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Abstract

Pre-Pruning and Post-Pruning are two standard methods of dealing with noise in

concept learning. Pre-Pruning methods are very e�cient, while Post-Pruning methods

typically are more accurate, but much slower, because they have to generate an overly

speci�c concept description �rst. We have experimented with a variety of pruning

methods, including two new methods that try to combine and integrate pre- and post-

pruning in order to achieve both accuracy and e�ciency. This is veri�ed with test

series in a chess position classi�cation task.

1 Introduction

Inductive Logic Programming (ILP) or Relational Learning has established itself as

one of the major research areas in the �eld of Machine Learning [Muggleton, 1992,

Lavra�c and D�zeroski, 1993]. The ability to de�ne concepts from data distributed in separate

relational tables makes ILP methods particularly appropriate for learning from relational

databases (see e.g. [D�zeroski and Lavra�c, 1993]).

However, data from real-world problems often are noisy or incomplete. Learning algo-

rithms that are meant to discover knowledge in real-world domains must be able to deal

with this problem [Matheus et al., 1993]. Another major issue for learning from real-world

data is e�ciency [Frawley et al., 1992]. [Muggleton, 1993] argues that in many interesting

real-world problems | such as the protein prediction problem [Muggleton et al., 1992] on

which the ILP systemGolem [Muggleton and Feng, 1990] was tried | millions of examples

may be available for training, which is beyond the scope of most ILP systems of today.

This paper is mainly concerned with achieving noise-tolerance through e�cient Pruning

methods for relational learners. We will give a short introduction to relational learning

algorithms in section 2. Section 3 discusses several approaches to Pruning in ILP and presents

two new approaches to combining and integrating the two basic methods | Pre-Pruning

1



and Post-Pruning. In section 4 we give an experimental comparison of all the methods and

then draw some conclusions (section 5).

2 Inductive Logic Programming

Inductive Logic Programming (ILP) can be viewed at research on the intersection of

Logic Programming and Inductive Machine Learning [Muggleton, 1992]. In short the re-

search concentrates on the induction of PROLOG programs from relational data. Be-

ing able to express the discovered knowledge in a �rst-order logic representation language

can overcome some of the limitations of classical learning algorithms. Most of them

learn from an attribute-value representation of the input data and their representational

power thus is restricted to decision trees [Quinlan, 1983] or propositional Horn clauses

[Michalski et al., 1986, Clark and Niblett, 1989]. ILP algorithms on the other hand can not

only test attributes for speci�c values, but also make use of relations between the di�erent

attributes. [D�zeroski and Lavra�c, 1993] discuss these issues.

The learning task for most relational learning systems is as follows:

Given:

� a set of positive and negative training examples

� background knowledge (typically in the form of relational tables)

Find:

� a logic program that is able to derive all of the positive and none of the negative

training examples using the relations provided in the background knowledge.

Many ILP algorithms | including all of the algorithms discussed in this paper | address

this problem with the so-called separate-and-conquer strategy used in Foil [Quinlan, 1990].

The basic idea behind this approach is to learn one rule after the other until all of the

positive examples are covered by at least one rule. The rules are constructed by evaluating

each variabilization of each relation in the background knowledge with a greedy heuristic

like information gain and then selecting the most promising candidate as the next literal of

the clause. This process is repeated until enough conditions have been found to rule out all

of the negative examples. All positive examples covered by this rule are then removed from

the training set. Rules are learned in this way until no positive examples are left.

ILP systems have already been applied on various real-world problems. Some of the

systems even produced new knowledge that was of considerable interest for researchers

in the application domain and has been published in journals of their subject area

[Muggleton et al., 1992, Sternberg et al., 1992, King et al., 1992].

Two of the main problems when dealing with real-world data are noise-tolerance and

e�ciency. [Muggleton, 1993] argues that many real-world problems may involve thousands

or even millions of examples, so that e�ciency is a major issue for research in ILP. In the

next section we will discuss several ways of achieving noise-tolerance in ILP programs and

will evaluate them with respect to e�ciency.
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3 Pruning in Relational Learning Algorithms

Pruning is a standard way of dealing with noise in concept learning (see e.g.

[Mingers, 1989] or [Esposito et al., 1993]). There are two fundamentally di�erent approaches

[Cestnik et al., 1987], Pre-Pruning and Post-Pruning. In sections 3.1 and 3.2 we will review

some of these methods that have been adopted for relational concept learning systems. In

section 3.3 we show how pre-pruning can be used for improving the e�ciency and accuracy

of post-pruning by providing a better starting theory. Finally, in section 3.4, we introduce

a method that actually integrates both approaches by using post-pruning methods as a

pre-pruning criterion.

