
Adapting to Drift in Continuous Domains

Miroslav KUBAT

Institute for Systems Sciences, Johannes Kepler University

A-4040 Linz, Austria

Gerhard WIDMER

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

and

Austrian Research Institute for Arti�cial Intelligence,

Schottengasse 3, A-1010 Vienna, Austria

Abstract

The paper presents the system FRANN, which exploits the idea of

radial-basis functions for the needs of learning in numeric domains un-

der concept drift. The classi�cation accuracy of the program compares

favourably to that of older algorithms that are based on symbol manip-

ulation. The system tolerates noise and is able to learn symbolic, nu-

meric, and mixed concepts with nonlinear boundaries in environments

with abrupt as well as gradual concept drift.

Research area. Inductive learning

Key words. concept drift, radial-basis functions

Demo request. No

Address for Correspondence:

Miroslav Kubat, Institute for Systems Sciences, Johannes Kepler Univer-

sity, A-4040 Linz, Austria, e-mail: mirek@cast.uni-linz.ac.at

1 Introduction

Recently, the problem of on-line learning in time-varying domains has received

attention in the machine learning community. The essence is to make the

learner recognize gradual or abrupt changes in the target concept and adjust

accordingly the internal representation of the concept. Such changes are usu-

ally referred to as concept drift and can be caused by a changed context. The

relevance of this issue to real-world learning tasks has been shown in a case

study by Kubat (1992).

Perhaps the �rst systems capable of tracking concept drift in supervised

learning were STAGGER (Schlimmer and Granger, 1986), FLORA (Kubat,

1989), and IB3 (Aha, Kibler, and Albert, 1991). An interesting treatise on

this problem was presented by Salganico� (1993), and the impact of context

was studied by Turney (1993). Learning in time-varying environment has also

been studied in the framework of genetic algorithms (Smith, 1987), and its

importance has long been recognized in adaptive-control applications of neural

networks (see, e.g., Narendra and Parthasarathy, 1990, and the references

therein). Computational learning theory has also investigated the problem

| see, for instance, Helmbold and Long (1991, 1994) and Kuh, Petsche, and

Rivest (1991, 1992). In unsupervised learning, the system COBBIT (Kilander

and Jansson, 1993) deserves to be mentioned.

The principle of the system FLORA (FLOating Rough Approximation)

consists of considering only a set of relatively recent examples (the set is re-

ferred to as window) and deriving from them three groups of symbolic de-

scriptions: those that are true for all positive examples in the window; those

that are valid for some positive examples; and those that are valid only for

negative and no positive examples. The idea was later exploited by Widmer

and Kubat (1992) in the system FLORA2, which used heuristics for auto-

mated adjustment of the window size so as to respond to abrupt or gradual

drifts. An extension of this method, FLORA3, presented in Widmer and Ku-

bat (1993), is able to recognize recurring contexts and adjust faster to those

that have already appeared in the past. The most powerful descendant of the

family, FLORA4 (Widmer, 1994), uses improved criteria for the maintenance

and modi�cation of hypotheses. This system is able to discern between noise

and context shift, and outperforms its predecessors on a wide range of data.

Most of the drift-tracking systems were primarily developed with symbolic

attributes in mind. However, many realistic concepts can only be described

by numeric variables (e.g. in the application reported in Kubat, 1992) or

by mixed symbolic/numeric representations. This has been recognized, for

instance, by researchers working with decision trees (Quinlan, 1993). The

simplest approach, applicable in most of the existing symbolic learners, is to

2

q q q q q q q q q q q q q q q� q�

stream of examples

p examples

window

m gaussian

functions

RBF network

Figure 1: Window passing over the stream of incoming examples and the RBF

network derived from it

split the continuous attribute-value ranges into intervals that are then treated

as boolean variables. A method for optimal value-range splitting has been

suggested by Fayyad and Irani (1992). For the case of more general concept

boundaries, multivariate decision trees have been studied that provide piece-

wise linear approximations of the concept|see Brodley and Utgo� (1994) and

the references therein.

