
Pruning Methods for Rule Learning

Algorithms

Johannes F�urnkranz

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

E-mail: juffi@ai.univie.ac.at

Abstract

In this paper we will shortly review several pruning methods for rela-

tional learning algorithms and show how they are related to each other.

We then report some experiments in several natural domains and try to

analyse the performance of the algorithms in these domains in terms of run-

time and accuracy. While some algorithms are clearly faster than others,

no safe recommendation for achieving high accuracy can be given.

1 Introduction

Lately several pruning methods for noise handling in relational rule learning

algorithms have been proposed. The classic approaches to pruning are based

on pre-pruning (Foil [Quinlan, 1990], mFoil [D�zeroski and Bratko, 1992], or

Fossil [F�urnkranz, 1994b]) and post-pruning (Reduced Error Pruning (REP)

[Brunk and Pazzani, 1991] and Grow [Cohen, 1993]). More recently approaches

have been proposed that combine (MDL-Grow [Cohen, 1993] and Top Down

Pruning (TDP) [F�urnkranz, 1994c]) and integrate (Incremental Reduced Error

Pruning (I-REP) [F�urnkranz and Widmer, 1994]) these two basic methods.

We will present and discuss a variety of these pruning algorithms in section 2

and in particular show how they are related to each other. In section 3 we report

experiments with these algorithms that we have performed in a variety of natural

domains. The results, in particular those concerning the accuracy of the various

algorithms will turn out to be very diverse. We will nevertheless draw some

conclusions in section 4.

2 Pruning in Relational Learning Algorithms

Figure 1 shows a typical separate-and-conquer rule learning algorithm. Literals

are added to the body of a clause until no more negative examples are covered.

Clauses are added to the program until all of the positive examples are covered.

procedure SeparateAndConquer(Examples)

Program = ;

while Positive(Examples) 6= ;

Clause = ;

Cover = Examples

while Negative(Cover) 6= ;

Clause = Clause [FindLiteral(Clause; Cover)

Cover = Cover(Clause,Cover)

Examples = Examples � Cover

Program = Program [Clause

return(Program)

Figure 1: A Separate-and-Conquer rule learning algorithm

This algorithm works �ne as long as the given background knowledge is guar-

anteed to be correct. However, in most natural domains the data may contain

misclassi�cations or errors in the attributes. In these cases it is not good to learn

a concept description that perfectly explains all of the positive and none of the

negative examples, because the algorithm would try to �nd explanations for the

erroneous examples as well. This problem is known as over�tting the noise.

Pruning is a standard way of dealing with the problem of over�tting (see e.g.

[Mingers, 1989, Esposito et al., 1993]). There are two fundamentally di�erent

approaches [Cestnik et al., 1987], Pre-Pruning and Post-Pruning. In sections 2.1

and 2.2 we will review classical pruning methods that have been adopted for

relational concept learning systems. In section 2.3 we show how post-pruning

can be combined with a pre-pruning phase in order to get starting theory with

a reduced amount of over�tting. Finally, in section 2.4, we introduce a method

that integrates both approaches by using post-pruning methods as a pre-pruning

criterion.

2.1 Pre-Pruning

Pre-Pruning methods deal with noise during concept generation. Algorithms

that have no pre-pruning heuristics are typically subject to over�tting the noise

in the data. They try to �nd concept descriptions that perfectly explain all the

positive examples, but do not cover any negative examples. In noisy data sets

procedure PrePruning(Examples)

Program = ;

while Positive(Examples) 6= ;

Clause = ;

Cover = Examples

while Negative(Cover) 6= ;

NewClause = Clause [FindLiteral(Clause; Cover)

if StoppingCriterion(Program,NewClause,Cover)

exit while

Clause = NewClause

Cover = Cover(Clause,Cover)

Examples = Examples � Cover

Program = Program [Clause

return(Program)

Figure 2: A Pre-Pruning algorithm

they therefore learn overly speci�c clauses which often explain only a few noisy

examples and thus are bad generalizations. By learning a few \over-general" rules

instead of many very speci�c clauses, these algorithms deliberately cover some

negative training examples and leave some positive training examples uncovered

in order to learn rules with a higher predictivity.