3.1 Pre-Pruning

Pre-Pruning methods deal with noise during concept generation. Algorithms that have no

pre-pruning heuristics are typically prone to over�tting the noise in the data. They try to

�nd concept descriptions that perfectly explain all the positive examples, but do not cover

any negative examples. In noisy data sets they therefore learn overly speci�c clauses. Many

of these rules mostly cover noisy examples and are bad generalizations. By learning a few

\over-general" rules instead of many very speci�c clauses, several algorithms deliberately

cover some negative training examples and leave some positive training examples uncovered

in order to avoid the above problem.

In ILP, pre-pruning has been common in the form of stopping criteria, i.e. heuristics

that determine when to stop adding conditions to a rule, or when to stop adding rules to

the concept description. The most commonly used criteria are

� Encoding Length Restriction: This heuristic used in the classic ILP system

Foil [Quinlan, 1990] is based on the Minimum Description Length principle

[Rissanen, 1978]. It prevents over�tting the noise by learning only as long as the

costs of encoding a theory together with its exceptions will not exceed the costs of

encoding the examples as they are.

� Signi�cance Testing was �rst used in [Clark and Niblett, 1989] and later on in the

ILP system mFoil [D�zeroski and Bratko, 1992]. It tests for signi�cant di�erences

between the distribution of positive and negative examples covered by a rule and the

overall distribution of positive and negative examples by comparing the likelihood ratio

statistic to a �
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distribution with 1 degree of freedom at the desired signi�cance level.

Insigni�cant rules are rejected.

� Cuto� Stopping Criterion: This simple method used in Fossil [F�urnkranz, 1994a]

only adds a condition to a rule when its heuristic value is above a prede�ned threshold.

mFoil's signi�cance testing along with the m-estimate and a powerful beam search

have been very successful in learning concepts in noisy domains [D�zeroski and Bratko, 1992].

Similar results have been obtained for the very e�cient cuto� criterion. Both have been

shown to be superior to the encoding length restriction, because the latter is dependent on

the size of the training set, so that the size of the learned concepts (and thus the amount of

over�tting) may increase with training set size [F�urnkranz, 1994a].
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3.2 Post-Pruning

Post-pruning was introduced to relational learning algorithms with Reduced Error Prun-

ing (REP) [Brunk and Pazzani, 1991] based on previous work by [Quinlan, 1987] and

[Pagallo and Haussler, 1990]. The basic idea is that in a �rst pass, no attention is payed

to the noise in the data and a concept description that explains all of the positive and none

of the negative examples is learned. For this purpose the training set is split into two subsets:

a growing set (usually 2/3) and a pruning set (1/3). The concept description that has been

learned from the growing set is then simpli�ed by deleting conditions and rules from the

theory until any further deletion would result in a decrease of predictive accuracy measured

on the pruning set.

However, this approach has several disadvantages, most notably e�ciency. [Cohen, 1993]

has shown that REP has a time complexity of 
(n

4

) on purely random data. Therefore

[Cohen, 1993] proposed Grow, a new pruning algorithm based on a technique used in the

Grove learning system [Pagallo and Haussler, 1990]. Like REP, Grow �rst �nds a theory

that over�ts the data. But instead of pruning the intermediate theory until any further

deletion results in a decrease in accuracy on the pruning set, in a �rst step the intermediate

theory is augmented with generalizations of all its clauses. In a second step, clauses from

this expanded theory are subsequently selected to form the �nal concept description until no

further clause improves predictive accuracy on the pruning set. For noisy data the asymptotic

costs of this pruning algorithm have been shown to be below the costs of the initial phase

of over�tting.

3.3 Combining Pre- and Post-Pruning

As stated in the last section, the Grow algorithm can drastically reduce the costs of prun-

ing an overly speci�c theory. However, the overall costs of the algorithm are still unnec-

essarily high, because like REP, Grow has to learn an overly speci�c intermediate theory.

[Cohen, 1993] therefore further improves the Grow algorithm by adding two weak MDL-

based stopping criteria. These methods are not intended to entirely prevent over�tting like

the pre-pruning approaches of section 3.1, but to reduce the amount of over�tting, so that

the post-pruning phase can start o� with a better theory and has to do less work.

The same is attempted in the top-down pruning (TDP) approach described in

[F�urnkranz, 1994b]. Here Fossil's simple cuto� stopping criterion (see section 3.1) is ex-

ploited for a powerful algorithm that generates all theories learnable by Fossil with dif-

ferent settings of the cuto� parameter [F�urnkranz, 1994a]. From these the most speci�c

theory within one standard error of classi�cation of the most accurate theory is selected as

the starting theory for the post-pruning phase. This is quite similar to the approach taken

in CART [Breiman et al., 1984] where the most general decision tree within this standard

error margin is selected as a �nal theory. However, the implementation of TDP made use

of several optimizations, so that �nding this theory is often cheaper than �tting the noise.