To simply import these techniques into the FLORA philosophy is far from

trivial because the optimum size of an interval or the position and angle of a

linear separator can vary with the concept drift and their reevaluation after

each new arrival can become prohibitively expensive. Moreover, the piecewise-

linear boundaries are no more than approximations of real-world concepts

1

.

We were looking for a new representation scheme that would be intrinsi-

cally suited for numeric domains while permitting incremental learning and

step-by-step forgetting. The intention was that the learner working with this

representation would borrow from FLORA the window mechanism that utilizes

only those examples that are believed to be relevant. The following charac-

teristics were required from the learner: (1) ability to learn from examples

described by numeric attributes; (2) ability to represent nonlinear concept

boundaries; (3) fast adaptation to concept drift; and (4) robustness against

noise.

We found the needed representational scheme in the methodology of Ra-

dial Basis Functions. The general framework of the system FRANN (Floating

Rough Approximation in Neural Networks) is depicted in Figure 1. The p

examples seen through the window are used as centers of m � p gaussian

functions. From these, an RBF (Radial-Basis Function) network is created.

The network is updated after each change in the window contents. The philos-

1

Instance-based learners, such as IB3, can acquire very complicated numeric concepts

but they are known to need many examples to attain a certain error level.

3

ophy of RBFs allows FRANN to acquire concepts with nonlinear boundaries,

while being computationally fast and e�cient in terms of the number of needed

examples.

2 Description of the system FRANN

To make the paper self-contained, we �rst revise the basic principles of RBF

networks. Then, we describe the system FRANN and report experiments

carried out to study the system's behavior and performance.

2.1 RBF-networks

The rationale behind the RBF approach builds on the mathematical discovery

that numeric examples are more likely to be linearly separable if they are

nonlinearly mapped to a space with higher dimensionality (Cover, 1965).

Suppose that we have p examples, described by vectors x

i

= [x

i1

; : : : ; x

in

],

and that some functions '

j

; j = 1; 2; : : :m, where m � n, perform nonlinear

mappings of the example space R

n

to R

m

. Among the possible candidates, the

most widely used is the radial-basis function:

'

j

(x

i

) =

1

2��

2

j

exp(�

kx

i

� �

j

k

2

�

2

j

) (1)

'

j

(x

i

) is a scalar value and Equation (1) represents an n-dimensional gaus-

sian surface, where the vector �

j

= [�

j1

; : : : �

jm

] de�nes its center (the coor-

dinates of the point with the maximum value of '

j

) and the scalar �

2

j

is its

standard deviation. The larger the distance of the example x

i

from �

j

, the

smaller the value of '

j

(x

i

).

Each example is thus redescribed by the vector '(x

i

) = ['

1

(x

i

); : : : ; '

m

(x

i

)].

Figure 2 illustrates how this transformation can be implemented by the hidden

layer of a neural network. The transfer function of the neurons in this layer

is given by Equation (1) and the transfer function of the output neurons is

linear. Each output neuron stands for one concept. In the classi�cation phase,

the example is labeled with the i-th concept if i is the index of the neuron with

the highest output. The input neurons only distribute attribute values to the

hidden layer.

Assume that the centers �

j

are put equal to the examples, that is �

j

= x

j

; j =

1; : : : ; p, which means that the weights along the links between the input and

hidden layer are set to the respective attribute values, w

ji

= x

ji

. We want to

determine the weights of the output neurons. Without loss of generality, we

will assume a single output neuron with the desired output value d

i

= 1 if the

4

��

��

'

1

��

	

��

��

'

2

��

	

: : :

��

��

'

m

��

	

output layer

(only 1 neuron is shown)

hidden layer

input layer

��

��

h

6

�

�

y = h�

m

i=0

w

i

'

i

(x)

tA

A

A

A

A

AK

�

�

�

�

�

�7

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

: : : tQ

Q

Q

Q

Q

Q

Q

Qk

C

C

C

C

C

CO

�

�

�

�

�

�

�

�

�

�

�*

6 6

x

1

: : :

x

n

w

11

w

nm

�

�

�

�

�

�

�

�3

�

�

�

�

�

��

H

H

H

H

H

H

H

H

H

H

HY

w

1

w

2

w

m

Figure 2: Radial-basis function network

i-th example is a positive instance of the concept represented by this neuron,

and d

i

= 0 otherwise.