Figure 2 shows a typical modi�cation to basic separate-and-conquer rule learn-

ing algorithm that includes a so-called stopping criterion, i.e. a heuristic that

determines when to stop adding conditions to a rule, and when to stop adding

rules to the concept description. The only di�erence to the basic algorithm of

�gure 1 is that if the current clause ful�lls the stopping criterion the inner while

loop is terminated and the incomplete clause will be added to the concept descrip-

tion. Note that if this clause is empty, no positive (and no negative) examples

are covered and the outer loop will terminate as well.

The most commonly used stopping criteria are

� Encoding Length Restriction: This heuristic used in the classic ILP system

Foil [Quinlan, 1990] is based on the MinimumDescription Length principle

[Rissanen, 1978]. It prevents over�tting the noise by learning only as long as

the costs of encoding the current clause are less than the costs of encoding

the tuples covered by it.

� Signi�cance Testing was �rst used in [Clark and Niblett, 1989] and later on

in the ILP system mFoil [D�zeroski and Bratko, 1992]. It tests for signi�-

cant di�erences between the distribution of positive and negative examples

covered by a rule and the overall distribution of positive and negative ex-

amples by comparing the likelihood ratio statistic to a �

2

distribution with

1 degree of freedom at the desired signi�cance level. Insigni�cant rules are

rejected.

� Cuto� Stopping Criterion: This simple method used in Fossil

[F�urnkranz, 1994b] only allows to add conditions to a rule when their heuris-

tic values are above a prede�ned threshold. Thus this cuto� parameter al-

lows the user to directly control the amount of over�tting. At Cuto� = 0:0

the algorithm will �t all of the data (no pre-pruning), while at Cuto� = 1:0

Fossil will �t none of the data and learn the empty theory (maximum

pre-pruning). A value of Cuto� � 0:3 has proved to be very robust with

respect to varying noise levels and training set sizes [F�urnkranz, 1994b].

mFoil's signi�cance testing along with the m-estimate and a powerful

beam search have been very successful in learning concepts in noisy domains

[D�zeroski and Bratko, 1992]. Similar results have been obtained for the very ef-

�cient cuto� criterion. Both have been shown to be superior to the encoding

length restriction, because the latter is dependent on the size of the training set,

so that the size of the learned concepts (and thus the amount of over�tting) may

increase with training set size [F�urnkranz, 1994b].

2.2 Post-Pruning

Post-pruning was introduced to relational learning algorithms with Reduced

Error Pruning (REP) [Brunk and Pazzani, 1991] based on previous work by

[Quinlan, 1987] and [Pagallo and Haussler, 1990]. The basic idea is that in a

�rst pass, no attention is paid to the noise in the data and a concept description

that explains all of the positive and none of the negative examples is learned. For

this purpose the training set is split into two subsets: a growing set (usually 2/3)

and a pruning set (1/3). The concept description that has been learned from the

growing set is then simpli�ed by greedily deleting conditions and rules from the

theory until any further deletion would result in a decrease of predictive accuracy

measured on the pruning set.

However, this approach has several disadvantages, most notably e�ciency.

[Cohen, 1993] has shown that REP has a time complexity of
(n

4

) on

purely random data. Therefore [Cohen, 1993] proposed Grow, a new prun-

ing algorithm based on a technique used in the Grove learning system

[Pagallo and Haussler, 1990]. Like REP, Grow �rst �nds a theory that over-

�ts the data. But instead of pruning the intermediate theory until any further

deletion results in a decrease of accuracy on the pruning set, generalizations of

clauses from this theory are subsequently selected to form the �nal concept de-

scription until no further clause will improve predictive accuracy on the pruning

set. Thus Grow performs a general-to-speci�c search instead of REP's speci�c-

to-general search. For noisy data the asymptotic costs of this pruning algorithm

have been shown to be below the costs of the initial phase of over�tting.

procedure PostPruning(Examples, SplitRatio)

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Program = SeparateAndConquer(GrowingSet)

loop

NewProgram = SimplifyProgram(Program,PruningSet)

if Accuracy(NewProgram,PruningSet) < Accuracy(Program,PruningSet)

exit loop

Program = NewProgram

return(Program)

