thus could not be solved by propositional learning systems (see

also section 1.2).

A.1 A Correct Domain Theory

Technically speaking the goal is to �nd a correct de�nition of the predicate

illegal(A,B,C,D,E,F), the six arguments of which are the �le and row resp.

coordinates of the three chess pieces in the above order. Background knowledge

usually consists of the predicates X < Y, X == Y and adjacent(X,Y)

1

. A correct

1

Our de�nition of adjacent actually was adjacent or equal. In the text we usually have

abbreviated the predicates with adj, lt, and ==.

104
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Figure A.1: Example positions for the KRK domain
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%%%

%%% Correct KRK Program

%%% (including the between relation)

%%%

illegal( A, B, C, D, E, F) :- A == C, B == D.

% (1) WK and WR on same square.

illegal( A, B, C, D, E, F) :- C == E, D == F.

% (2) BK and WR on same square.

illegal( A, B, C, D, E, F) :- adjacent( A, E), adjacent( B, F).

% (3) WK and BK on adjacent (or equal) squares.

illegal( A, B, C, D, E, F) :- C == E, A \== C.

% (4) WR gives check and WK on different row

illegal( A, B, C, D, E, F) :- D == F, B \== D.

% (5) WR gives check and WK on different file

illegal( A, B, C, D, E, F) :- C == E, \+ between( B, D, F).

% (6) WR gives check and WK on same row

illegal( A, B, C, D, E, F) :- D == F, \+ between( A, C, E).

% (7) WR gives check and WK on same file

%%%

%%% Background Knowledge

%%%

adjacent( X, Y) :- X is Y + 1.

adjacent( X, Y) :- X = Y.

adjacent( X, Y) :- X is Y - 1.

between( Z, X, Y) :- X < Z, Z < Y.

between( Z, X, Y) :- Y < Z, Z < X.

Figure A.2: A correct theory

domain theory in PROLOG clauses is given in Figure A.2. Note that this the-

ory is somewhat simpli�ed by using the intermediate predicate between which is

usually not available. Instead the appearances of between have to be expressed

in terms of the relation <. In that case the negated between literal will unfold

rules (6) and (7) to several other rules. Each of them will only cover a couple of

examples and thus is very hard to detect.

Of course this is only one possibility of de�ning a theory of this domain. A

close examination of the rules e.g. reveals that rule (2) is redundant, as the cases

where the black king and the white rook are on the same square are already

covered by rules (1), (4) and (5): Either all three pieces are on the same square

(1) or only the black king and the white rook are on the same square and the

white king is on a di�erent row (4) or on a di�erent �le (5). Nevertheless we stick



A.1. A CORRECT DOMAIN THEORY 107

with this representation, because we feel it is more intuitive (and maybe easier to

analyze). In some other domain de�nitions in the literature, adjacent has been

de�ned without its second clause.

We will use the above domain theory for a numerical analysis of the domain,

because the basic structure remains the same in other formulations of the theory.

The seven clause theory of �gure A.2 is easier to analyze.

Number of possible examples (chess positions): As each of the 6 variables

can have 8 di�erent values there are 8

6

= 262; 144(100%) di�erent instances in

this domain.

3 Pieces on same square: Naturally, there are 64 (0.024%) possibilities for

having all three pieces on the same square, because there are 64 squares on a

chess board.

2 Pieces on same square: There are 64 squares for the �rst piece, 1 possible

square for the second piece and 63 di�erent squares for the third piece. So we

have altogether 64�1�63 = 4032(1:538%) possibilities for two �xed pieces being

on the same square and the third piece being on a di�erent square.

Rule (1): From the above results follows that rule (1) of the domain theory

covers 64 + 4032 = 4096(1:563%) positions.

Rule (2): As the positions with all three pieces on one square are already

covered by rule (1) there are only 4032(1:538%) positions left for rule (2).

Adjacent Kings: Assume you place the white king on a random square of

the board. If it lands on one of the 36 squares on rows 2 to 7 and �les b to g

there are 8 adjacent squares where the black king can be placed. This adds up

to 36 � 8 = 288 possibilities. If the white king is at one of the 4 corner squares,

which have 3 adjacent squares each, we get another 4 � 3 = 12 possibilities for

adjacent kings. The other 24 border squares have 5 adjacent squares each, i.e.

24� 5 = 120. Therefore we have 288 +12 +120 = 420 possibilities altogether for

placing two kings on adjacent, but not identical squares on a chess board.