De�ne the p � p matrix � with elements '

ji

= '(kx

j

� x

i

k). Knowing the

vector of classi�cations d = [d

1

; : : : ; d

p

]

T

(T stands for a transpose), we want

to determine the set of weights w = [w

1

; : : : ; w

m

]

T

; (m = p) such that:

�w = d (2)

Light (1992) has shown that if the elements of � are the radial-basis func-

tions, then the matrix is positive de�nite and, therefore, invertible. This im-

plies that the linear system of Equations (2) has a unique solution given by:

w = �

�1

d; (3)

where �

�1

is the inverse of the matrix �. Hence, the output-layer weights are

found by simple matrix manipulation without the need for backpropagation

training.

Consider now the case where the number of hidden neurons m is smaller

than the number of examples p. The problem is overdetermined and cannot be

solved by Equation (3). Instead, the optimum solution minmizing the mean

square error can be found by the following formula (see e.g. Golub and Van

Loan, 1989):

w = �

+

d = (�

T

�)

�1

�

T

d (4)

5

where �

+

= (�

T

�)

�1

�

T

is called the pseudoinverse matrix of �. A standard

function for its calculation is available in many mathematical packages.

Although the geometrical and pattern recognition history of radial-basis

functions goes back to the 1960s, they were �rst cast into the neural network

setting by Broomhead and Lowe (1988). The low-cost learning and impressive

generalization capacity make them attractive expecially for classi�cation tasks.

2.2 The algorithm of FRANN

The main issue to be attacked by a designer of an RBF network is to determine

the number and coordinates of hidden units

2

. Providing one hidden neuron

for each example usually leads to unnecessarily large networks that might

over�t the training set and poorly generalize to unseen examples. Moreover,

some of the examples can be noisy, or misclassi�ed, and thus do not deserve

to be included in the network. Conversely, if each hidden neuron represents

many training examples, the network will tend to overgeneralize the acquired

experience, which again adversely a�ects the classi�cation accuracy.

Attempts to reasonably reduce the number of hidden neurons either pre-

cluster the examples, as is the case in Musavi et al. (1992), or use a search

technique with operators `add a neuron' and `delete a neuron', as suggested

by Cheng and Lin (1994). The approach implemented in FRANN is simpler

and is made possible by the fact that, thanks to the window philosophy, the

number of examples is never prohibitively large.

The idea is to �nd a subset of the examples that best approximate the con-

cept. This is done by a hill-climbing mechanism with a single search operator,

`add a neuron.' The system �rst takes separately each of the p examples in the

window and attempts to create a hidden neuron out of it. Then, the one that

provides the most accurate classi�cation of the window examples is picked.

Next, other hidden neurons are added, one by one, the evaluation function be-

ing the reduction of the error on the window examples. The process terminates

when m (a pre-speci�ed number of) hidden neurons have been included.

The algorithm of FRANN is summarized in Table 1. A window slides over

a series of examples. From the window examples, the RBF network is created

and m is set to P � 100 percent of the window size. P = 1 means that all

window examples will be utilized. Values P < 1 (typically 1/2, 1/3, 1/4, etc.)

reduce computational costs, the tradeo� being more reluctant adaptation to

drift.

At each step, a batch of N new examples are added to the window (N = 1

means to add a single example to the window per step). Then, the perfomance

2

Let us, for the time being, postpone the question of how to determine �.