Figure 3: A Post-Pruning algorithm

2.3 Combining Pre- and Post-Pruning

As stated in the last section, the Grow algorithm can drastically reduce the

costs of pruning an overly speci�c theory. However, the overall costs of the

algorithm are still unnecessarily high, because like REP, Grow has to learn an

overly speci�c intermediate theory. A logical improvement would therefore be to

limit the amount of over�tting by replacing the call to SeparateAndConquer

with a call to PrePruning in the algorithm of �gure 3. [Cohen, 1993] does this

with the Grow algorithm using two weak MDL-based stopping criteria. These

methods are not intended to entirely prevent over�tting like the pre-pruning

approaches of section 2.1, but to reduce the amount of over�tting, so that the

post-pruning phase can start o� with a better theory and has to do less work.

However, there is always the danger that a prede�ned stopping criterion will

over-generalize the theory. To avoid this [F�urnkranz, 1994c] have developed an

algorithm called Top-Down Pruning (TDP) (see �gure 4). This method searches

the theories that can be generated with di�erent settings of Fossil's cuto� pa-

rameter (see section 2.1) in a top-down general-to-speci�c fashion and selects

the most speci�c theory within one standard error of classi�cation of the most

accurate theory as a starting point for the post-pruning phase.

1

The hope is

that this theory will not be an over-generalisation (it is more speci�c than the

most accurate theory found so far), but will also be close to the intended theory

(its accuracy is still close to the best so far), so that only a limited amount of

pruning has to be performed. The implementation of TDP made use of several

optimizations, so that �nding this theory is often cheaper than �tting the noise.

A more detailed description of this process can be found in [F�urnkranz, 1994c].

1

This method is inspired by the approach taken in CART [Breiman et al., 1984] where the

most general decision tree within this standard error margin is selected as a �nal theory.

procedure TDP(Examples, SplitRatio)

Cuto� = 1:0

BestProgram = ;

BestAccuracy = 0:0

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

repeat

NewProgram = Fossil(GrowingSet,Cuto�)

NewAccuracy = Accuracy(NewProgram,PruningSet)

if NewAccuracy > BestAccuracy

BestProgram = NewProgram

BestAccuracy = NewAccuracy

LowerBound = BestAccuracy � StandardError(BestAccuracy,PruningSet)

Cuto� = MaximumPrunedCorrelation(NewProgram)

until (NewAccuracy < LowerBound) or (Cuto� = 0:0)

loop

NewProgram = SimplifyProgram(Program,PruningSet)

if Accuracy(NewProgram,PruningSet) < Accuracy(Program,PruningSet)

exit loop

Program = NewProgram

return(Program)

Figure 4: Combining Pre- and Post-Pruning with Top-Down Pruning.

2.4 Integrating Pre-and Post-Pruning

There are several problems with pruning in relational concept learning (see

[F�urnkranz and Widmer, 1994]). Not all of them are attacked by the algorithms

in the previous sections. In particular, the separate-and-conquer strategy (see �g-

ure 1) may cause problems. The important di�erence between this method and

the divide-and-conquer strategy used in most decision tree learning algorithms

is that pruning of branches in a decision tree will never a�ect the neighboring

branches, whereas pruning of conditions of a rule will a�ect all subsequent rules.

Deleting a condition from a rule means that the clause is generalized, i.e. it will

cover more positive instances along with some negative instances. Consequently

these additional instances should be removed from the training set so that they

cannot inuence the learning of subsequent clauses. However, the initial growing

phase of post-pruning algorithms does not know which of the instances will be

covered by the pruned rule and is therefore not able to remove them from the

training set. In the best case those superuous examples in the growing phase

only lead to the generation of some additional clauses that will be pruned in

the pruning phase. In the worst case, however, those instances may lead the

learner down a garden path, because they may change the evaluation of the can-

didate relations in subsequent learning and thus the \correct" literals might not

procedure I-REP (Examples, SplitRatio)

Program = ;

while Positive(Examples) 6= ;

Clause = ;

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)

Cover = GrowingSet

while Negative(Cover) 6= ;

Clause = Clause [FindLiteral(Clause; Cover)

Cover = Cover(Clause,Cover)

loop

NewClause = SimplifyClause(Clause,PruningSet)

if Accuracy(NewClause,PruningSet) < Accuracy(Clause,PruningSet)

exit loop

Clause = NewClause

if Accuracy(Clause,PruningSet) � Accuracy(fail,PruningSet)

exit while

Examples = Examples � Cover

Program = Program [Clause

return(Program)

Figure 5: Integrating Pre- and Post Pruning with Incremental Reduced Error

Pruning

be selected. A wrong choice of a literal cannot be undone by pruning.

