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Abstract

On-line learning in domains where the target concept depends on

some hidden context poses serious problems. Context shifts can induce

changes in the target concepts, producing what is known as concept

drift. We describe a family of learning algorithms that exibly react

to concept drift and can take advantage of situations where contexts

reappear. The general approach underlying all these algorithms con-

sists of (1) keeping only a window of currently trusted examples and

hypotheses; (2) storing concept descriptions and re-using them if a pre-

vious context re-appears; and (3) controlling both of these functions by

a heuristic that constantly monitors the system's behavior. The pa-

per reports on experiments that test the systems' performance under

various levels noise and di�erent extent and speed of concept drift.

Key words. Incremental concept learning, on-line learning, context de-

pendence, concept drift, forgetting



1 Introduction

The work presented here relates to the global model of incremental or on-line

concept learning, which has recently received considerable attention among

theoreticians (see Angluin, 1988; Maass, 1991; Helmbold, Littlestone, and

Long, 1992; and the references therein) as well as practitioners (Schlimmer

and Granger, 1986; Langley et al., 1987; Kubat, 1989, 1993; Salganico�, 1993a;

Widmer and Kubat, 1993; and many others). The principal task is to learn a

concept incrementally by processing labelled training examples one at a time.

From another point of view, the problem may also be seen as minimizing

the total number of erroneous classi�cations in a feedback system: a stream of

objects are classi�ed, one by one, as positive or negative instances of a concept,

and immediately afterwards the correct answer is received. The learner uses

the current state of the knowledge base to predict the class of each incoming

example. A discrepancy between the prediction and the real class value will

usually trigger modi�cations to the knowledge base.

A di�cult problem in such a learning scenario is that the concepts of in-

terest may depend on some hidden context. Mild weather means something

else in Siberia and in Central Africa; Beatles fans had a di�erent idea of fash-

ionable hair-cut than the Depeche-Mode generation. Or consider weather pre-

diction rules, which may vary radically depending on the season. Changes

in the hidden context can induce more or less radical changes in the target

concepts, producing what is generally known as concept drift in the literature

(e.g., Schlimmer and Granger, 1986).

An example of real-world concept drift is described in (Kubat, 1992), where

a system was presented that learned to control the load redistribution in com-

puter clusters: overloaded units should send part of their load to underloaded

units in order to improve the overall response time. The `real' rules describ-

ing \overloadedness" would depend on the workload pro�le as de�ned by the

frequency of disk operations, CPU and memory requirements, and the like.

However, the only variables visible to the system were the lengths of various

CPU and disk queues. Thus, the workload structure was the hidden context

that determined the interpretation of the visible variables. Note that this

context varies in time and that similar contexts can reappear.

E�ective learning in environments with hidden contexts and concept drift

requires a learning algorithm that can detect context changes without being

explicitly informed about them, can quickly recover from a context change and

adjust its hypotheses to a new context, and can make use of previous experience

in situations where old contexts and corresponding concepts reappear.

One possible approach is sketched in Figure 1. As the context is known to

vary in time, the learner trusts only the latest examples|their set is referred
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Figure 1: Current and old concept descriptions and the window moving along

the stream of examples.

to as the window. Newly arrived examples are added to the window and the

oldest ones tend to be deleted from it. Both of these actions (addition and

deletion) trigger due modi�cations to the current concept hypothesis to keep it

consistent with the examples in the window. In the simplest case, the window

will be of �xed size, and the oldest example will be dropped whenever a new

one comes in. In the terminology of (Salganico�, 1993b), this would be called

\time-based forgetting".

To extend the basic model, assume that the learner maintains a store of

concept descriptions or hypotheses pertaining to previously encountered con-

texts. This is indicated by the boxes in the lower left part of the picture. When

the learner comes to suspect a context change, it will examine the potential of

the previously stored descriptions to provide better classi�cations. Based on

the result, the system may either replace the current concept description with

the best of the stored descriptions, or start developing an entirely new one.