6

Table 1: Algorithm of the system FRANN

1. Put N new examples in the window;

2. Apply hill-climbing search to �nd the best subset of the window-examples, and

create an RBF network from them; determine the output-layer weights;

3. Use the network for the classi�cation of both training and testing data and

collect the respective statistics;

4. Use the window-size heuristic to decide about deletions of older examples from

the window;

5. Carry out the deletions and return to step 1.

of the system is tested on the latest M examples (usually M 6= N). Concept

drift can be recognized by decreased classi�cation accuracy on these examples.

A heuristic is applied to decide about the potential need to decrease the window

size by deleting from it some of the oldest examples.

The window-size heuristic combines two variables: the current window size l

and the number e of erroneous classi�cations of the lastM examples. Basically,

old examples are to be forgotten if the window is becoming too large and/or

if the number of errors grows (this can signal concept drift). More speci�cally,

let t

1

and t

2

be user-set thresholds. Then:

if l � e � t

1

, then keep the window size �xed (forget N examples);

if l � e > t

2

, then decrease the window size by 20%;

otherwise, do not forget anything (i.e., grow the window).

The window-size heuristic in FRANN plays a much less signi�cant role than

in FLORA. Its main task is to prevent the window from becoming too large.

3 Experimental Evaluation

To assess the performance of FRANN and to observe its behavior, we compared

its classi�cation accuracy to that of FLORA4 on several arti�cial data sets.

For FRANN, symbolic attributes are turned into numeric ones by replacing

each attribute-value pair with a boolean variable and putting 0 for false and

1 for true. Note that if all attributes are symbolic, then the examples are

positioned at the corners of the hypercube [0; 1]

n

, where n is the number of

the boolean variables rede�ning the attributes. The concept boundary can

then be modeled by a piecewise-linear function without loss of accuracy.

As the experimental data are all normalized into unit cubes, it turned out

7

reasonable to use � = 1 for the standard deviation of the RBF. For a heuristic

to determine �, see, for instance Haykin (1994), Section 7.11.

The version of FLORA4 used in the experiments was the one described

in (Widmer, 1994). In order for the system to be able to deal with numeric

attributes, it was extended with a simple numeric generalization operator that

implements Michalski's (1983) closing interval rule. FLORA4 thus approxi-

mates concepts in numeric spaces by axis-parallel hyper-rectangles.

3.1 Experimental Data

Below is the characterization of seven ari�cial data �les that we generated so as

to assess the performance of FRANNunder various conditions|abrupt/gradual

drift, presence/absence of noise, symbolic/numeric/mixed data description,

presence of irrelevant attributes, and the like.

For each kind of data, 10 training sequences of 200 random examples were

generated; the results reported below are averages over the 10 sequences. Ex-

cept in cases 4 and 6 below, a training sequence embodied two di�erent versions

of a target concept that would switch after every 50 training examples. Pre-

dictive accuracy of the current hypothesis was tested after every learning step

on a set of 100 independent test examples.

Each class was represented by 50% of the examples in each context. To

ensure a stable learning environment within each context, the positive and neg-

ative examples in the training set alternated. Even though this provision is far

from reecting the situation in real-world tasks, it is helpful if the experimental

conditions are to remain constant along the stream of examples.

1. SINE1. Abrupt concept drift, noise-free examples. The examples are uni-

formly distributed in the 2-dimensional unit square [0; 1]� [0; 1], with co-

ordinates [x; y]. In the �rst context, all points below the curve y = sin(x)

are classi�ed as positive and all the remaining examples are classi�ed as

negative. After each context change, the classi�cation is reversed. Note

that the part of the curve that lies in the unit square is nearly linear;

2. SINE2. The same examples are used with changed classi�cation scheme.

The curve separating the classes is y = 0:5 + 0:3 sin(3�x). Note that this

curve can be approximated by a sawtooth function. After each context

change, the classi�cation is reversed;