Another way of viewing this problem might be to imagine each clause of the

PROLOG program as a node in a decision list, i.e. a binary decision tree, where

each node's children contain at least one leaf. Classical decision tree pruning

would only allow to prune the nodes bottom up, i.e. only delete the last rule.

The version of REP described in section 2.2 not only allows to prune any (instead

of only the last) node, but also to prune the conditions of the rules associated

with each node.

Incremental Reduced Error Pruning (I-REP) [F�urnkranz and Widmer, 1994]

is an e�cient solution to this problem by means of integrating pre-pruning and

post-pruning: Each clause is learned until it covers no more negative examples.

Then literals are deleted from this clause in a greedy fashion until any further

deletion would decrease the accuracy of this clause on a separate pruning set. The

resulting rule is then added to the concept description and all covered positive and

negative examples are removed from the training | growing and pruning | set.

The remaining instances in the training set are then redistributed into a growing

and a pruning set and a new clause is learned. When the predictive accuracy of

the pruned clause is below the predictive accuracy of the empty clause (i.e. the

clause with the body fail), the clause is not added to the concept description

and I-REP returns the learned clauses. Thus the accuracy of a clause on the

pruning set also serves as a stopping criterion, i.e. post-pruning methods are

used as a pre-pruning heuristic.

It can be easily seen that I-REP integrated pre-pruning (�gure 2) and post-

pruning (�gure 3) into a single algorithm.

3 Experiments

In previous research [F�urnkranz, 1994a] we have compared a variety of

these algorithms in the well-known noisy KRK endgame classi�cation task

[Muggleton et al., 1989] at several di�erent training set sizes. The experiments

showed that the post-pruning algorithms are very ine�cient, while pre-pruning

is fast, but less accurate. I-REP, the integration of pre- and post-pruning, seems

to unite the advantages of both methods. It was the most accurate algorithm

and was only a little slower than the pre-pruning approaches.

Figure 6 (taken from [F�urnkranz, 1994a]) shows the accuracy (with standard

deviations) of learning from 1000 training examples (10% of them misclassi�ed)

plotted against the logarithm of the run-time. The accuracy of the learned con-

cepts was estimated on noise-free example sets of size 5000.

93

94

95

96

97

98

99

100

10 100 1000 10000 100000

A
c
c
u
r
a
c
y

Run-time (CPU secs.)

KRK(10%): Accuracy vs. Log(Runtime)

I-REP
REP

Grow
TDP

FOSSIL
FOIL 6.1

Figure 6: A comparison in the relational KRK domain (10% noise).

Although these results seem to be con�rmed by similar experiments in the

natural domain of �nite element mesh design [F�urnkranz and Widmer, 1994,

F�urnkranz, 1994c], we wanted to compare these algorithms on a variety of natural

data sets in order to get more information about their applicability to real-world

problems. Unfortunately we are not aware of any real-world relational test prob-

lems that are publicly available (except for the �nite element mesh design data

mentioned above). Therefore we had to use data from the UCI repository of Ma-

chine Learning databases that have been used to compare propositional learning

algorithms. Propositional data do not challenge the underlying relational learn-

ing algorithms to their full extent. However, we are primarily concerned with the

comparison of pruning methods, and for these it should not make much di�er-

ence what sort of conditions are pruned, in particular for those algorithms that

clearly separate the learning and pruning phases. Some of the issues discussed

here might also be relevant for decision list learning algorithms such as those

suggested in [Pagallo and Haussler, 1990].

A side e�ect of using propositional data is that we can compare proposi-

tional and relational learning algorithms and con�rm that the quality of the

concepts learned by the latter are not below those learned by the former (see

[Cameron-Jones and Quinlan, 1993] for more experiments along these lines). The

Appendix of [Holte, 1993] gives a summary of the results achieved by various al-

gorithms on some of the most commonly used data sets of the UCI repository

and a short description of these sets. We selected 9 of them for our experiments.

