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Abstract. This paper reports about a study evaluating the usefulness of neural
networks for the early detection of heart disease based on ECG and other mea-
surements during exercise testing [10]. Data from 350 persons who underwent
stress tests consisted of patient demographic data and fifteen time frames of
measurements during stress and rest. Three different neural networks, two
recurrent and one feedforward using background knowledge for preprocessing,
were trained and compared to the performance of skilled cardiologists. It could
be shown that the best neural networks can compete with experts in classifying
tests as CAD (coronary artery disease) or normal. What concerns an index
value expressing the likelihood of disease, to be used for monitoring the success
of treatments, the neural networks outperformed classical statistical tech-
niques published previously. This study has thus shown large evidence in favor
of using neural nets to improve the exercise ECG as a non-invasive technique
for detecting heart diseases.

THE APPLICATION

The electrocardiogram (ECG) is the recording of voltage changes trans-
mitted to the body surface by electrical events in the heart muscle, providing
direct evidence of cardiac rhythm and conduction and indirect evidence of cer-
tain aspects of myocardial anatomy, blood supply and function. Electrocardiog-
raphy has been used for many years as a key non-invasive method in the diagno-



sis and early detection of ischemic heart disease (coronary artery disease, or
CAD), which is the leading cause of mortality in Western countries [5,6].

To improve the accuracy of the electrocardiogram and obtain more informa-
tion on the dynamic state of the heart, exercise testing was introduced [5,11].
During stress testing not only the electrogardiogram is continously registered
but also other physiological parameters are monitored (blood pressure, physi-
cal symptoms and angina pectoris). According to different established proto-
cols, the workload is increased step by step and the changes of parameters dur-
ing stress and recovery are recorded and analysed. Skilled cardiologists achieve
65—75% specificity (correctly classified normals) and 75—85% sensitivity (cor-
rectly classified CAD cases) in detecting CAD based on the resulting data [5,6].

In patients with suspected angina pectoris, exercise testing may confirm the
diagnosis of ischemic heart disease and indicate the severity and prognostic
importance of coronary artery lesions. In patients with definite ischemic heart
disease, the exercise test is used to follow the progression or regression of the
disease and the effect of therapy including drugs, invasive cardiology (e.g.
angioplasty, atherectomy,..) or coronary artery surgery. Following myocardial
infarction, exercise testing is performed to allow risk stratification, patients
identified as being at low risk for death or re-infarction can be reassured and
those at high risk can be managed appropriately [6].

If contra-indications (e.g. in the presence of acute, severe illness) are strictly
observed, stress testing is a safe, cheap and non-invasive method, and is widely
used in hospitals, by cardiologists, and general practitioners in primary care and
health care centers. The success of the test is widely determined by the skill of
the observer (cardiologist, general practitioner,..) and the patients themselves.
Several efforts have been made to minimize these effects [7]. The following list
shows a short summary of how automatic methods of CAD detection could
improve the value of ECG and stress testing as indicator for heart diseases:

— automatic methods could minimize inter- and intraobserver variability
on the test

— they could generally improve the detection of diseases like CAD

— they could contribute to improved monitoring of different therapies

— they could select continously new information on a given data set

— they could improve the acurracy of unskilled observers

Previous approaches to such improvements, such as [2,4,7,9], concentrated
on classical statistical techniques and yielded results of up to 79 % sensitivity
and 76 % specificity. In this paper we report about studying artificial neural net-
works with respect to their ability for such improvements. In particular, if neural
networks prove to be able to (objectively) classify cases comparably to (partially
subjective) expert performance, and if they can provide tools for monitoring



therapies, they can be viewed as valuable tools for future diagnostic systems in
this domain. As the results below show, neural networks indeed prove to be able
to do so.

THE DATA

The data used in this study consisted of patient-demographic parameters and
fifteen frames of measurements from stress testing. The former included the
person’s sex, age, weight, and size, an indication whether a prior infarction is
known, the workload that was reached by the person, the duration of the phase
of the highest workload, and the expected heart rate, as well as workload to be
achieved, computed according to [12,13]. The latter consisted of the above-
mentioned measurements — namely heart rate, systolic and diastolic blood
pressure, physical symptoms, angina pectoris, and features extracted from the
ECG such as ST-segment depression and rhythmic anomalities. These mea-
surements were taken during 11 stress phases (from 0 to 250 W, incremented by
25 W at each phase) and 4 subsequent rest phases (immediately after stress, and
after 1, 3, as well as 5 minutes).