In particular, the theories are generated in a top-down fashion and are evaluated on the

way, so that learning can stop after a theory has been found that is below one standard

error of the best theory so far. A more detailed description of this process can be found in

[F�urnkranz, 1994b].
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3.4 Integrating Pre-and Post-Pruning

There are several problems with pruning in relational concept learning. Not all of them

are attacked by the algorithms in the previous sections [F�urnkranz and Widmer, 1994]. In

particular, the separate-and-conquer strategy used in all Foil-like ILP systems (see section 2)

may cause problems. The important di�erence between this method and the divide-and-

conquer strategy used in most decision tree learning algorithms is that pruning of branches

in a decision tree will never a�ect the neighboring branches, whereas pruning of conditions of

a rule will a�ect all subsequent rules. Deleting a condition from a rule means that the clause

is generalized, i.e. it will cover more positive instances along with some negative instances.

These negative instances are deliberately ignored, i.e. they are practically identi�ed to be

noisy. Consequently these instances should be removed from the training set so that they

cannot in
uence the learning of subsequent clauses. However, the initial growing phase of

post-pruning algorithms does not know which of the instances will be covered by the pruned

rule and is therefore not able to remove those instances from the training set. In the best

case those super
uous examples in the growing phase only lead to the generation of some

additional clauses that will be pruned in the pruning phase. In the worst case, however,

those instances may lead the learner down a garden path, because they may change the

evaluation of the candidate relations in subsequent learning and thus the \correct" literals

might not be selected. A wrong choice of a literal cannot be undone by pruning.

[F�urnkranz and Widmer, 1994] present I-REP, an e�cient solution to this problem by

means of integrating pre-pruning and post-pruning: Each clause is learned until it covers

no more negative examples. Then literals are deleted from this clause in a greedy fashion

until any further deletion would decrease the accuracy of this clause on a separate pruning

set. The resulting rule is then added to the concept description and all covered positive

and negative examples are removed from the training | growing and pruning | set. The

remaining instances in the training set are then redistributed into a growing and a pruning

set and a new clause is learned. When the predictive accuracy of the pruned clause is below

the predictive accuracy of the empty clause (i.e. the clause with the body fail), the clause

is not added to the concept description and I-REP returns the learned clauses. Thus the

accuracy of a clause on the pruning set also serves as a stopping criterion, i.e. post-pruning

methods are used as a pre-pruning heuristic.

4 Experiments

We have tested several algorithms in the domain of recognizing illegal chess positions in

the KRK chess endgame [Muggleton et al., 1989]. This domain has become a standard

benchmark problem for relational learning systems. The goal is to learn the concept of an

illegal white-to-move position with only white king, white rook and black king on the board.

The target predicate is illegal(A,B,C,D,E,F)where the parameters correspond to the row

and �le coordinates of the pieces in the above order. Background knowledge consists of the

relations X < Y, X = Y and adjacent(X,Y). This task would be very hard for attribute-value

learning systems, which typically cannot make use of background knowledge in the form of

relations (but see [D�zeroski and Lavra�c, 1993] for a way to circumvent this problem). The

domain contains a total of 262,144 di�erent instances; 86,976 (33.18%) of them are illegal.
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illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F.

illegal(A,B,C,D,E,F) :- adjacent(A,E), adjacent(B,F).

illegal(A,B,C,D,E,F) :- A = C, B = D.

Figure 1: An approximate KRK theory that is 99.57% correct.

The signs of 10% of the training instances were deliberately reversed to generate noise

in the data. The learned concepts were evaluated on test sets with 5000 noise-free exam-

ples. The sets used were the same as in [F�urnkranz, 1994a]. See also the Appendix of

[F�urnkranz, 1993] for a closer description of the domain.

The tested algorithms were

� the pre-pruning systems FOIL 6.1 [Quinlan and Cameron-Jones, 1993] and FOSSIL

(with a cuto� of 0.3) [F�urnkranz, 1994a],

� the post-pruning systems REP [Brunk and Pazzani, 1991] and Grow [Cohen, 1993],

� the combined system TDP [F�urnkranz, 1994b],

� and the integrated system I-REP [F�urnkranz and Widmer, 1994].

All algorithms were implemented by the author in PROLOG except for FOIL 6.1 which

is written in C and publicly available from ftp.cs.su.oz.au. The PROLOG systems had

major parts of their implementations in common. In particular they shared the same interface

to the data. Grow used the same pruning operators as REP

1

. FOIL 6.1 was used with

its default settings except that the -V 0 option was set to avoid the introduction of new

variables. The PROLOG systems had all of their argument modes declared as input, which

has the same e�ect. The only di�erence in search space between the PROLOG systems

and FOIL 6.1 was that the former did not consider recursive literals for e�ciency reasons.