The remaining sets were not used because either the description of the data sets

was unclear or they had more than two classes, which cannot be handled by our

current implementation of the learning algorithms. In the Lymphograpy data set

we removed the 6 examples for the classes \normal �nd" and \�brosis" in order

to get a 2-class problem. All other data were used as described in [Holte, 1993].

For all data sets the task was to learn a de�nition for the minority class.

All algorithms tested in this study were implemented by the author in Sicstus

PROLOG and had major parts of their implementations in common. In partic-

ular they shared the same interface to the data and used the same procedures

whenever possible. In all datasets the background knowledge consisted of < and

= relations with one variable and one constant argument. Wherever appropriate,

comparisons between two di�erent variables of the same data type were allowed as

well. Introduction of new variables was not allowed. In all experiments the value

of Fossil's cuto� parameter has been set to 0:3. Run-times for all datasets were

measured in CPU seconds for SUN SPARCstations ELC except for the Mush-

room and KRKPa7 datasets which are quite big and thus had to be run on a

considerably faster SPARCstation S10. All experiments followed the setup used

in [Holte, 1993], i.e. the algorithms were trained on 2=3 of the data and tested

on the remaining 1=3. However, only 10 runs were performed for each algorithm

on each data set.

The results can be found in tables 1, 2, and 3. Each line shows the average

accuracy on the 10 sets, its standard deviation and range (di�erence between

the maximum and the minimum accuracy encountered), and the run-time of the

algorithm. The results of C4.5 [Quinlan, 1993] are taken from the experiments

Breast Cancer Accuracy Stnd. Dev. Range Time

C4.5 71.96 4.36 | |

Fossil 73.33 4.56 17.66 19.68

No Pruning 65.39 4.21 13.27 169.70

REP 69.97 3.80 12.16 257.29

Grow 68.46 4.72 15.39 183.67

No Pruning (TDP) 67.98 5.56 20.62 154.05

TDP 71.74 3.79 12.43 173.31

I-REP 70.89 5.23 19.58 28.97

Hepatitis Accuracy Stnd. Dev. Range Time

C4.5 81.23 5.12 | |

Fossil 76.07 5.77 23.43 217.40

No Pruning 73.66 4.99 17.12 101.66

REP 76.96 3.93 10.80 102.28

Grow 76.45 4.24 11.14 102.39

No Pruning (TDP) 76.33 3.40 10.92 115.41

TDP 79.42 3.88 11.87 116.24

I-REP 78.66 2.80 7.34 60.40

Sick Euthyroid Accuracy Stnd. Dev. Range Time

C4.5 97.69 0.40 | |

Fossil 97.58 0.40 1.35 891.40

No Pruning 96.25 0.51 1.70 4554.65

REP 97.55 0.32 1.06 5040.23

Grow 97.52 0.47 1.64 4635.26

No Pruning (TDP) 97.37 0.51 1.78 2965.51

TDP 97.49 0.43 1.21 3010.97

I-REP 97.48 0.50 1.70 970.70

Table 1: Results of the Breast Cancer, Hepatitis, and Sick Euthyroid domains.

Glass (G2) Accuracy Stnd. Dev. Range Time

C4.5 74.26 6.61 | |

Fossil 77.32 4.79 15.96 216.42

No Pruning 75.24 5.26 18.15 91.89

REP 77.76 4.31 14.73 93.31

Grow 75.63 4.69 16.97 93.11

No Pruning (TDP) 77.23 4.01 12.64 85.56

TDP 75.90 6.18 20.51 87.39

I-REP 76.31 4.89 15.95 63.01

Votes Accuracy Stnd. Dev. Range Time

C4.5 95.57 1.31 | |

Fossil 95.35 1.17 3.34 105.22

No Pruning 94.69 1.89 6.55 50.45

REP 95.84 1.39 3.92 57.41

Grow 95.63 1.36 3.92 53.84

No Pruning (TDP) 95.33 1.22 4.48 60.88

TDP 95.22 1.54 4.49 62.17

I-REP 94.75 1.75 6.95 22.43

Votes (VI) Accuracy Stnd. Dev. Range Time

C4.5 89.36 2.45 | |

Fossil 89.07 2.64 8.13 88.94

No Pruning 86.46 2.01 7.36 124.47

REP 86.72 3.46 10.78 163.26

Grow 87.49 3.35 10.93 137.49

No Pruning (TDP) 87.57 1.36 4.29 105.67

TDP 85.85 2.62 9.21 113.05

I-REP 87.25 3.27 10.75 38.78

Table 2: Results of the Glass and Votes domains.