Generally, a learning algorithm embodying these ideas needs (1) operators

for the modi�cation of the concept description in reaction to changes in the

contents of the window; (2) the ability to decide when and how many old

examples should be deleted from the window (`forgotten'); and (3) a strategy

for maintaining such a store of current and old descriptions and the ability

to assess the relative merits of concept hypotheses. Clearly, items (2) and (3)

will require the system to make some guesses as to when a context change is

occurring.

The basic approach to learning and forgetting will be elaborated in the

following section, where we specify a simple algorithm for maintaining a con-
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sistent concept hypothesis. Section 3 looks at computational learning theory

for some hints concerning the main parameter of this algorithm (the window

size). The following sections then describe three extensions of the basic method

and their realization in experimental systems: the algorithm FLORA2 (section

4) possesses the ability to dynamically adjust the window to an appropriate

size during learning; FLORA3 (section 5) stores concepts for later use and

reassesses their utility when a context change is perceived; and FLORA4 (sec-

tion 6) is designed to be particularly robust against noise in the input data.

Experiments with all three algorithms will be described. Finally, in section 7

we discuss related research in Machine Learning and some relevant results in

Cognitive Science.

2 Learning and Forgetting: The General FLORA

Framework

At the moment, our algorithms are restricted to the relatively simple represen-

tation language based on attribute-value logic without negation. Throughout

the paper we will often use the notion of a description item, which is a conjunc-

tion of attribute-value pairs. We will say that a description item matches an

example if it is true for it. For instance, (color = white) ^ (temperature

= low) matches `snow' and (shape = cube) does not match the Globe. For-

mally, a description item matches the description of an object if all its literals

(attribute-value pairs) occur in the description.

In the FLORA framework, a concept description or hypothesis is represented

in the form of three description sets: the set ADES contains description items

matching only positive examples; it can be regarded as a DNF formula rep-

resenting the current (positive) concept hypothesis. The set NDES similarly

summarizes the negative examples; and PDES contains description items that

are slightly too general, matching positive, but also some negative examples.

1

Assume the following structure:

ADES = fADes

1

=AP

1

; ADes

2

=AP

2

; : : :g

PDES = fPDes

1

=PP

1

=PN

1

; : : :g

NDES = fNDes

1

=NN

1

; : : :g

1

The name FLORA is an acronym for FLOating Rough Approximation, which indicates

that the original framework as conceived in (Kubat, 1989) was inspired by Rough Set Theory

(Pawlak, 1982). ADES was a lower approximation of the concept; the union ADES [

PDES formed its upper approximation. This interpretation is no longer valid in the current

implementation of the FLORA systems. The sets are maintained for practical reasons, to

summarize information from the training examples.
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where ADes

i

, PDes

i

, and NDes

i

are description items;AP

i

and PP

i

are coun-

ters that specify how many positive examples in the current window match the

individual description items in ADES and PDES respectively; similarly, PN

i

and NN

i

count how many negative examples match the respective description

items. The counters are updated with any addition to or deletion from the

window and are used to decide when to move an item from one set to an-

other or when to drop it altogether from the hypothesis. Only such items are

retained that cover at least one example in the current window.

The description items in ADES and PDES are generated by incremental

generalization in response to positive and negative instances. When new in-

stances are added to or deleted from the current window, some items will be

moved from one set to another. In particular, the set PDES of `potential

hypotheses' contains items that were once in ADES or NDES, but are con-

tradicted by some examples. They are kept in PDES in the hope that they

may become relevant again when old instances are dropped from the window.

PDES acts as a reservoir of potentially useful hypotheses. More precisely,

modi�cations to the window can a�ect the contents of the description sets in

the following ways:

Adding a positive example to the window may cause a new description

item to be included in ADES, or some existing items to be either `con�rmed'

or generalized to accommodate the new instance, and/or existing items to be

transferred from NDES to PDES.

Similarly, adding a negative example to the window may cause a new de-

scription item to be included in NDES, or some existing items to be `reinforced'

or generalized, or existing items to be transferred from ADES to PDES.

