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Abstract

The paper describes a framework for reasoning about dynamic physical systems

based on structure. The framework integrates the language of bond graphs (BG)

with the language of constraint logic programming (CLP). The advantage of such

integration is twofold. First, to exploit the wealth of reasoning methods developed in

the BG area within system dynamics. Second, to enhance the naturalness of repre-

sentation of system relations and possibly increase solution e�ciency via CLP. The

paper describes methods for causal modeling of dynamic physical system including

the generation of causal explanations.
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1 Introduction

The bond graph is a powerful, versatile method for modeling dynamic physical systems of

multidisciplinary nature. The method was created by Henry Paynter, who believed that

energy and power alone are the fundamental dynamical variables, and that such variables

are adequate to represent all connections and interactions between such systems [4]. Since

then, work on bond graphs has been rapidly expanding, and a part of that work has

been devoted to the study of causality[8]. Causality plays important roles in modeling,

analysis, and design of dynamic physical systems [9]. Bond graphs also o�er a knowledge

representation framework useful for qualitative reasoning, and in particular for representing

and generating causal order in a physical system [13, 15, 14]. Causality has been a subject

of debate in qualitative physics [5, 1, 2, 6]. Part of that debate stems from the type

of representation used for modeling a physical system (di�erential equations in [5] and

conuences in [1]) and disagreement over which variables are exogenous. In bond graphs,

causality assignment rules are grounded in basic physical insight [4], and representation is

in terms of prototypical physical elements (mechanisms). Bond graph causality is viewed as

\an aid in computing bond graph model behavior and as a guide to modelers seeking insight

directly (i.e., without having to obtain the system equations explicitly)" [9]. Causality of

a bond graph aims at satisfying the basic element causal properties at the system, or

bond graph level. It can be computed by the so-called Sequential Causality Assignment

Procedure (SCAP) [7].

This work represents bond graphs in the language of constraints and shows how constraint-
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based programming can be used for bond graph modeling. The causality conditions for

bond graph elements and junctions are stated as constraints, and causal labeling of a bond

graph is viewed as a constraint satisfaction problem. Using that constraint formulation

SCAP is re-implemented using the language of constraint logic programming in the boolean

domain, CLP(B). The advantage of such implementation is to enhance the naturalness of

representation of causal relations, and to possibly increase solution e�ciency. The paper

also shows how block diagrams can be computed from a causally-ordered bond graph. A

block diagram depicts the interaction between the various mechanisms that produce the

system output from the inputs and identi�es the feedback loops in the system model.

The paper is organized as follows. Section 2 describes a system architecture and moti-

vates this work. Section 3 represents bond graphs in the language of constraints. Section 4

formulates causal labeling of a bond graph as a constraint satisfaction problem and gives a

CLP(B) procedure. Section 5 describes a method for causal modeling, and section 6 gives

general conclusions.

2 Structure-based Reasoning

Fig. 1 presents a computing architecture for structure-based reasoning about dynamic

physical systems. The input is a structural description of a dynamic physical system and

queries about its behavior. The output are answers to the queries including explanations.

The computing tasks are the following,

1. translating structural representation to bond graph representation,
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Figure 1: System architecture for structure-based reasoning.

2. causal labeling of the bond graph,

3. quantitative/qualitative reasoning,

4. generating answers/explanations to queries.

Queries about dynamic system's behavior depend on the type of problem solving in-

volved, such as, prediction, analysis, diagnosis, and design. Examples of queries for the

simple mass spring system shown in �g. 2 are as follows:
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K M

Figure 2: A simple mass spring system.

Prediction. What happens if the mass is extended and then released?

Analysis. Is the system stable?

Diagnosis. Why is the system oscillating rapidly when exited at some frequency?

Design. What parameters will ensure speci�c oscillation?