KRKPa7 Accuracy Stnd. Dev. Range Time

C4.5 99.19 0.27 | |

Fossil 95.17 2.66 8.63 2383.61

No Pruning 97.92 0.58 1.85 4063.80

REP 97.84 0.54 2.01 4243.08

Grow 97.48 0.41 1.06 4219.00

No Pruning (TDP) 96.26 1.85 4.74 2368.28

TDP 96.41 1.87 4.74 2376.28

I-REP 97.74 0.36 1.32 1785.50

Lymphography (2 classes) Accuracy Stnd. Dev. Range Time

C4.5 (on all 4 classes) 77.52 4.46 | |

Fossil 87.22 4.39 17.23 20.79

No Pruning 83.25 4.79 16.03 17.05

REP 81.85 4.86 16.83 18.81

Grow 82.10 5.28 17.53 18.42

No Pruning (TDP) 83.73 5.50 17.53 18.66

TDP 81.86 4.39 12.39 20.27

I-REP 79.17 4.42 15.30 10.14

Mushroom Accuracy Stnd. Dev. Range Time

C4.5 100.00 0.00 | |

Fossil 99.96 0.03 0.11 3538.19

No Pruning 100.00 0.01 0.04 1878.51

REP 99.97 0.05 0.15 1931.75

Grow 99.57 0.66 1.56 2088.81

No Pruning (TDP) 100.00 0.01 0.04 4595.23

TDP 99.97 0.05 0.15 4656.31

I-REP 99.97 0.04 0.11 2493.77

Table 3: Results of the Chess (KRKPa7), Lymphography, and Mushroom do-

mains.

performed in [Holte, 1993] and are meant as an indicator of the performance of

state-of-the-art decision tree learning algorithms on these data sets.

A short look shows that the results vary in terms of accuracy, but are quite

consistent in run-times: I-REP is the fastest algorithm in 6 of the 9 test problems,

while it is second-best in 2 of the remaining 3. The tables also con�rm that Grow

is usually faster than REP. TDP's results are not consistent, but it is faster than

REP and Grow in some cases, which indicates that its initial top-down search

for a good starting theory does not over�t the data as much as the initial rule

growing phase of REP and Grow does. Fossil's run-times are very unstable.

It is the fastest algorithm on some datasets, but by far the slowest on other data

sets. The explanation for this probably lies in the fact that all algorithms except

for Fossil only learn from 2=3 of the training data and use the remaining 1=3

for pruning. If not much pruning has to be done, it can be expected that Fossil

is slower than the other algorithms.

Most di�erences in accuracies are not statistically signi�cant.

2

Signi�cant

di�erences can be found in the KRKPa7 chess endgame domain, where TDP and

Fossil performed signi�cantly (1%) worse than all other algorithms. Fossil was

signi�cantly (5%) better than TDP in the Votes (VI) domain

3

and outperformed

(5%, sometimes 1%) all other algorithms in the Lymphography domain. In general

C4.5 seems to be a little superior to the other algorithms (one cannot count the

results on Lymphography where the rule learning algorithms had a presumably

easier 2-class task.). However, the relational algorithms seem to be competitive.

To allow a more structured analysis we have grouped the 9 domains into 3

subclasses: Table 1 contains all domains where over�tting seems to be harmful,

i.e. where REP's post-pruning phase signi�cantly (at least 5%) improves upon the

concepts learned by the initial over�tting phase.

4

Table 2 contains domains where

pruning does not make a signi�cant di�erence and �nally table 3 contains all

domains where pruning cannot be recommended as exempli�ed by theMushroom

data, where the over�tting phases learned 100% correct concept descriptions that

were signi�cantly better (5%) than those learned by all pruning algorithms. The

Mushroom and KRKPa7 domains are known to be not noisy, while the medical

domains of table 1 are noisy. Therefore we suspect that our grouping of the

domain somewhat corresponds to the amount of noise contained in the data.