3. SINIRREL. Presence of irrelevant attributes. The same examples with the

same classi�cations are used. The only di�erence is that 2 more random

attributes are used to describe the examples. These new attributes have

no relation to the class labels. The idea is to test whether the presence of

irrelevant attributes adversely a�ects FRANN's performance;

8

4. CIRCLES. Gradual concept drift, noise-free examples. The same examples

are used with a changed classi�cation scheme. This time, four contexts

are used. They are de�ned by the following four circles:

center [0.2,0.5] [0.4,0.5] [0.6,0.5] [0.8,0.5]

radius 0.15 0.2 0.25 0.3

Points inside the circles are positive and the points outside the circles are

negative. Note that the circles move along a horizontal line, slowly growing

in the process;

5. GAUSS.Abrupt concept drift, noisy examples. Positive examples from the

domain R�R are normally distributed (according to the gaussian density

function) around the center [0,0] with the standard deviation 1. Negative

examples are normally distributed around the center [2,0] with standard

deviation 4. Note that the two classes heavily overlap, thus modeling

the case where the classi�cations are noisy. After each context change,

the classi�cation is reversed. It can be shown analytically that the ideal

boundary is a circle around the denser class and that a Bayesian classi�er

with in�nitely many examples achieves 81.53% accuracy;

6. STAGGER. Abrupt concept drift, symbolic noise-free examples. Here we

use the concepts on which Schlimmer and Granger (1986) tested the per-

formance of their system STAGGER. The examples are described by three

symbolic attributes|size (small, medium, large), color (red, green), and

shape (circular, non-circular). In the �rst context, examples satisfying

the description size = small ^ color = red are classi�ed as positive

and the remaining examples are negative. In the second context, the con-

cept description is color = green _ shape = circular. In the third

context, the description is size = (medium _ large);

7. MIXED. Abrupt concept drift, mixed boolean/numeric noise-free examples.

The examples are described by two boolean attributes v;w and two nu-

meric attributes x; y from the domain [0; 1]. As positive are classi�ed all

examples for which at least two of the following three conditions are true:

v, w, y < 0:5 + 0:3 sin(3�x) (the second sine curve). After each context

change, the classi�cation is reversed.

3.2 Results

Figures 3 through 9 compare the accuracies of FRANN vs. FLORA4 on each

of the 7 problems described above. The points where a context shift occurs

are marked by dashed vertical lines. Figures 8 and 9 give the results of three

di�erent versions of FRANN: the curves marked FRANN 1/3 represent the

9

0

20

40

60

80

100

0 50 100 150 200
Instances processed

 (1) (2) (1) (2)

FRANN
FLORA4

Figure 3: Experiment 1 | Abrupt drift, noise-free examples.

0

20

40

60

80

100

0 50 100 150 200
Instances processed

 (1) (2) (1) (2)

FRANN
FLORA4

Figure 4: Experiment 2 | Abrupt drift, noise-free examples.

accuracy of FRANN when the number of hidden units in the RBF is 1=3 of

the number of examples in the window; FRANN 2/3 and FRANN 3/3 are to

be interpreted analogously. In all other cases, the number of hidden units is

constrained to be at most 1/3 of the window size.

The results speak largely for themselves. FRANN is highly e�ective in ad-

justing to changes in the target concepts, and is clearly superior to FLORA4 in

most of the numeric problems, with the exception of experiment 4 (CIRCLES).

The explanation for the general superiority of FRANN over FLORA4 in

numeric domains, especially with target concepts of complex shape, lies in the

fact that FLORA4 approximates numeric concepts by axis-parallel (hyper-

)rectangles that lie completely within the positive concept area (because of the

closing interval rule generalization operator for numeric attributes). FRANN,

on the other hand, can be thought of as representing concepts by a set of

prototypes, weighted by the assessed relevance of the prototype to the class.

FRANN can thus approximate certain functions more closely.