Forgetting an example (dropping it from the window) can cause existing

description items to be `weakened' (i.e., the corresponding counters are decre-

mented), or even deleted from the current description set (if the counter drops

to zero), or moved from PDES to ADES (if the example was the only negative

instance covered) or to NDES (if the example was the only positive one).

Figure 2 helps visualize what is going on during the learning process. The

arrows indicate possible migrations of hypotheses between description sets after

the arrival or deletion of a positive (�) or negative (	) instance, respectively.

(The extent of these transitions for the case n arrivals and m deletions is

quanti�ed in Kubat, 1991.)

The complete basic FLORA algorithm for the maintenance of hypotheses

is sketched in Table 1 for a positive example (if the example is negative, the

algorithms work analogously, just substitute NDES for ADES). Note that there

are two such procedures, one for the case when a new example is added and

one for the case when the oldest example is being deleted from the window.

The actions taken when removing an example from the window are rather
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Figure 2: Transitions among the description sets

straightforward. In the case of a new example coming in, the respective coun-

ters in PDES are incremented and description items in NDES matching the

instance are moved to PDES. For ADES, there are three possible cases: if the

example matches some items, the counters are simply incremented; otherwise,

if some item can be generalized so as to accommodate the instance without

becoming too general (i.e., subsuming some item in PDES or NDES ), this is

carried out, otherwise the description of the instance is added to ADES as a

whole.

Generally, the three description sets are kept non-redundant and consistent

by checking for subsumption within and between the sets. In this way, for

instance, over-generalization of ADES is avoided by checking it against PDES

and NDES whenever one of the description items is generalized.

Note also that there is no specialization operator in this framework: if a

new (positive or negative) instance cannot be incorporated consistently into

any of the generalizations, its full description is added to ADES (NDES); it

acts as a kind of speci�c `seed' which will be generalized later on. Overly

general descriptions are discarded when old examples are forgotten.

The general approach presented here assumes that only the latest examples

are relevant and should be kept in the window, and that only those description

items matter that are consistent with the examples in the window. While each

newly arriving example is automatically included in the window, the question

of how many examples should actually be deleted is more di�cult. In the

following section, we briey review some theoretical results from computational

learning theory as far as they pertain to this question. The following section

then describes FLORA2, our �rst incarnation of the FLORA framework which

explicitly reasons about the appropriate window size during learning.
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Table 1. The basic FLORA algorithm: Functions learn from(X) and forget(X)

Function learn-from(I) for a positive instance I

functions:

. match(I, XDes

i

) : : : determines whether the XDes

i

is true for instance I

. delete(X,XDES) : : : deletes X from XDES

. include(X, XDES) : : : puts X into XDES if not subsumed by an existing item

. generalize(I,XDES,YDES,ZDES) : : : performs minimal generalization of some

item in XDES to cover instance I (if possible without subsuming some item

in the other sets YDES, ZDES); returns true upon success;

algorithm:

MATCH := false;

for i := 1 to jADES j

if match(I, ADes

i

) then

begin AP

i

:= AP

i

+ 1;

MATCH := true

end;

if not MATCH then generalize(I,ADES,PDES,NDES)

else include(I/1,ADES);

for i := 1 to jPDES j

if match(I, PDes

i

) then PP

i

:= PP

i

+ 1;

for i := 1 to jNDES j

if match(I, NDes

i

) then

begin delete(NDes

i

, NDES);

include(NDes

i

/1/NN

i

,PDES)

end;

Function forget(I) for a positive instance I

algorithm:

for i := 1 to jADES j

begin if match(I,ADes

i

) then AP

i

:= AP

i

� 1;

if AP

i

= 0 then delete(ADes

i

, ADES);

end;

for i := 1 to jPDES j

begin if match(I,PDes

i

) then PP

i

:= PP

i

� 1;

if PP

i

= 0 then

begin delete(PDes

i

,PDES);

include(PDes

i

/PN

i

,NDES)

end

end;
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3 Theoretical results concerning learning un-

der drift

The notion of concept drift has received some attention in the literature on

computational learning theory in recent years. For instance, Helmbold and

Long (1991, 1994) and Kuh et al. (1991, 1992) have explicitly investigated

various conditions under which e�ective drift tracking is possible. They start

from the observation that drift tracking is strictly impossible if there are no

restrictions on the type of concept changes allowed (as an extreme example,

consider a sequence of concepts that randomly alternates between the constant

function 1 and the constant function 0 after every example). They then go on

to study various restrictions on the severity (extent) or the frequency (rate) of

concept changes.

