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Abstract

One approach to fault detection and identi�cation (FDI) in control systems is

based on computing the so-called parity relations for sensors and actuators. We

state the problem of generating those parity relations in the language of constraints,

and describe an implementation of a parity solver in the Constraint Programming

Language CLP(<). The solver adopts a discrete linear time-invariant (LTI) model of

control systems, and outputs a set of single-component parity relations. We describe a

FDI procedure, also in CLP(<), that monitors system behavior and computes single-

fault diagnoses. The CLP approach enhances the naturalness of representation of

system relations, and makes use of the resolution capability of CLP both for deriving

parity relations and for making diagnostic decisions. An example is given to illustrate

the viability of the CLP approach.
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1 Introduction

Traditionally, fault tolerance in complex plants and their control systems is achieved

through the use of physical redundancy. More recently, interest has shifted to the use of

model-based approaches, which rely instead on the use of analytical redundancy. Analytical

redundancy depends on a model of the dynamics of the controlled system to generate resid-

ual function of the temporal history of the actuator commands and sensor outputs which

has the property of being small when the system is operating normally. Examples of this

approach are the observer-based method [2, 8] and the parity space method [1, 5, 9]. Both

methods are di�erent ways for solving the same kind of problem, and their equivalence has

been shown [4].

Approaches to model-based diagnosis of dynamic systems have also been developed in

arti�cial intelligence. Those approaches mainly adopt logic-based formulation and consider

qualitative system models [7]. The motivation for our work is to establish a connection

between the model-based diagnosis approaches in engineering and in arti�cial intelligence.

Speci�cally, we provide a constraint-based formulation of the problem of generating par-

ity relations for dynamic control systems. We provide for the �rst time a clear, general

interpretation of a parity relation as a projection operation of a set of linear equations.

The advantage of this interpretation is that it allows a direct mapping into the language

of constraint logic programming CLP(<) [3]. This proposed CLP framework enhances the

naturalness of representation of system relations, and makes use of the resolution capability

of CLP both for deriving parity relations and for making diagnostic decisions.

The paper is structured as follows. Section 2 gives a CLP approach to failure detection

and identi�cation. Section 3 describes a simulated example to illustrate the viability of the

proposed approach. Section 4 gives concluding remarks.

2 Failure Detection and Identi�cation

In this section we describe a CLP approach for failure detection and identi�cation (FDI)

of control system component failures. We consider discrete linear time-invariant (LTI)

multi-input multi-output (MIMO) systems, described by the predicates:

one transition(System; t; u(t); x(t); x(t+ 1)) (1)

obs(System; t; x(t); u(t); y(t)) (2)

where t denotes the time epoch (0; 1; 2; : : :), x(t) 2 R

n

; u(t) 2 R

m

; y(t) 2 R

l

denote

respectively the state, control, and output tuples (vectors) at epoch t. The dimension n of

the state vector is the system order. Each i-th component (1 � i � m) of the input u is

associated with a distinct actuator, and each j-th component (1 � j � l) of the output y

is associated with a distinct sensor. The predicate one transition speci�es the constraint

relation between the state and control tuples at any given epoch t and the state tuple at

the consecutive epoch t+ 1. The predicate obs speci�es the constraint between the state,

control, and observation tuples at any given epoch t. For LTI systems, the one transition
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and obs relations are both linear constraints, and can be expressed in matrix notation as

follows,

x(T + 1) = A x(T ) +B u(T ) (3)

y(T ) = C x(T ) +D u(T ) (4)

where A;B;C;D are constant matrices of proper dimensions.

Let the current epoch be t and consider the system behavior over the past k epochs.