Data from 350 persons was available, including 107 normals and 243 with cor-
onary artery disease, ranging from single to three vessel diseases. Among the
107 normals, data from 31 athletes were included. As compared to the other
normals, these constitute “ideal normals,” since all other persons undergoing
stress testing were at least suspected of CAD and thus had a non-negligible
prior probability for the disease. This is a well-known problem in using tech-
niques like neural networks that rely on available data material. In many cases,
normals are too similar to the pathologicals to permit clean separation. Non-
evasive stress testing, on the other hand, can without risk be applied to persons
with a negligible prior probability for the disease. The following table depicts
the distribution of all cases, including a distinction according to the persons’
sex:

total females males
athletes 31 2 29
other normals 76 33 54
1 vessel CAD 60 16 44
2 vessel CAD 80 13 67

3 vessel CAD 103 14 89
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THE NEURAL NETWORKS USED

The task of this study was to evaluate the ability of neural networks to indi-
cate coronary artery disease based on the data described above. Three types of
neural network were used. The first and the second network were recurrent
(roughly Elman-type) networks to account for the fact that the fifteen frames of
stress test measurements form a time series with temporal evolution of all
parameters. The third was a multilayer perceptron applied to preprocessed
data (using knowledge about the domain).

Neural network 1: The first attempt of applying a neural network to the data
was a somewhat “blind” training using only little background knowledge about
the domain. An input layer of 19 units was used encoding patient demographic
and stress test data for each time frame. This layer fed a recurrent network,
somewhat similar to [3], as depicted in figure 1. At each update step through the
network, the hidden layer activations were fed back to a state layer of the same
size with weighted but fixed one-on-one connections. Each unit in this state
layer was connected onto itself with a fixed weight. State and input layer
together formed the input for the hidden layer, which in turn spread activation
to an output layer of one unit. Aside from the feedback via the recurrent con-
nections the network was considered as a multilayer perceptron and thus
trained by backpropagation at each of the fifteen time frames. The target for
the output unit was chosen 1 for pathological cases and 0 for normal ones. To
account for the temporal evolution during the fifteen time frames, the target for
pathological cases was continuously raised from 0 to 1 between the start of the
sequence and the last stress phase reached by the patient (i.e. the highest work-
load successfully passed). After that, for the remaining time frames, it was
clamped at 1. A similar method for classifying sequences has been suggested
elsewhere (e.g. [1]).



The hidden layer size was varied between 8 and 20. The weights on the one-
on-one connections between hidden and state layers were kept fixed at 1, the
weights of the state layer units onto themselves were all set at 0.5 (thus preserv-
ing 50 % of the previous history at each time frame in the sequence — compare
[16]). Roughly half of the 350 cases (173) were chosen as a training set that was
kept fixed for all training runs reported in this paper. It was chosen such that the
distribution of athletes vs. other normals vs. pathologicals was roughly the same
for training and test set, and such that no significant difference in the distribu-
tion of the patient-demographic parameters occured between training and test
sets. Other than that, the selection was random. Each training run consisted of
between 60,000 and 100,000 presentations of single cases (each consisting of the
full fifteen time frames), picked randomly from the training set, with a learning
rate of 0.01, and of between 60,000 and 100,000 further presentations with a
learning rate of 0.001. This simple schedule of lowering the learning rate had
proved sufficient for reaching convergence in several preliminary training runs,
and was also fixed for all runs reported here. In addition, a momentum term
(according to [15]) with scaling factor 0.9 was used.

One problem with this blind application of a recurrent network might be the
over-representation of patient demographic data, which did not change during
the temporal sequence. Thus, in several variations of this network scheme, the
input units corresponding to this part of the data were activated only either at
the beginning time frame, the final two time frames, or at both such ends of the
sequence, while being clamped at 0 for the other time frames.

Neural network 2: To solve that possible problem of over-representation of
patient demographic data in a more elaborate way, a second network architec-
ture was devised and tested. It consists of two modules explicitly separating the
data changing over time from the time-independent data, depicted in figure 2.
The first module is another recurrent network as described in the previous sec-
tion, but which was only fed with the time-changing stress test data. The second
module is a multilayer perceptron with two input layers — a layer encoding the
patient demographic data similar to above, and the hidden layer of the recur-
rent network after complete update cycles through the sequence. Training con-
sisted of two phases — first of training the recurrent network as above, and sec-
ondly, of training the multilayer perceptron by backpropagation.

In addition, three output units instead of one were used encoding the more
detailed cases of normal (all units 0), one, two or three vessel disease (first, first
and second, or all three units active at 1). For evaluation, still only the distinc-
tion between normal and CAD was considered. The expected effect of the two
additional units was improved discriminability through the extra information in
the target (this was reported previously as improving network performance, e.g.
[14]). Both hidden layer sizes were varied between 10 and 20.