In particular, Helmbold and Long (1994) assume a permanent (possibly

with each example) but very slight drift. Their main results are:

� a general algorithm that tolerates concept drift of extent up to � �

c

1

�

2

=(d ln (1=�));

� a randomized version of this algorithm which is potentially more e�cient

computationally but tolerates drift of lower extent (� � c

2

�

2

=(d

2

ln (1=�)));

and

� upper bounds on the tolerable amount of drift for two particular concept

classes (halfspaces and axis-aligned rectangles), which essentially say that

no algorithm can track concept drift greater than c

3

�

2

=n (where n is the

dimension of the example space) if the prediction error is to stay below

�.

Here, the c

i

's are positive constants, � is the maximum allowed probability

of misclassifying the next incoming example, and d is the Vapnik-Chervonenkis

dimension of the target class. The extent of concept drift � is measured in

terms of the relative error of two successive concepts (i.e., the probability that

they will disagree on a randomly drawn example).

In addition, Helmbold and Long also show that it is su�cient for a learner

to consider only a �xed number of previous examples (i.e., a �xed window slid-

ing over the input stream). Their analysis leads to rough estimates as to the

window size needed for e�ective tracking; in the case of the �rst of the above

algorithms, for instance, they show that a window size m = (c

0

d=�) log (1=�)

(together with the above restriction on the allowable amount of drift) is su�-

cient to guarantee trackability.
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\Computationally e�cient", in their framework, means that updating the

hypothesis and classifying the next incoming example should be feasible in

polynomial time. In e�ect, the algorithm they describe recomputes the current

hypothesis from the entire window after every new instance (\batch learning").

This is a reasonable assumption in complexity theory, but is not what we desire

for a practical application. What we are looking for is a truly incremental

algorithm that only looks at the new example to modify its current hypothesis.

Kuh et al. (1991) introduce the notion of PAC-tracking as a straightforward

extension of Valiant's (1984) PAC framework. Again, their general results

relate to the batch learning scenario, where a hypothesis is recomputed from

the entire window after each instance. Their approach is somewhat orthogonal

to the work of Helmbold and Long: rather than restricting the extent of drift,

they set out to determine the maximum rate of drift|i.e., how frequently a

concept is allowed to change|that is tolerable by a learner.

Their main general result is a lower bound on the allowed drift rate:

� <

�

2

m(�; �=2) (where a drift rate � means that on average, a concept is stable

for at least 1=� time steps or instances). Again, this result assumes a mini-

mum (�xed) window size which in this case turns out to be w(�; �) = m(�; �=2)

where m(�; �) is derived from the general bound on the number of train-

ing examples that guarantee PAC-learning (Blumer et al., 1989): m(�; �) =

max(

4

�

log

2

�

;

8d

�

log

13

�

) (where d is the VC-dimension of the class of target con-

cepts). The similarity to the sample size derived by Helmbold and Long is

evident.

Attempts to characterize fully incremental learning under concept drift

(Kuh et al. 1992) have led to bounds on the expected mistake rate of drift

trackers for some very speci�c concept classes (e.g., half-planes and intersec-

tions thereof). No general results for arbitrary concept classes are known to

us at this time.

For many practical applications with real-world data, truly incremental

learning is important, and so are reasonably sized windows. On the other hand,

we cannot always demand or expect an arbitrarily small error. With respect

to the large window size prescribed by the theoretical analysis, Kuh et al.