FOIL 6.1 would probably have been faster if this had been enforced, but no signi�cant

di�erence in accuracy can be expected (see [F�urnkranz, 1994a] for results from experiments

with the same data sets, where the code of FOIL 4 was modi�ed to prevent recursion). Run-

times for most algorithms were measured in CPU seconds for SUN Sparc stations ELC. The

experiments with Fossil, FOIL 6.1 and TDP, however, were performed on a SUN Sparc

station IPX, which gave the other algorithms a 5 : 6 advantage (determined on a few test

runs on both machines).

The algorithms were trained on identical sets of sizes from 100 to 1000 examples. All

reported results were averaged over 10 runs, except for the training set size 1000, where only

6 runs were performed, because of the complexity of this task for some algorithms.

Figure 2 shows curves for accuracy and run-times over 5 di�erent training set sizes.

I-REP | after a bad start with only 84.55% accuracy on 100 examples | achieves the

1

In [Cohen, 1993] REP and Grow also used identical pruning operators. They were, however, slightly

di�erent from our choice. We used the operators described in [Brunk and Pazzani, 1991].
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highest accuracy. In predictive accuracy, FOIL did poorly. Its stopping criterion is depen-

dent on the training set size and thus too weak to e�ectively prevent over�tting the noise

[F�urnkranz, 1994a]. With 1000 examples FOIL learns concepts that have more than 20

rules and are incomprehensible. I-REP on the other hand consistently produces the 99.57%

correct, understandable 4-rule approximation of the correct concept description of �gure 1.

This theory correctly identi�es all illegal positions, except the ones where the white king is

between the black king and the white rook and thus blocks a check that would make the po-

sition illegal, because white is to move. The post-pruning approaches REP and Grow both

are about equal, and TDP does not lose accuracy compared to them. All three, however,

only rarely �nd the 4th rule of �gure 1. It can also be seen that the pre-pruning approach

taken by FOSSIL needs many examples in order to make its heuristic pruning decisions more

reliable.

Accuracy Run-time

Algorithm Pre Post Pre Post Total

FOIL 6.1 94.70 | 127.17 | 127.17

FOSSIL (0.3) 98.27 | 44.39 | 44.39

REP 85.65 98.01 2129.89 23125.34 25255.23

Grow 85.65 98.30 2129.89 806.89 2936.78

TDP 96.56 98.50 433.54 162.25 595.79

I-REP | 99.55 | | 115.35

Table 1: KRK domain (10% noise), 1000 examples

FOSSIL, on the other hand, is the fastest algorithm. FOIL, although implemented in

C, is slower, because with increasing training set sizes it learns more clauses than FOSSIL

[F�urnkranz, 1994a] and has extensive backtracking mechanisms. REP proves that its pruning

method is very ine�cient. Grow has an e�cient pruning algorithm, but still su�ers from the

expensive over�tting phase. TDP brings a little speed-up compared with REP and Grow,

which is mainly due to the fact that it is able to start post-pruning with a much better

theory than REP or Grow, as can be seen from table 1. I-REP, however, learns a much

better theory and is faster than both, the growing and the pruning phase of TDP.

In fact, I-REP, where post-pruning is integrated into a pre-pruning criterion, is only

a little slower than FOSSIL, but much more accurate. Thus it can be said that it truly

combines the merits of post-pruning (accuracy) and pre-pruning (e�ciency). This becomes

also apparent in �gure 3, where accuracy (with the standard deviations observed in the

di�erent runs) is plotted against the logarithm of the run-time.

I-REP has also been tested on some of the standard Machine Learning databases

that can be found in the UCI repository (ics.uci.edu). and again was signi�cantly

faster than REP or Grow [F�urnkranz and Widmer, 1994]. On most natural domains

(like Mesh, Promoters and Votes) it achieved a higher accuracy than REP and Grow

[F�urnkranz and Widmer, 1994]. However, it did worse than both of them in domains with

low redundancy, where rules have to be found that cover only a few training examples (e.g.
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Tic-Tac-Toe). In these domains post-pruning methods generally do not do very well, as they

all tend to over-generalize. I-REP, however, does more so than the other algorithms.

5 Conclusion

We have compared several approaches to pruning in relational concept learning. Conven-

tional pre-pruning methods are very e�cient, but not always as accurate as post-pruning

methods. The latter, however, tend to be very expensive, because they have to learn an over-

specialized theory �rst. I-REP [F�urnkranz, 1994a] is an algorithm that integrates pre- and

post-pruning into one criterion. Our experiments show that this approach e�ectively com-

bines the e�ciency of pre-pruning with the accuracy of post-pruning in domains with high

redundancy. As real-world databases typically are large and noisy [Matheus et al., 1993],

and thus require learning algorithms that are both e�cient and noise-tolerant, I-REP seems

to be an appropriate choice for this purpose.
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