Reasoning in the proposed framework is a hybrid of quantitative and qualitative. See

�g. 1. Quantitative reasoning is based on analytical or numerical solutions of the sys-

tem equations. System equations may be in the form of di�erential equations or in the

form of a transfer function in the time or frequency domain. Those equations are based

on the system's block-diagram. Qualitative reasoning is useful when system order reduc-

tion is desired or knowledge of exact values is unavailable. Qualitative reasoning involves

abstractions of system equations in the quantity space (Q-space). Conuences are quali-

tative di�erential equations [1] de�ned in the (�) Q-space. Qualitative reasoning may be

based on time-abstraction by identifying slow and fast variables, which has been used for

quantitative model reduction [11].
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2.1 Why Bond Graphs?

Translating structural representation, usually in the form of system schematic, to a bond

graph allows canonical representation of dynamic systems from disparate domains. The

bond graph language is increasingly accepted and used in various engineering disciplines,

and o�ers a exible e�cient framework for automated modeling. According to [10]:

You can construct a bond graph model to reveal any physical level of detail de-

sired; conversely, you can mask as much of the details as you deem unnecessary

by suitable structuring of the model. Exploiting this feature leads to models

that are posed to answer questions about system behavior very e�ciently.

2.2 Why causal modeling?

Questions may be raised as of why bother about causal modeling. Why not directly

represent the system components by their mathematical set of equations (constraints),

and then solve those equations to determine system's behavior?

Causal modeling provides an additional source of knowledge that greatly enhances

the modeling process and increases the e�ciency of the reasoning tasks. See [3, 5, 12].

Rosenberg [9] discusses how causality can be exploited to:

� Check correctness of a proposed design,

� Guide the engineer in assembling sub-models into a system model,

� Suggest suitable test conditions for fault diagnosis, and

� Analyze interaction between nonlinearities and uniqueness of system response.
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In our framework to structure-based reasoning causal labeling is crucial to generate

block diagrams, causal explanations, identify state variables and system order, and derive

system equations. Although causal modeling may not be so important for prediction, it is

a key for qualitative reasoning, for analysis, and diagnostic reasoning.

3 Bond Graphs

This section shows how bond graphs can be represented in the language of constraints. A

bond graph (BG) consists of a set of nodes (called multiport subsystems) and a set of edges

(called bonds). A 1-port subsystem can be one of the following types: a ow source (SF ),

an e�ort source (SE), a capacitor (C), an inertia (I), or a resistor (R). The type of a 2-port

subsystem can be a transformer (TF ), or a gyrator (GY ). Other types of N-port subsystems

(N � 2) are junctions: a common-e�ort junction (0), and a common-ow junction (1). An

N -port is by de�nition connected to other multiports by a set of N bonds, B. B may

be partitioned to B

+

and B

�

, de�ned as the subsets of incoming (directed toward the

port) and outgoing (directed away from the port) bonds, respectively. A pair of multiports

linked by a bond are constrained to share the same variables. Each bond B has 4 variables:

e�ort e

B

, ow f

B

, displacement q

B

and momentum p

B

. Two of the variables, namely the

displacement and the momentum (called the energy variables) are the time derivatives of

the ow and e�ort variables, respectively. The e�ort and ow variables are called the power

variables. Table 1 states the constraints on the bond variables for each type of multiport.

Constraints on the one port elements (R;C; I) are assumed linear in the table, although

any appropriate relation between the referenced bond variables may be considered instead.
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Table 1: Constraints imposed by various multiport types on the energy/power variables of

their linking bonds.

Multiport Bonds B Constraints

Type Parameters

SE e B e

B

= e

SF f B f

B

= f

R r B e

B

= r � f

B

C c B q

B

= c � e

B

I i B p

B

= i � f

B

TF m B

1

,B

2

e

B

1

= m � e

B

2

, f

B

2

= m � f

B

1

GY k B

1

,B

2

e

B

1

= k � f

B

2

, e

B

2

= k � f

B

1

1 B

1

; : : : ; B

N

P

B2B

+
e

B

=

P

B

0

2B

�
e

B

0

, f

B

1

= : : : = f

B

N

0 B

1

; : : : ; B

N

P

B2B

+
f

B

=

P

B

0

2B

�
f

B

0

, e

B

1

= : : : = e

B

N

Methods described here for causal modeling do not require linear relations and produce

results for general nonlinear relations. See section 5. However, if nonlinear relations are

considered, interaction between nonlinearities may impose constraints on causal directions

to ensure uniqueness of system response. This may introduce modi�cations to table 2 and

possibly procedure 1 for causal ordering.