10

0

20

40

60

80

100

0 50 100 150 200
Instances processed

 (1) (2) (1) (2)

FRANN
FLORA4

Figure 5: Experiment 3 | Presence of irrelevant attributes.

0

20

40

60

80

100

0 50 100 150 200
Instances processed

 (1) (2) (3) (4)

FRANN
FLORA4

Figure 6: Experiment 4 | Gradual drift, noise-free examples.

0

20

40

60

80

100

0 50 100 150 200
Instances processed

 (1) (2) (1) (2)

FRANN
FLORA4

Figure 7: Experiment 5 | Abrupt drift, noisy examples.

11

0

20

40

60

80

100

0 50 100 150
Instances processed

 (1) (2) (3)

FRANN 1/3
FRANN 2/3
FRANN 3/3

FLORA4

Figure 8: Experiment 6 | Abrupt drift, symbolic noise-free examples.

0

20

40

60

80

100

0 50 100 150 200
Instances processed

 (1) (2) (1) (2)

FRANN 1/3
FRANN 2/3

FLORA4

Figure 9: Experiment 7 | Abrupt drift, mixed symbolic-numeric examples.

FLORA4 does better in experiment 2 than in experiment 1 because the

function y = 0:5 + 0:3 sin(3�x) has a much steeper slope than y = sin(x) and

can thus more easily be approximated by axis-parallel rectangles. However,

FRANN is still superior.

In experiment 5 (�gure 7), where positive and negative examples are nor-

mally distributed around two di�erent centers, FLORA4 does well on the �rst

concept (in fact, equally well as FRANN), but worse on the second. The �rst

concept | positive examples around a center with standard deviation 1 | is

much `denser' than the second one, so it is easier to represent in closed form.

A quasi-IBL algorithm like FRANN seems to be at an advantage in the second

case. Viewed another way, FRANN represents both classes (positive and neg-

ative) explicitly and will thus learn both the concept and its inversion equally

easily.

On the other hand, in purely symbolic domains (or similarly in numeric

domains where the concept boundaries are axis-parallel), a symbolic algorithm

12

like FLORA4 can be expected to be better because of its crisp concept repre-

sentation (and also the more sophisticated windowing mechanismof FLORA4).

This is borne out in experiment 6 (�gure 8).

Experiment 7, �nally, shows FRANN signi�cantly superior to FLORA4.

The reason for this huge di�erence, however, is probably not so much the

mixture of symbolic and numeric attributes, but rather the fact that an ex-

plicit description of the target concept is very complex vis-a-vis the number of

attributes and training examples. This leaves FRANN completely una�ected,

but causes problems for FLORA4, whose window adjustment heuristic is based

partly on the relative complexity of hypotheses.

To summarize, in numeric domains with concept drift and complex deci-

sion boundaries FRANN suggests itself as a powerful alternative to algorithms

based on symbolic generalization. Combined with a simple window adjustment

heuristic, it exhibits quick adjustment to concept changes and good approxi-

mation of complex concepts. The decision surfaces of RBFs are intrinsically

non-linear. However, this can become a burden in boolean or generally sym-

bolic domains. Another potential disadvantage of FRANN, which it shares

with all neural net approaches, is the poor interpretability of the results of

learning.

4 Discussion

Three issues will be discussed: (1) the system's relation to instance-based

learners; (2) the use of FRANN's parameters to reect, heuristically, prior

knowledge about the learning task; and (3) the computational complexity of

the system.

The fact that the system directly places selected examples in the hidden

layer makes it perhaps more closely related to instance-based learners than to

the FLORA-family. The improvement in classi�cation accuracy, as compared

to IB3, is facilitated by the existence of the weights to the output neurons.