2

We have used a range test which can be used to quickly determine signi�cant di�erences

between medium values for small (N < 20) sample sizes [Mittenecker, 1977]. For N = 10 the

value of L =

�

1

��

2

R

1

+R

2

has to be > 0:152 of a signi�cance level of 5% and > 0:210 for a signi�cance

level of 1%. (�

i

are medium values and R

i

are ranges. Both can be found in tables 1 { 3.)

3

This is the Votes domain with the most signi�cant attribute removed.

4

It might be (justi�ably) argued here that we should have used a separate run with no

pruning on all of the data for a comparison. Our main purpose, however, was to compare

di�erent pruning approaches and not evaluate the merits of pruning by itself. The results for

the initial over�tting phases of REP, Grow and TDP may nevertheless be an indicator for the

latter (and they come at no additional cost).

Summary Table 1 Table 2 Table 3 Total

C4.5 83.63 86.40 92.24 87.42

Fossil 82.33 87.25 94.12 87.90

No Pruning 78.43 85.46 93.72 85.87

REP 81.49 86.77 93.22 87.16

Grow 80.81 86.25 93.05 86.70

No Pruning (TDP) 80.56 86.71 93.33 86.87

TDP 82.88 85.66 92.75 87.10

I-REP 82.34 86.10 92.29 86.91

Table 4: Average performances of the algorithms

Table 4 shows the average performances of the algorithms in each of the three

di�erent groups and a total comparison. Fossil seems to a good choice for all

domains. I-REP's comparative performance seems to decrease when the noise

level in the data decreases. This is probably due to its very strong Over�tting

Avoidance Bias, which may lead to over-generalizations in noise-free domains.

REP is better with lower noise levels for the opposite reason: Its speci�c-to-

general search strategy may get stuck in a local optimum, which can lead to

over-specializations some cases.

4 Conclusion

In terms of accuracy no clear recommendation for any of the above algorithms can

be made. However, all of them seem to be competitive to classical propositional

learners like C4.5. In terms of speed I-REP has proved to be the most e�cient.

Pre-pruning as used in Fossil is the most stable method and should be used

when nothing is known about the domain. A setting of 0.3 for the cuto� param-

eter has yielded good results in almost all tested domains, which illustrates the

robustness of this algorithm against varying noise levels and varying training set

sizes.

Reduced Error Pruning counterintuitively compares well to other approaches

at low noise levels. The reason for this is that REP's speci�c-to-general search

strategy may get stuck at too speci�c theories in particular at high noise levels,

where the initial theory has to be pruned a lot.

The search for a good starting theory as performed in Top-Down Pruning

leads to a stable behavior. It brings speed-up and a high accuracy at higher

noise levels, while it will still yield good results at low noise levels, although its

general-to-speci�c search strategy is inappropriate then and may lead to higher

run-times.

The integration of pre- and post-pruning has con�rmed its signi�cant speed-

up compared to other methods that include post-pruning. In noisy domains,

where the problems of mere post-pruning become most apparent, Incremen-

tal Reduced Error Pruning has also exhibited a slight gain in accuracy. How-

ever, its strong bias for simple theories leads to over-generalization with de-

creasing noise levels. The clear superiority that I-REP exhibited in the re-

lational domains of KRK endgames (�gure 6) and �nite element mesh design

[F�urnkranz and Widmer, 1994] could not be con�rmed in propostional domains.

Maybe the problem with rule interactions in the separate-and-conquer strategy

(see section 2.4) is less detrimental in propostional domains.

One reason for Fossil's stability might be that it was the only algorithm

that was able to learn from all of the training data. We are currently think-

ing of improving the other pruning algorithms by evaluating theories based on

Rissanen's Minimum Description Length Principle [Rissanen, 1978] instead of

separating part of the training data for estimating accuracy. This problem could

also be avoided by using cross-validation. In particular for the e�cient I-REP the

additional computational costs caused by this method might still be bearable.

Acknowledgements

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen For-

schung (FWF). Financial support for the Austrian Research Institute for Arti�cial Intelligence

is provided by the Austrian Federal Ministry of Science and Research. I would like to thank my

colleagues B. Pfahringer and Ch. Holzbaur for help on many improvements of the PROLOG

implementation of FOIL and G. Widmer for many suggestions and discussions that improved

the quality of this paper.