4 Causality

A binary variable, C

M

B

, called causality variable is de�ned for each multiport relative to its

connecting bonds in the graph. A multiport M is said to have an e�ort causality along a

M1 M2

Flow

Effort

Figure 3: Graphical representation of e�ort and ow causalities on a bond B depicted

using bond graphs notation; M1 has e�ort causality C

M

1

B

= 1, while M2 ow causality

C

M

2

B

= 0.
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bond B (expressed as C

M

B

= 1) if M takes the ow in B as input and produces the e�ort

in B as output. A multiport M is said to have a ow causality along a bond B (expressed

as C

M

B

= 0) if M takes the e�ort in B as input and produces the ow in B as output. The

causality assignment on a bond is represented graphically in �g. 3 using the bond graph

notation [7]. According to that notation causality is shown by adding a short bar to the

end of a bond with the understanding that e�ort causality exists in the direction towards

the bar and ow causality away from it.

Causality of a pair of multiports M

1

;M

2

linked by a bond B must be complementary,

i.e., C

M

1

B

� :C

M

2

B

. This corresponds to arc constraint on causality variables (table 2).

Node constraints on causality variables are those to be satis�ed by each multiport M

according to type as in table 2. See [7]. A constraint for a multiport is de�ned by the

set of value tuples that are allowed for its causality variables. Source elements have one

causality variable with only one possible value; 1 for type SE and 0 for type SF . Elements

of type R impose no constraint; both binary values are allowed. Elements of type C; I,

called storage elements, have two sorts of constraints: integral and derivative. Integral

(derivative) causality means that the directional (input-output) relation between the power

variables{ e�ort and ow{ for the storage element has an integral (derivative) form. For

a capacitor C, integral (derivative) causality exists when the ow (e�ort) is the input and

the e�ort (ow) is the output. For an inertia I, integral (derivative) causality exists when

the e�ort (ow) is the input and the ow (e�ort) is the output. The 2-port element TF

must assign di�erent values to the causality variables of its two bonds,i.e., only tuples

01 and 10 are allowed. The 2-port element GY must assign same value to the causality
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Table 2: Constraints on causality of bonds

Node constraint (by type of mutiport M)

Type Bonds B constraint

SE B C

M

B

SF B :C

M

B

R B C

M

B

_ :C

M

B

C B C

M

B

(integral); :C

M

B

(derivative)

I B :C

M

B

(integral); C

M

B

(derivative)

TF B

1

,B

2

C

M

B

1

� C

M

B

2

GY B

1

,B

2

C

M

B

1

� C

M

B

2

0 B

1

; : : : ; B

N

:C

M

B

i

�

V

j 6=i

C

M

B

j

1 B

1

; : : : ; B

N

C

M

B

i

�

V

j 6=i

:C

M

B

j

Arc constraint

Bond Connected multiports constraint

B M

1

;M

2

C

M

1

B

� C

M

2

B

variables of its two bonds,i.e., only tuples 00 and 11 are allowed. The N-port junction of

type 0 (called common-e�ort junction) can have only one of its causality variables assigned

value 0 with the remaining N-1 variables be assigned value 1, i.e., only N tuples are

allowed 111 � � � 110; 111 � � � 101; : : : ; 101 � � � 111; 011 � � � 111. The N-port junction of type 1

(called common-ow junction) can have only one of its causality variables assigned value

1 with the remaining N-1 variables be assigned value 0, i.e., only N tuples are allowed

000 � � � 001; 000 � � � 010; : : : ; 010 � � � 000; 100 � � � 000.