Rule (3): For each of the adjacent king positions there are 62 open squares

for placing the white rook. Including the cases where the kings are on identical

squares, which are also covered by this rule, we have rule (3) covers 420 � 62 +

4032 = 30; 072(11:472%) positions.
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Rule Covered Percentage

(1) 4,096 1.563%

(2) 4,032 1.538%

(3) 30,072 11.472%

(4) 22,932 8.748%

(5) 22,932 8.748%

(6) 1,456 0.555%

(7) 1,456 0.555%

illegal 86,976 33.179%

legal 175,168 66.821%

total 262,144 100.000%

Table A.1: Rule Coverage

Rules (4) and (5): For each position of the black king there are 7 possibilities

to place the white rook on the same �le/row. Depending on whether the black

king is in the corner, on the border �le/row, border row/�le or in the center, we

have 54, 53, 52 or 50 possible squares for the white king, not counting cases that

have already been covered by rules (1) to (3). Thus each of the rules (4) and (5)

covers 7 � (54� 4 + 53� 12 + 52 � 12 + 50� 36) = 22; 932(8:748%) positions.

White King not between Black King and Rook: We assume that all three

pieces are on the same �le/row, that the two kings are not adjacent and that all

pieces are on di�erent squares. If the black king is immediately adjacent to the

white rook, there are 5 squares remaining for the white king under the above

assumption, except for the case where the black king is on the border, where we

have 6 possibilities. So we get 6 � 5 + 1 � 6 = 6 � 6 = 36 possible positions.

The same number results when we swap black king and white rook. If we now

increase the distance between black king and white rook by 1, we analogously

get 2� (5� 5) = 50 more positions. This is repeated until the distance between

black king and white rook is 5 squares, when only 1 possible square is left for the

white king. So we have a total of 2� (6

2

+5

2

+4

2

+3

2

+2

2

+1

2

) = 2� 91 = 182

positions.

Rules (6) and (7): As the above calculations are the same for each �le or row,

each of the two rules covers 8 � 182 = 1; 456(= 0:555%) positions.

A summary of the results is given in table A.1.
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illegal( A, B, C, D, E, F) :- A == C, B == D.

% (a) same as (1).

illegal( A, B, C, D, E, F) :- adjacent( A, E), adjacent( B, F).

% (b) same as (3)

illegal( A, B, C, D, E, F) :- C == E.

% (c) generalization of (2), (4), (6).

illegal( A, B, C, D, E, F) :- D == F.

% (d) generalization of (2), (5), (7).

Figure A.3: Approximate Theory A

A.2 Approximate Theories

Sometimes ILP programs do not learn the complete theory, but instead learn an

approximation. In this section we will examine some simple theories that give

a very good approximation of the desired concept. As already mentioned, it is

very hard for programs to �nd clauses (6) and (7) which are mostly concerned

with the rare cases when the white king is between his rook and the opponent's

king, thus preventing the check. So we will mostly examine good approximative

theories when those 2 clauses are not present. Figure A.3 gives an approximate

theory which has been reported in a similar form in [Quinlan, 1990], [Bain, 1991],

and [Srinivasan et al., 1992].

Theories like this are often learned in the presence of noise or from only a few

training examples. In the �rst case it is very hard to discriminate between noisy

and rare examples, while in the second case chances are high that the examples

are missing that are representative for the missing rules with low coverage.

Theory A: The approximate theory of �gure A.3 is an over-generalization of

the theory in �gure A.2, in a way that all positions with white rook and black

king on the same row/�le are treated as illegal. It is wrong for all cases where

the white king is between the white rook and the black king, thus blocking the

check.

We already have covered the case where the white pieces are on the same

square and the cases where the two kings are adjacent will be handled by rule (b).

Assume that all three pieces are on the same �le/row. The maximum distance

between white rook and black king is when both are on opposite sides of the

�le/row. The white king then has 5 possible squares for blocking the check, i.e.

rules (c) or (d) resp. will consider 5 illegal positions as legal. We get another 5

cases when swapping white rook and black king. If the white rook and the black

king are moved towards each other, the number of squares for the white king
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decreases, but there are more possibilities for putting the black king and the white

rook on the board. So e.g. there are 2 possibilities to put the black king and the

white rook on one �le/row with 5 squares inbetween. Each of them yields 4 valid

squares for the white king. Thus we get 2�(1�5+2�4+3�3+4�2+5�1) = 70

possibilities for each �le/row. Considering that there are 8 rows and 8 �les, rules

(c) and (d) together erroneously classify a total of 70�8�2 = 560�2 = 1; 120(=

0:427%) of all examples.

Theory B: In the presence of 10% noise Fossil converges towards theory A

except rule (1) is usually not found (see section 3.3). This is not surprising,

because as we can see from table A.1 an example exclusively covered by rule

(1) only occurs in 1.56% of the training data. The regularity in these examples

can easily be overlooked when 10% of the examples are erroneously classi�ed.

Besides, many of the examples for rule (1) are covered by the three remaining

rules, so that the error for leaving out this rule is not that big, as we will see in

the following.