Those of the examples that are less typical obtain smaller weights and their

inuence on the classi�cation will thus be limited. The hill-climbing search

for the best-suited examples, and the fact that only a subset of examples

are actually utilized (for P < 1), further reduce the system's sensitivity to

the presence of noise. In e�ect, the search replaces IB3's statistical measure

deciding which of the exemplars are `good,' `mediocre,' and `bad.' The idea of

non-linear mapping of the examples from R

n

to R

m

facilitates faster learning

in terms of the required number of examples because the transformed examples

are more likely to be linearly separable.

Contrary to IBL approaches, however, FRANN is not a strictly incremental

13

learner. Making FRANN incremental will require a modi�cation of the search

and the introduction of a `delete-a-neuron' operator.

As is typical for neural networks, FRANN relies on several parameters. This

is not a generally desirable situation, but on the other hand, the parameters

make it possible to supply the learner with some prior knowledge about the

learning task: the extent and frequency of the concept drift, complexity of the

concept to be learned, the shortage of abundance of learning examples, noise

extent, and the like.

Most important of the parameters is the number of hidden neurons in the

window, as speci�ed by the parameter P . Complicated concepts will certainly

require more hidden neurons to provide more accurate approximation. Also

the expected noise level a�ects the number of necessary neurons because, in

FRANN, noise is partially eliminated by the fact that only some of the exam-

ples get incorporated into the hidden layer.

The system's performance is inuenced by the number of examples M

on which on-line accuracy is measured. Small values of M are insu�cient for

reliable decisions and make FRANN sensitive to noise. Conversely, large values

tend to be conservative because the system will require too many examples to

come to believe that a concept drift actually occurred.

The fact that the examples are processed in batches is a generalization of

the original windowing idea. Even though the size N of the batch can be set

to 1 (as is the case in the FLORA-based programs), we preferred to use N = 3

so as to speed up the experimental runs.

The ideal values for the parameters t

1

and t

2

that are used for the window-

size adjustment were determined empirically. Even though heuristics for their

automatic setting could also probably be found, we decided not to investigate

this general problem at this point in our research.

For simplicity, the standard deviation � in Equation (1) was in our experi-

ments always set to 1. Methods for its domain-dependent setting are discussed

in Haykin (1994), Section 7.11.

The complexity of the FRANN algorithm is given by the hill-climbing

search, which is polynomial in the window size. The cost of the computation

of the output-layer weights depends on the complexity of the inverse-matrix

calculation, which is O(p

3

), where p is the dimension of the matrix. This is

acceptable because the number of hidden units is very small (in the above ex-

periments their number usually did not exceed 10). Moreover, FRANN could

be implemented in VLSI RBF-circuits that are already available on the market;

this will make it applicable also for large, real-world problems.

14

5 Conclusion

The experiments reported in this paper demonstrate that the system FRANN

compares favourably with its predecessors in the presence of concept drift.

Learning is possible from examples described by symbolic as well as by numeric

attributes and the system is able to learn and recognize concepts with nonlinear

boundaries.

As a concept representation scheme, the framework of radial-basis functions

has been introduced. Even though this formalism violates the requirement of

understandability of the concept description, it will be useful in applications

where classi�cation accuracy is emphasized at the cost of interpretability.

References

Aha, D., Kibler D., and Albert, M.K (1991). Instance-Based Learning Algo-

rithms. Machine Learning 6:37{66.

Brodley, C.E. and Utgo�, P.E. (1994). Multivariate Decision Trees. Machine

Learning, to appear.

Broomhead, D.S. and Lowe, D. (1988). Multivariable Functional Interpolation

and Adaptive Networks. Complex Systems, 2:321{355.

Cheng, Y.-H. and Lin, C.-S. (1994). A Learning Algorithm for Radial Basis

Function Networks with the Capability of Adding and Pruning Neurons. Proceedings

of the IEEE, 797{801.

Cover, T.M. (1965). Geometrical and Statistical Properties of Systems of Lin-

ear Inequalities with Applications in Pattern Recognition. IEEE Transactions on

Electronics Computers, EC-14, 326{334.