(1991) conclude that \[a]n algorithm that removes inconsistent examples more

intelligently, e.g., by using conicts between examples or information about

allowable changes, will be able to track concept sequence spaces that change

more rapidly." This is exactly what we attempt to do in the FLORA family

of algorithms. In the tradition of \AI-type" learning, we will take a heuristic

approach to dynamically adjusting the window size based on strategies for

explicitly detecting context changes. We will assume that the rate of context

changes is rather low (i.e., that there are phases of stability between periods

of change), but on the other hand we will allow concept changes of arbitrarily
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large extent (successive versions of the target concept may be very di�erent).

Of course, under these circumstances one cannot expect the prediction error �

always to be bounded; but our heuristic approach aims at enabling the learner

to recover very quickly from low predictive accuracy after a context change.

4 Flexible Windowing: FLORA2

4.1 Description of FLORA2

The �rst realization of the FLORA framework that we will discuss is the algo-

rithm FLORA2 (Widmer and Kubat, 1992), which attempts to dynamically

adapt the size of its window during the learning process. Let us start with an

intuitive look at the e�ects of an inappropriate window: basically, a narrow

window will not accommodate a su�cient number of examples for a stable con-

cept description; a wide window, in turn, will slow down the learner's reaction

to concept drift, particularly if the change in the concept is quite dramatic.

Obviously, the ideal setting depends on the extent of the concept drift and on

the momentary state of learning. Both of these variables can only be deter-

mined dynamically, during learning. Moreover, the occurrence of a concept

drift can only be guessed at. A good heuristic for dynamic window adjust-

ment should shrink the window (and forget old instances) when a concept

drift seems to occur, and keep the window size �xed when the concept seems

stable. Otherwise the window should gradually grow until a stable concept

description can be formed.

In trying to guess when a concept drift occurs, FLORA2 uses two heuristic

indicators: the system's predictive performance Acc (monitored over a �xed

number of past classi�cation attempts) and syntactic properties of the evolving

hypotheses. The basic assumption is that sharp drops in Acc or a sudden

explosion of the number of description items in ADES may signal a possible

concept drift. As both of these indicators depend heavily on the learning task

characteristics, three parameters are used to customize the heuristic to the

application domain:

lc ( = threshold for low coverage of ADES );

hc ( = threshold for high coverage of ADES ); and

p ( = threshold for acceptable predictive accuracy).

By the coverage of a description set we mean here the ratio of the number

of instances covered by items in the set and the size (in terms of the number

of literals) of the set.

Table 2 shows the Window Adjustment Heuristic (WAH ) that is currently

used in FLORA2. To put it in words, the WAH decreases the window size by
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Table 2. Function L :=how many to forget(lc; hc; p)

denotations:

N : : : number of positive instances covered by ADES

S : : : size of ADES in terms of number of literals

Acc : : : current predictive accuracy (monitored over recent classi�cation attempts)

jW j : : : window size

parameters lc; hc and p are user-de�ned

algorithm:

if (N=S < lc) or ((Acc < p) and (decreasing(Acc)) /* drift suspected */

then L := 0:2� jW j /* reduce window by 20% */

else if (N=S > 2 � hc) and (Acc > p) /* extremely stable */

then L := 2 /* reduce window by 1 */

else if (N=S > hc) and (Acc > p) /* stable enough */

then L := 1 /* keep window �xed */

else L := 0. /* grow window by 1 */

20% if a concept drift is suspected; the window size is decreased by 1 (after the

addition of the new example, delete the two oldest examples) if the hypothesis

seems to be extremely stable; this is to avoid keeping in memory unnecessarily

large numbers of examples. If the current hypothesis seems stable enough,

the window size is simply left unchanged. And if none of these conditions is

satis�ed, the program assumes that more information is needed and does not

forget the oldest example, thus incrementally increasing the window size.

The particular parameter settings currently used in FLORA2 are lc = 1:2,

hc = 4:0 and p = 70%. Given that the heuristic is (necessarily) very syntac-

tically oriented and is thus very sensitive to the description language used, it

seems hopeless to try to make it completely general and free of parameters.