Of the 4096 positions with white king and white rook on the same square,

1

8

th (= 512) have the black king on the same row. Another 512 have the black

king on the same �le. Subtracting the 64 positions where all three pieces are on

the same square, which we have counted twice now, we get 960 positions that

are covered by rules (c) and (d). In addition rule (b) covers positions where

the white rook and king are one square diagonal of the black king. This are

36�4+24�2+4�1 = 196 positions. So rules (b), (c) and (d) of theory A cover

196 + 960 = 1156 positions that would otherwise be covered by rule (a). This

means that in addition to the error of Theory A, dropping rule (a) misclassi�es

another 4; 096 � 1; 156 = 2; 940 positions. The total error of Theory B thus is

2940 + 1120 = 4060(= 1:549%).

Theory C: Another good approximation results when rules (c) and (d) are

replaced with rules (4) and (5). This means instead of generalizing rules (2) (4)

and (6) to rule (c) the most common of the three rules is chosen as a representa-

tive. The cases that are not correctly classi�ed by this approximation are those,

where the white king is on the same row as his rook and the enemy king, but is

not inbetween them, the black king thus being in check. We have already seen

that rule (2) is redundant, so the only cases that will be misclassi�ed by this

approximation are those that would originally have been covered by rules (6) and

(7), i.e. 1; 456 � 2 = 2; 912(= 1:111%).

Theory D: Theories B and C can also be interleaved, e.g. only rule (c) is

replaced by rule (4). In this case in addition to the 1; 456 errors made by missing

out rule (6), we have the 560 mistakes by overgeneralizing rules (2), (5) and (7)

to rule (c). This means we have a total error 560 + 1; 456 = 2; 016(= 0:769%).
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Theory Rules Error Accuracy

A (a), (b), (c), (d) 0.427% 99.573%

D (a), (b), (c), (5) or 0.769% 99.231%

(a), (b), (4), (d)

C (a), (b), (4), (5) 1.111% 98.889%

B (b), (c), (d) 1.549% 98.451%

F (b), (c), (5) or 2.019% 97.981%

(b), (4), (d)

E (b), (4), (5) 2.489% 97.511%

Table A.2: Accuracy of Approximate Theories

Theory E: Of course, dropping rule (a) from Theory C yields another approx-

imation. This amounts to dropping rules (1), (2), (6) and (7) from the correct

theory of �gure A.2. We have already seen that there are 420 + 64 = 484 pos-

sibilities for placing the two kings on adjacent or identical squares. These cases

are still covered by rule (b), but the remaining 4096 � 484 = 3612 positions will

be erroneously considered as legal by this theory. In addition the 2; 912 mistakes

made by Theory D, this yields a total error of 2; 912 + 3; 612 = 6; 524(= 2:489%)

for Theory E.

Theory F: The last approximation we consider is dropping literal (a) from the

two possible Theories D. Let us assume we have the theory consisting of rules

(b), (c) and (5). Of the 4096 positions with white king and white rook on the

same square,

1

8

th (= 512) have the black king on the same �le. These instances

are now covered by rule (5). In addition rule (b) covers all positions with the

black king one square above or below this �le. Considering di�erent numbers

of neighboring squares we get 36 � 6 + 12 � 4 + 12 � 3 + 4 � 2 = 308 covered

positions. So 4096 � 512 � 308 = 3276 positions with white king and rook on

the same square are not covered by other rules. Also replacing rule (d) with (5)

misclassi�es 2,016 examples as we have seen above. So we get a total error of

2; 016 + 3; 276 = 5; 292(= 2:019%).

A summary of the approximation errors for approximate theories ordered

according to their approximation accuracy can be found in table A.2.
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Implementation of the

Algorithms

All of the relational learning systems have been implemented by the author in

SICStus PROLOG 2.1. To be able to make fair runtime comparisons, all systems

had major parts of their implementations in common. In particular they shared

a common basic search engine that enumerates all possible literals that can be

added to a clause and | for the case of pruning | the literals that can be

removed from a clause. Heuristic evaluation and selection of appropriate literals

or pruning operators was up to the individual programs.

All programs also had the same interface to the data. This interface allows

to specify the training and test instances, the valid background relations and

their mode type and symmetry constraints as discussed in section 2.3.3. We will

briey illustrate the main features of the interface here with de�nitions of the

background knowledge for the KRK domain of appendix A.

Training Instances: Training instances are usually speci�ed as a collection of

ground facts. Positive instances are denoted with

pos_instance(Instance).

and negative instances with

neg_instance(Instance).

However, the de�nitions of these two predicates do not have to be ex-

tensional. The predicates can also have intensional de�nitions as long as

backtracking over the predicates will produce a �nite set of positive and

negative training instances for the target predicate.