The task of causal labeling for a bond graph BG consists in assigning values to causal

variables C

M

B

consistent with all node and arc constraints with preferred integral causality

being assigned to maximum number of storage elements in BG. This is done by the

algorithm SCAP [7], which performs sequential constraint satisfaction. SCAP proceeds

sequentially by �rst computing a causal ordering consistent with all the sources. If that
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step succeeds then the consistent labeling is further extended to include as many integral

causality constraints for storage elements as possible. If integral causality is satis�ed for

all the storage elements then the causality variables may all be assigned values, or some of

them remain unassigned. In the latter case, which indicates the presence of algebraic loops,

a causality variable may be assigned an arbitrary value. Then consistent labeling is further

extended, and the process continues until all the variables are instantiated. Using the

constraint formulation of table 2 SCAP was re-implemented in the language of constraint

logic programming in the boolean domain, CLP(B). See procedure 1. The advantage of

such implementation is to enhance the naturalness of representation of causal relations,

and possibly increase solution e�ciency.

Procedure 1 compute causal order

Input: Bond graph BG

Output: Causality assignments and their types.

1. Let

P

denote the set of causal assignment by source elements. Let the set of junction

constraints be T .

2. If

P

[T is unsatis�able then BG has invalid causality and return.

3. Else let � be the causal assignment entailed by

P

[T and do:

(a) While one-port M exists of type C or type I do:

If 

integ

M

is the integral causality constraint for M and � [ 

integ

M

[ T is

satis�able by �

0

then �  �

0

else BG has derivative causality.
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(b) If BG has not been assigned derivative causality then BG has integral causality.

If more than one assignment � exists, then BG has algebraic loops.

5 Block Diagram

In this section the problem of computing a block diagram from a causally-ordered bond

graph is considered. A block diagram depicts the interaction between the various mecha-

nisms that produce the system output from the inputs and identi�es the feedback loops in

the system model.

A block diagram in our computer program is a node-labeled tree, called BD-tree, whose

nodes are variables and labels are function speci�cations. A function speci�cation includes

the de�nition of a function or operator and possibly a list of parameters. Operators can be

di�erential operators: integration integ and di�erentiation deriv, or algebraic: summation

sum, multiplicationmult, and division div. Function de�nitions include e2q for one-port

elements of type C, f2e for one-port elements of type R, and f2p for one port elements

of type I. The function e2q for element of type C speci�es displacement as a function

of e�ort and is in its linear form given in terms of a capacitance parameter as in table 1.

The function f2e for element of type R speci�es e�ort as a function of ow and is in

its linear form given in terms of a resistance parameter as in table 1. The function f2p

for element of type I speci�es momentum as a function of ow and is in its linear form

given in terms of an inductance parameter as in table 1. Implicit de�nitions of q2e, e2f,

p2f for types C;R; I are obtained by inverting the respective de�nitions e2q, f2e, f2p.
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Two port elements of types TF;GY are speci�ed in terms of constants called transformer

modulus m and gyrator modulus r, respectively. Other function speci�cations are: eq,

input, feedback. The label input denotes a dummy function that takes no arguments

and signi�es that a variable is independent (i.e., exogenous). The functions eq, feedback

take one argument and signify equality. eq is reserved for internal nodes of the tree while

feedback is reserved for the leaf nodes. The speci�cation input is also reserved for

the leaf nodes. The speci�cation sum requires a list of sign parameters and means the

bottom-up (or, left-to-right) signed summation of the children variables.

A BD-tree has the following semantics. Given a node V with the label F and children

list CL, the value of V is the output of the function F when applied to the value list

of the children CL, written F#CL. For example, in the BD-tree shown in �g. 4(d), the

value of variable f

7

(root of the tree) is obtained by applying the function speci�cation

p2f(inertia) to p

7

. p

7

is the time integral of its child node e

7

, which equals e

5

� e

6

.

Procedure 2 describes how BD-tree can be computed. The procedure �rst computes

the set of directional constraints, DC, determined by the causal order and the bond graph

constraints. DC is a list of elements in the form, V  F#CL. The procedure computes

the tree top-down by associating the label F to the node V and computes recursively the

subtrees for each child in CL. The procedure maintains a list EXCLUDE to identify

feedback loops. If a node with the eq label has a child that is a member of EXCLUDE

then a feedback loop exists and in such case the node is assigned a feedback label. If a

node has no children then the node correspond to an exogenous (input) variable.
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Procedure 2 compute block diagram

Input: Bond graph BG, Causal order D, bond variable V .