Since many patients could not finish the stress test up to the highest workload
(which itselfis a certain indicator for CAD), many time frames consisted of zero
measurements. Thus, in a further extension, the sequential update of the recur-
rent network was adjusted such as to skip those null frames, making the length
of each sequence variable.

Neural network 3: The third attempt at a neural network solution involved an
additional amount of background knowledge, which was mainly used to prepro-
cess the data. The major difference to above was that no longer a recurrent net-
work, but instead a multilayer perceptron with three input layers was used. The
information in the time sequence was explicitly encoded by making use of pre-
vious methods of arriving at an indicator for CAD from the same kind of data
[8]. There, each time frame was evaluated separately, and the contributions
(basically a weighting of several factors considered as possible single indicators
for CAD) of all time frames were summed. For the computation of a final index,
which can be shown to highly correlate with CAD (see also below) only those
sums were used. In addition, an explicit distinction between stress and rest
phases was made.

According to these expert decisions, the third neural network was fed with
the sums of the following indicators (taken from [5,6]; as in [8]):

— a deviation of the change in heart rate from a given tolerance interval
— a decrease in systolic blood pressure

— the presence one of several critical phsysical symptoms

— the presence of angina pectoris

— ST-segment depression

— the presence one of several critical rhythmic anomalities

In distinction to [8], the first two were included as scaled values, instead of
binary decisions about their presence. Furthermore, the following informations
were also included [5,6]:

— a decrease in diastolic blood pressure
— pathological systolic blood pressure (larger than 140)
— pathological diastolic blood pressure (larger than 90)

again as scaled values. This was done separately for the stress and rest phases,
leading to the activations of two of the three input layers. The third input layer
encoded the patient demographic data as above. While many of these indica-
tors were also used for network 2, here they were specifically tuned according to
literature and, above all, explicitly summed up (rather than accumulated in the
recurrent network).
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Each training step consisted of one presentation of input patterns and one
learning cycle with backpropagation. The hidden layer size was varied between
10 and 20. Again three output units were used.

THE RESULTS

In this study the neural networks were evaluated against two criteria:
(1) their ability to correctly classify cases into CAD and normal.

(2) their ability to produce an index expressing the likelihood of disease,
which can be used to monitor the success of treatments (a decreasing
index after treatment would indicate less likelihood of CAD and thus
success of treatment).

Figure 3 shows an overview of the results concerning criterion (1). It depicts
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the best performances of the three networks, drawn as sensitivity (correct posi-
tives — white bars) and specificity (correct normals — black bars) in percent-
ages. Since through varying the decision threshold at the output unit these two
values can be changed, for all results two pairs of values are depicted — one with
relatively high sensitivity (always the result at the default threshold 0.5), the



other with relatively high specificity (such that sensitivity stays above 80 %). For
comparison, the range of the best performances of skilled cardiologists in inter-
preting the same data is shown (the two pairs of values corresponding to worst
and best performance, i.e. the 75/65 % and 85/75 % mentioned above).

Concerning criterion (2), the original output value (which is simply compared
to a threshold for the former criterion) appears to be usable as an index expres-
sing the likelihood of disease. To demonstrate this, in figure 4 the mean (black
bars) and standard deviations (white bars) of the output value for the five
classes athletes (Oa), other normals(0), one, two, and three vessel disease are
shown. In the case of three output units the activation values of all units was
averaged. This depiction shows a significant correlation between the index pro-
duced by the network and the extent of the disease. For comparison, the same
five ranges (although on a different scale) are shown for a previously published
statistical method for computing such an index [8].

DISCUSSION

The results show that neural networks can reach the upper ranges of expert
performance, in some cases they can even perform slightly better. The second
recurrent network using less background knowledge than the feedforward net-
work but with the ability to exploit the time series based on the training data
achieved best performance, although closely followed by the feedforward net-
work. Neural networks 1 and 2 could also outperform previous non-neural
approaches [2,9].

With respect to an index for monitoring the success of treatment, neural net-
works appear superior to traditional statistical methods. Standard deviations
are smaller and the separation between normals and pathologicals involves
fewer overlap.

CONCLUSION

In this paper we have demonstrated the usefulness of neural networks in
early detection of heart disease based on measurements during exercise testing.
Recurrent networks which can exploit temporal dependencies appear as the
best solution at the moment. Future research will investigate the combination
of the recurrent approach with the type of background knowledge used in the
feedforward case (e.g. through initialization), and the use of neural networks in
hybrid neural/rule-based diagnostic systems. The results so far show great



promise for significant contributions to making non-invasive ECG measure-
ments during stress testing a prominent method for detecting one of today’s
most fatal diseases.
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