The example positions of �gure A.1 can be speci�ed as

pos_instance(c,4,a,5,e,6).
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neg_instance(c,4,a,5,e,5).

pos_instance(c,5,a,5,e,5).

neg_instance(d,5,a,5,e,5).

Target predicate: The target predicate is speci�ed with

target(Predicate,Types).

Predicate will be used as a template for the head of the clauses learned by

the programs. For each variable that appears in the template a type has to

speci�ed in the list Types. A declaration for the target predicate illegal/6

can look like this:

target(illegal(WKf,WKr,WRf,WRr,BKf,BKr),

[WKf-file,WKr-rank,WRf-file,WRr-rank,BKf-file,BKr-rank]).

Two types, file and rank, specify the two di�erent coordinates that are

used to annotate a square on a chess board.

Background knowledge: Relational learning algorithms also have to know

which relations they can use for the construction of a de�nition for the

target concept. The literals available for this purpose can be speci�ed with

known literal/4:

known_literal(Literal,Types,Modes,Symmetries).

Literal is used to specify a template for a literal of the background knowl-

edge and Types, as in target/2, lists the types of its arguments. In addition

one can also specify Modes | + means that only old variables can appear

for the corresponding argument, while - also allows a new variable to be

introduced at this place | and Symmetries. The background knowledge

for the KRK domain used in most of the experiments of this thesis was

speci�ed as follows:

known_literal( ==(X,Y), [X-FR,Y-FR], [+,+], [X-Y]).

known_literal( adjacent(X,Y), [X-FR,Y-FR], [+,+], [X-Y]).

known_literal( <(X,Y), [X-FR,Y-FR], [+,+], [] ).

Note that the types of the relations are speci�ed by a variable. This means

that any type | rank or file | can appear at this place. However, the

use of the same variable for both arguments ensures that both arguments

must be of the same type and thus unnecessary literals that e.g. try to

compare ranks to �les will not be generated. The mode declaration speci�es

that no new variables can be introduced, while the symmetry declaration

prevents that an equality or adjacency relation with two speci�c arguments

is considered again with the arguments swapped. This, of course, would

not make sense with the > relation which is not symmetric.
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Constants: In all background relations it is possible to specify places where not

only variables, but also constants can appear. This is done by appending

an identi�er to the type, changing the mode declaration to = and adding

an appropriate constants/3 statement:

constants(Type,Identi�er,Constants).

This was not used in the KRK domain experiments, but was extensively

used in the experiments in propositional domains (section 7.3). For an

example we look at the declarations

known_literal( ==(X,Y),[X-file,Y-file+1], [+,=], [X-Y]).

constants( file, 1, [a,b,c,d,e,f,g,h]).

This pair of statements would specify that conditions that check for the

value of the �le of a certain piece | like KRf == c | are admissible.

In addition to listing the admissible constants, there are two special dec-

larations that can appear as the Constants argument: The keyword all

forces the program to collect all constants that appear in the training data

at all arguments of Type. The keyword dynamic recalculates this list during

learning from the training set of each particular literal. dynamic therefore

may often try fewer constants, but has the overhead of recalculating the

constants each time the literal is considered as a possible condition.

The above declarations for the background knowledge are the same for all of

the implemented programs:

� foil(Predicate,Theory): a simple version of Foil without a stopping cri-

terion.

� fossil(Predicate,Theory): Fossil as described in section 3.2. The value

of the cuto� parameter can be changed with set_cutoff(Cuto�). The

default value is 0.

� fossil_rep(Predicate,SplitRatio,Theory): REP as described in section 4.1

using a starting theory learned by Fossil with Cuto� = 0:0.

� foil_rep(Predicate,SplitRatio,Theory): REP using the simple version of

Foil for generating the starting theory.

� foil_grow(Predicate,SplitRatio,Theory): Grow as described in sec-

tion 4.3 using Foil for learning an initial theory.

� foil_rep_and_grow(Predicate,SplitRatio,Theory1,Theory2): generates a

starting theory and prunes the same theory �rst using REP and then using

Grow.



B. IMPLEMENTATION OF THE ALGORITHMS 115

� fossil_series(Predicate,MinCuto�,Theories): Generates all theories

that Fossil can learn with any setting of the cuto� parameter in the range

from 1.0 down to MinCuto� (see section 5.1).

� td_pruning(Predicate,MinCuto�,Theories): TDP as described in sec-

tion 5.2.

� irep(Predicate,SplitRatio,Theory): I-REP as described in section 6.1.

� irep2(Predicate,SplitRatio,Theory): an alternative version of I-REP that

was used in some of the experiments.

The programs were developed for experimental purposes only and are not very

user-friendly, nicely programmed or su�ciently documented. If the reader is not

deterred by this, s/he can obtain the latest version of these programs from the

author upon request.
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