References

[Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation and

Regression Trees. Wadsworth & Brooks, Paci�c Grove, CA, 1984.

[Brunk and Pazzani, 1991] Cli�ord A. Brunk and Michael J. Pazzani. An investigation of

noise-tolerant relational concept learning algorithms. In Proceedings of the 8th International

Workshop on Machine Learning, pages 389{393, Evanston, Illinois, 1991.

[Cameron-Jones and Quinlan, 1993] R.M. Cameron-Jones and J.R. Quinlan. First order learn-

ing, zeroth order data. In Proceedings of the 6th Australian Joint Conference on AI. World

Scienti�c, 1993.

[Cestnik et al., 1987] Bojan Cestnik, Igor Kononenko, and Ivan Bratko. ASSISTANT 86: A

knowledge-elicitation tool for sophisticated users. In Ivan Bratko and Nada Lavra�c, editors,

Progress in Machine Learning, pages 31{45, Wilmslow, England, 1987. Sigma Press.

[Clark and Niblett, 1989] Peter Clark and TimNiblett. The CN2 induction algorithm.Machine

Learning, 3(4):261{283, 1989.

[Cohen, 1993] William W. Cohen. E�cient pruning methods for separate-and-conquer rule

learning systems. In Proceedings of the 13th International Joint Conference on Arti�cial

Intelligence, pages 988{994, Chambery, France, 1993.

[D�zeroski and Bratko, 1992] Sa�so D�zeroski and Ivan Bratko. Handling noise in Inductive Logic

Programming. In Proceedings of the International Workshop on Inductive Logic Program-

ming, Tokyo, Japan, 1992.

[Esposito et al., 1993] Floriana Esposito, Donato Malerba, and Giovanni Semeraro. Decision

tree pruning as a search in the state space. In Proceedings of the European Conference on

Machine Learning, pages 165{184, Vienna, Austria, 1993. Springer-Verlag.

[F�urnkranz and Widmer, 1994] Johannes F�urnkranz and Gerhard Widmer. Incremental Re-

duced Error Pruning. In Proceedings of the 11th International Conference on Machine Learn-

ing, pages 70{77, 1994.

[F�urnkranz, 1994a] Johannes F�urnkranz. A comparison of pruning methods for relational

concept learning. In Proceedings of the AAAI-94 Workshop on Knowledge Discovery in

Databases, pages 371{382, 1994.

[F�urnkranz, 1994b] Johannes F�urnkranz. Fossil: A robust relational learner. In Proceed-

ings of the European Conference on Machine Learning, pages 122{137, Catania, Italy, 1994.

Springer-Verlag.

[F�urnkranz, 1994c] Johannes F�urnkranz. Top-down pruning in relational learning. In Proceed-

ings of the 11th European Conference on Arti�cial Intelligence, pages 453{457, Amsterdam,

The Netherlands, 1994.

[Holte, 1993] Robert C. Holte. Very simple classi�cation rules perform well on most commonly

used datasets. Machine Learning, 11:63{91, 1993.

[Mingers, 1989] John Mingers. An empirical comparison of pruning methods for decision tree

induction. Machine Learning, 4:227{243, 1989.

[Mittenecker, 1977] Erich Mittenecker. Planung und statistische Auswertung von Experi-

menten. Verlag Franz Deuticke, Vienna, Austria, 8th edition, 1977. In German.

[Muggleton et al., 1989] Stephen Muggleton, Michael Bain, Jean Hayes-Michie, and Donald

Michie. An experimental comparison of human and machine learning formalisms. In Pro-

ceedings of the 6th International Workshop on Machine Learning, pages 113{118, 1989.

[Pagallo and Haussler, 1990] Giulia Pagallo and David Haussler. Boolean feature discovery in

empirical learning. Machine Learning, 5:71{99, 1990.

[Quinlan, 1987] John Ross Quinlan. Simplifying decision trees. International Journal of Man-

Machine Studies, 27:221{234, 1987.

[Quinlan, 1990] John Ross Quinlan. Learning logical de�nitions from relations.Machine Learn-

ing, 5:239{266, 1990.

[Quinlan, 1993] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo, CA, 1993.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data description. Automatica, 14:465{471,

1978.