4.2 Experiments

4.2.1 Adjusting to concept drift

To permit comparison with one of the �rst concept drift trackers, STAGGER

(Schlimmer and Granger, 1986), FLORA2 was tested on the same arti�cial

learning problem as used by Schlimmer and Granger. There is a sequence of

three target concepts (1) size = small ^ color = red, (2) color = green _

shape = circular and (3) size = (medium _ large) in a simple blocks world.

Training instances are generated randomly according to the hidden concept,

and after processing each instance, the predictive accuracy is tested on an
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Figure 3: Adjusting to drift: predictive accuracy.
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Figure 4: Adjusting to drift: dynamic window size.

independent test set of 100 instances, also generated randomly. The underlying

concept is made to change after every 40 training examples. The results are

averaged over 10 runs. Figure 3 shows FLORA2 's predictive accuracy on the

test set after every training step. The dotted vertical lines indicate where the

underlying concept changes.

It can be seen that the dramatic concept shifts lead to a sharp decrease

of the predictive accuracy, but FLORA2 adjusts very quickly and soon ap-

proaches the 100% mark again. That this is due to the workings of theWindow

Adjustment Heuristic can be seen from �gure 4, which plots the development

of the window size in a typical single run. The WAH behaves as expected:

a change in the de�nition of the underlying concept �rst leads to a more or

less short increase in the size of the window, before the system reacts to the

concept shift by narrowing the window and forgetting old, now irrelevant or

12



disturbing instances.

A comparison of these curves with the respective �gures in (Schlimmer and

Granger, 1986) suggests that FLORA2 compares well with STAGGER in terms

of convergence and re-adjustment speed. However, FLORA2 's explicit drift

detection mechanism (the WAH ) has additional advantages, as will be seen in

section 5, where we introduce an algorithm for explicit context handling.

4.2.2 Slow drift vs. radical shifts

There are many di�erent kinds of concept drift in the real world. Character-

istic attribute values may change, the value domains of attributes may evolve

over time, attributes once important may become meaningless, new ones may

emerge; di�erences between successive concepts may be drastic or only a�ect

some small facet; some concepts change only gradually, creating phases of

ambiguity and uncertainty between periods of stability, other concepts may

change overnight.

Here we show some simple experiments testing FLORA2 along two of these

dimensions. The following two expectations were to be veri�ed: (1) the smaller

the di�erence between two successive target concepts, the faster FLORA2

adjusts to the change; and (2) abrupt concept changes are easier to deal with

than slow drift associated with periods of uncertainty.

2

Both expectations are

tested in arti�cial domains with binary attributes.

Figure 5 shows FLORA2 's performance (again averaged over 10 runs) on a

set of three problems with more or less drastic di�erences between successive

concepts. In a universe de�ned by six Boolean attributes fa

1

: : : a

6

g, we de�ned

concepts A, a

1

_a

2

_a

3

and B , a

4

_a

5

_a

6

and two concepts `in between':

A

0

, a

1

_a

2

_a

6

and B

0

, a

1

_a

5

_a

6

. Obviously, A

0

is more similar to A than

to B, B

0

is more similar to B, and A and B are most dissimilar. The �gure

plots FLORA2 's predictive accuracy in learning from three di�erent series of

concepts: A followed by B (followed by another period of B) (solid line); A

followed by B

0

followed by B (dashed line); and A followed by A

0

followed by

B (dotted line). The graphs show quite clearly that the rate of recovery from

a concept change is directly related to the extent of the change.

The second experiment is concerned with the speed of concept drift. Some-

times concepts will change only gradually, creating a period of uncertainty

between stable concept states. The new concept only gradually takes over,

and some examples may still be classi�ed according to the old concept. A

typical example is a beginning malfunction of some measuring device that �rst

2

This e�ect is a consequence of FLORA2 's forgetting strategy and is contrary to the

assumptions of Helmbold and Long (1994), who assume steady, but almost imperceptible

drift.
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α 1-α

X1 x∆
0

1
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fails (classi�es in a new way) only sometimes, until the new mode becomes

dominant. In e�ect, the period between stable states creates varying levels of

noise. This can modelled by a function � (see �gure 6) that represents the

degree of dominance of the old concept A over the new concept B or, in other

words, the probability that the current concept still belongs to the old con-

text. � = 1 means that A is fully in e�ect, � = 0 means that B has completely

taken over. The x axis in �gure 6 should represent time; if we assume that

instances arrive at constant intervals, time can be equated with the number of

examples processed so far. X1 is the point where the concept begins to drift.