Let U(t; k); Y (t; k) be the input and output sequences over epochs between t and t� k,

U(t; k) = (u(t); u(t� 1); : : : ; u(t� k)) (5)

Y (t; k) = (y(t); y(t� 1); : : : ; y(t� k)) (6)

Based on eq. 3, it can be shown that the current state at t can be expressed as a function

of the state at t�k and the input sequence of length k�1 between t�k and t�1 (k � 1),

x(t) = A

k

x(t� k) + [B]

k

U(t� 1; k � 1) (7)

where,
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(8)

Let ok sequence(t; k; U(t; k); x(t� k); x(t); Y (t; k)) be a predicate characterizing the rela-

tion between the states at t, t � k, the input sequence, U(t; k) and the output sequence,

Y (t; k), such that all variables are consistent with the system's normal behavior according

to eqs. 3, 4. ok sequence can be de�ned recursively as follows,

ok sequence(t; 0; u(t); x(t); x(t); y(t)) obs(t; x(t); u(t); y(t)): (9)

ok sequence(t; k; U(t; k); x(t� k); x(t); Y (t; k)) 

ok sequence(t� 1; k � 1; U(t� 1; k � 1); x(t� k); x(t� 1); Y (t� 1; k � 1)) ^

one transition(t� 1; u(t� 1); x(t� 1); x(t)) ^

obs(t; x(t); u(t); y(t))^

U(t; k) = U(t� 1; k � 1) [ u(t) ^

Y (t; k) = Y (t� 1; k � 1) [ y(t): (10)

ok sequence yields the constraint relations given by eq. 7, as well as the following,

Y (t; k) = [C]

k

x(t� k) + [D]

k

U(t; k) (11)
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Table 1: Failure Detection and Identi�cation

Input: LTI system model and its observed input-output sequence.

Output: A diagnostic pair (D

s

; D

a

), consisting of sets of culprit sensors and actuators.

Initialize: t 0, u(�1; n) ;, y(�1; n) ;.

1. Compute parity, sspr(i; U(t; n); Y (T; n)) for each sensor i.

2. Compute parity, sapr(j; U(t; n); Y (T; n)) for each actuator j.

3. u(t; n) = u(t� 1; n� 1) [ u(t), y(t; n) = y(t � 1; n� 1)[ y(t).

4. S = fi j sspr(i; u(t; n); y(t; n)) is inconsistentg,

A = fj j sapr(j; u(t; n); y(t; n)) is inconsistentg

5. Output (;; S) if j A j�j S j; (A; ;) if j S j>j A j.

6. t t+ 1.

7. Go to 3.

where,
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(12)

The well-known Cayley-Hamilton theorem [6] implies that increasing k beyond the sys-

tem order n does not contribute any additional constraint on the system variables. Thus,

ok sequence(t; n; U(t; n); x(t�n); x(n); Y (t; n)) su�ciently characterizes the system's nor-

mal behavior. Parity relations are those relations between input and output sequences that

are valid for all system states. Parity relations are obtained from ok sequence(t; n; U(t; n); x(t�

n); x(n); Y (t; n)) by eliminating the state x, or projecting ok sequence on the (U; Y ) se-

quence. Projection is a part of the resolution strategy of CLP(<). Parity relations can

be specialized to single-component, i.e. single-sensor (SSPR) or single-actuator (SAPR).

SSPR for sensor i, denoted as sspr(i; U(t; n); Y (t; n)), is a set of constraint equations

on the values of the sequence pair: (U(t; n); Y

(i)

(t; n)), where Y

(i)

(t; n) is the special-

ization of the output sequence to the i-th sensor. SAPR for actuator j, denoted as

sapr(j; U(t; n); Y (t; n)), is a set of constraint equations on the values of the sequence pair:

(U

(j)

(t; n); Y (t; n)), where U

(j)

(t; n) is the specialization of the input sequence to the j-th
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Figure 1: (a) Output with sensor fault, (b) Diagnosis vesrus actual fault

actuator.

Table 1 states a CLP-based FDI procedure, which computes single component failures

accounting for the input output sequence. It does that in two steps. First, the single-

component parity relations are computed for both sensors and actuators. Second, a decision

is made on the basis of consistency of those relations with actual input-output observation.

Diagnosis consists of a pair of sets of sensors and actuators whose members are single

fault candidates. The logic in the failure decision step 5 prefers a failure explanation that

includes least number of candidates. For instance, upon the failure of a sensor, just one of

the sensor parity relations and all, or at least most, of the actuator relations would become

inconsistent. The FDI procedure (table 1) would decide that one sensor had failed rather

than that most of the actuators had simultaneously failed. (See [5].)