Output: Block diagram in the form of a node-labeled tree.

Initialize: List EXCLUDE to empty.

1. Compute the list of directional constraints DC for all multiports in BG.

2. If V  

P

n

i=1

S

i

� V

i

is in DC then add V to EXCLUDE and return a tree rooted at

V labeled sum : [S

1

; : : : ; S

n

] (S

i

2 f+;�g) with children subtrees T (V

i

) obtained by

recursing.

3. If V  F#V

0

is in DC then do:

(a) IF F = eq and V

0

2 EXCLUDE then return the single node tree V labeled

feedback(V

0

).

(b) Else add V to EXCLUDE and return a tree rooted at V labeled F with the

subtree T (V

0

) obtained by recursing.

4. Else return the single node tree V labeled input.

Example 1 Consider the motor system shown in �g. 4 (a). The causal bond graph is

shown in �g. 4 (b). The block diagram is shown in �g. 4 (c), where the block 1=s represents

integration (s is the Laplace transform). The symbolic representation of the block diagram

generated by our program is shown in �g. 4 (d), which reads as follows. The rotational

speed f

7

depends on the momentum p

7

which is the integral of the torque e

7

. The torque e

7
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41 5

32

e

J

-

-
f 3

1/s

B

e

-

ΣΣ

1 1
B

inductance:I resistance:R damping:R

inertia:I

6

7
motor:GY

input:SE

(a) (b)

LR i

T1

e 1

e
4

e 2

3e R
Resistance

Inductance

p 2

1/L
f
2

f
4

K

K

Gyrator

5e

e
6

Inertia

p 7
1/J1/s

7

f 5

f
7

6f

Damping

(c)

ω

f^7:p2f(inertia)

p^7:integ

e^7:sum:[+,-]

e^5:mult:r(motor)

f^4:eq

f^2:p2f(inductance)

p^2:integ

e^2:sum:[+,-,-]

e^1:input

e^3:f2e(resistance)

f^3:feedback(f^2)

e^4:mult:r(motor)

f^5:feedback(f^7)

e^6:f2e(damping)

f^6:feedback(f^7)

(d)

Figure 4: Electric motor drive; (a) schematic diagram, (b) augmented bond graph, (c) block

diagram, (d) symbolic block diagram for the output f

7

corresponding to the rotational

speed of the motor !. The superscript for a bond variable corresponds to the bond label.
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is the di�erence between the motor torque e

5

and the torque e

6

dissipated by the damping.

e

5

is proportional to the armature current f

4

which equals the current f

2

owing in the

inductance. f

2

is proportional to the ux linkage p

2

which is the integral of the voltage e

2

.

e

2

equals the input voltage e

1

minus the voltage drop across the resistance e

3

minus the

back electro motive force e

4

which is proportional to the rotational speed f

7

.

6 Concluding Remarks

The bond graph method provides a versatile framework for dynamic system modeling and

for reasoning about dynamic system behavior based on structure. In spite of their utility,

bond graphs are not widely used in arti�cial intelligence. This may be attributed partly

to the di�erences in the languages and techniques used in both areas. One motivation

for this paper is to embed the bond graph method in the framework of constraint-based

representation and reasoning. By doing this, constraint-based programming and compu-

tational methods known in arti�cial intelligence become readily available for bond graphs.

Another motivation is that by merging the areas of constraint-based programming and

bond graphs, we hope to spur new developments in the area of qualitative physics. The

paper presents the results of initial e�orts toward those goals. First result of this work is

formulating the problem of causal ordering of a bond graph in the language of constraints

and implementing the well-known sequential causality assignment procedure (SCAP) in

the language of constraint logic programming (CLP). The contribution of this result is

twofold: (a) enhanced naturalness of representation of causal relations, and (b) possible

increase in solution e�ciency. Second result is describing a method for computing block
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diagrams from bond graphs. A block diagram depicts the interaction between the various

mechanisms that produce the system output from the inputs and identi�es the feedback

loops in the system model. Once a block diagram is produced, the transfer function of a

linear system can be derived which allows predictions in the time or frequency domain.
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