Fayyad, U.M. and Irani, K.B. (1992). On the Handling of Continuous-Valued

Attributes in Decision Tree Generation. Machine Learning 8:87{102.

Golub, G.H. and Van Loan, C.F. (1989). Matrix Computation, 2nd ed., Johns

Hopkins University Press, Baltimore.

Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. Macmillan

College Publishing Company, New York.

Helmbold, D.P. and Long, P.M. (1991). Tracking Drifting Concepts Using Ran-

dom Examples. In Proceedings of the Fourth Annual Workshop on Computational

Learning Theory (COLT-91), Santa Cruz, CA, 13{23.

Helmbold, D.P. and Long, P.M. (1994). Tracking Drifting Concepts by Minimiz-

ing Disagreements. Machine Learning 14:27{45.

Kilander, F. and Jansson, C.G. (1993). COBBIT - A Control Procedure for

COBWEB in the Presence of Concept Drift. In Proceedings of the European Con-

ference on Machine Learning (ECML-93), Vienna, Austria.

15

Kubat, M. (1989). Floating Approximation in Time-Varying Knowledge Bases.

Pattern Recognition Letters, 10:223{227.

Kubat, M. (1992). A Machine Learning Based Approach to Load Balancing in

Computer Networks. Cybernetics and Systems 23:389{400.

Kuh, A., Petsche, T. and Rivest, R.L. (1991). Learning Time-Varying Concepts.

In Advances in Neural Information Processing Systems (NIPS) 3, 183{189. San

Mateo, CA: Morgan Kaufmann.

Kuh, A., Petsche, T. and Rivest, R.L. (1992). Incrementally Learning Time-

varying Half-planes. In Advances in Neural Information Processing Systems (NIPS)

4, 920{927. San Mateo, CA: Morgan Kaufmann.

Light, W.A. (1992). Some Aspects of Radial Basis Function Approximation. In:

Singh, S.P. (ed.): Approximation Theory, Spline Functions and Applications, NATO

ASI Series, Vol. 256, Kluwer Academic Publishers, Boston, 163{190.

Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. Ar-

ti�cial Intelligence 20(2), 111{161.

Musavi, M.T., Ahmed, W., Chan, K.H., Faris, K.B., and Hummels, D.M. (1992).

On the Training of Radial Basis Function Classi�ers. Neural Networks, 5:595{603.

Narendra, K.S. and Parthasarathy, K. (1990). Identi�cation and control of dy-

namical systems using neural networks. IEEE Transactions on Neural Networks

1:4{27.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo.

Salganico�, M. (1993). Density-Adaptive Learning and Forgetting. Proceedings

of the 10th International Conference on Machine Learning. Amherst, MA.

Schlimmer, J.C. and Granger, R.H. (1986). Incremental Learning from Noisy

Data. Machine Learning 1, 317{354.

Smith, R.E. (1987). Diploid genetic algorithms for search in time varying envi-

ronments. Proceedings of the International Conference on Genetic Algorithms and

their Applications, 202{206.

Turney, P.D. (1993). Robust Classi�cation with Context-Sensitive Features.

Proceedings of the Sixth International Conference on Industrial and Engineering

Applications of Arti�cial Intelligence and Expert Systems, Edinburgh, Scotland.

Widmer, G. (1994). Combining Robustness and Flexibility in Learning Drifting

Concepts. In Proceedings of the 11th European Conference on Arti�cial Intelligence

(ECAI94), Amsterdam. Chichester: Wiley & Sons.

Widmer, G. and Kubat, M. (1992). Learning Flexible Concepts from Streams

of Examples: FLORA2. In Proceedings of the European Conference on Arti�cal

Intelligence (ECAI-92), Vienna, Austria.

Widmer, G. and Kubat, M. (1993). E�ective Learning in Dynamic Environ-

ments by Explicit Context Tracking. In Proceedings of the European Conference on

Machine Learning (ECML-93), Vienna. Berlin: Springer Verlag.

16