3 Application

In this section we describe the results of applying our CLP-based approach to a small

example [5]. The control system model is given by,

one_transition(3,T,[u1(T):U1,u2(T):U2],[x1(T):_,x2(T):X2,x3(T):X3],

[x1(T+1):X1p,x2(T+1):X2p,x3(T+1):X3p]) :-

X1p = U1,

X2p = 2*X2 + U2,

X3p = X3 + U1 + U2.

obs(3,T,[u1(T):_,u2(T):_],[x1(T):X1,x2(T):X2,x3(T):X3],[y1(T):X1+X2,y2(T):X3]).

The SSPR relation generated by CLP(<) for sensor 1 consists of the input-output

sequence pair,
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Figure 2: (a) Input with actuator fault, (b) Diagnosis versus actual fault

[[u1(_E):_I,u2(_E):_J],[u1(-1+_E):_B,u2(-1+_E):_A],

[u1(-2+_E):_C,u2(-2+_E):_F],[u1(-3+_E):_G,u2(-3+_E):_K]],

[y1(_E):2.0*_D-2.0*_C+_B+_A,y1(-1+_E):_D,

y1(-2+_E):0.5*_D+_G-0.5*_C-0.5*_F,y1(-3+_E):_H]

which is equivalent to the di�erence equation [5],

�2u

1

(t� 2) + u

1

(t� 1) + u

2

(t� 1)� y

1

(t) + 2y

1

(t� 1) = 0

The SAPR relation generated by CLP(<) for actuator 1 is as follows,

[u1(_E):_J,u1(-1+_E):_K,u1(-2+_E):_C,u1(-3+_E):_G],

[[y1(_E):2.0*_D-2.0*_C-_B+_A,y2(_E):_A],[y1(-1+_E):_D,y2(-1+_E):_B],

[y1(-2+_E):0.5*_D+_G+0.5*_F-0.5*_B,y2(-2+_E):_F],[y1(-3+_E):_H,y2(-3+_E):_I]]

which is equivalent to the di�erence equation [5],

u

1

(t � 2) + 0:5y

1

(t)� y

1

(t � 1)� 0:5y

2

(t) + 0:5y

2

(t � 1) = 0

The parity relations generated for the second sensor and actuator (not shown) are also equivalent

to those given in [5], based on transfer matrix techniques.

We simulated the control system with the initial state, (x

1

(0) = 1; x

2

(0) = 1; x

3

(0) = 1)

and constant control (u

1

(t) = 1; u

2

(t) = �1). A fault in an actuator or a sensor is considered

to be a multiplicative random gain between zero and one. Fig. 1(a) shows the observed system

output where the second sensor fails throughout the time interval (10,40), and the �rst sensor

fails throughout the interval (60,90). Fig. 1(b) shows the diagnosis and the actual fault. The

�gure shows a good monitoring capability; diagnosis instantly tracks the fault at the time the

fault begins. As the fault ends, the normal diagnosis is also restored albeit with some delay.
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The delay is due to the dependence of the parity relations not only on current observation but

also on previous ones. Similar performance is obtained for faulty actuators. Fig. 2(a) shows the

observed system input where the �rst actuator fails throughout the time interval (10,40), and

the second actuator fails throughout the interval (60,90). Fig. 2(b) shows the diagnosis and the

actual fault. Unlike sensor fault, actuator faults are not detected instantly at the time they occur.

The detection delay for actuator fault is caused by the time lag in their parity residual function.

4 Concluding Remarks

We formulate the construction of parity relations for dynamic control systems in the language

of constraints. Parity relations are considered to be of a form suitable for single-component

diagnosis of sensors or actuators. We give for the �rst time a new interpretation of a parity

relation as a projection operation of a set of linear equations. The advantage of that interpretation

is that it allows a direct mapping into the language of constraint logic programming CLP(<).

This proposed CLP framework enhances the naturalness of representation of system relations,

and makes use of the resolution capability of CLP for both deriving parity relations and for

making diagnostic decisions. Future work will extend the current approach by addressing the

problem of robustness, namely the design of FDI methods which minimize sensitivity of diagnostic

performance to model errors and uncertainties.
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