The slope of the function � can then be characterized by �x, the number of

training instances until � reaches zero. Between X1 and X1 + �x, � � 100%

of the examples are still classi�ed according to A, and B is already in e�ect in

(1 � �) � 100% of the cases.

Figure 7 compares FLORA2 's performance in situations of varying drift

rates. The target concepts used were A, a

1

^a

2

and B , (a

3

^a

4

)_(a

5

^a

6

).
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Figure 7: Slow vs. fast drift.

The drift rates compared were �x = 0 (sudden shift), �x = 50, �x = 100,

and �x = 200 (very slow drift). X1 (the point where the concept begins to

drift from A to B) was at 500 instances.

In this situation of continuously varying concept dominance, it does not

make sense to test predictive accuracy on an objective, independent test set.

Instead, �gure 7 plots FLORA2 's current accuracy, i.e., its success at pre-

dicting the class of the incoming training examples before learning from them

(averaged over the last 20 predictions).

The most important �nding is that the qualitative behavior of FLORA2

seems to be quite robust. As expected, the shape of the valley of decreased

accuracy depends on the slope of the drift function �. However, FLORA2 has

usually regained high accuracy shortly after the concept change is complete.

The robustness of the Window Adjustment Heuristic is also documented in

�gure 8, which plots the window sizes (averaged over the 10 runs) in the same

experiment. The characteristic shape (narrowing of window at beginning of

drift, then increase until stable concept is learned) is clearly recognizable in

all four curves. The more sudden the drift, the easier is it to detect, and the

steeper is the window narrowing curve.

Note also the stable range of the window size over the entire experiment:

in none of the four conditions did the window grow to an unreasonable size,

nor did it collapse except in situations of concept drift or noise.
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Figure 8: Window size for slow vs. fast drift.

5 Dealing with Recurring Contexts: FLORA3

There are many natural domains where there is a �nite number of hidden

contexts that may reappear, either cyclically or in an unordered fashion. For

instance, there are four seasons that follow each other in a cyclic order and

cause regular changes in many natural phenomena. The speci�c environment

where a robot is expected to work might consist of several rooms, each with its

own characteristics. A country has only a limited number of neighbors, with

more or less di�erent sets of rules relevant to many types of tasks.

In domains where contexts and associated concept versions reappear, it

would be a waste of e�ort to re-learn an old concept from scratch every

time. Instead, concepts or hypotheses should be saved so that they can be re-

examined at some later time, when there are indications of a context change.

The e�ect should be faster convergence if the concept (or a similar one) has

already occurred. This section introduces an extension of FLORA2 that in-

cludes a mechanism for context storage and recall. The mechanism is tightly

coupled with the window adjustment algorithm.

5.1 Description of FLORA3

Table 3 sketches the top-level structure of FLORA3. In principle, it is similar

to FLORA2 | the system �rst tries to classify the new incoming example,

updates its classi�cation record, then learns from the instance by incorporating

it into the window and updating the description sets, and, after calling the
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Table 3. The general framework of FLORA3

input: stream of examples

parameters lc; hc and p to control the window size

functions:

. classify(I) : : : uses the contents of ADES to classify instance I ;

. learn from(I) : : : adds I to the window and updates the description sets;

. how many to forget(lc,hc,p) : : : uses the WAH to determine the window size;

. forget the oldest(L) : : : deletes the oldest L examples from the window

and updates the description sets;

. choose context : : : uses information from the WAH and recent classi�cations

to decide whether to supersede the current context with an older one.

algorithm:

for i := 1 to no of examples

begin classify(example(i));

learn from(example(i));

L := how many to forget(lc,hc,p);

forget the oldest(L);

choose context

end.

WAH to decide whether and how to adjust the window size, `forgets' the

appropriate number of old instances. However, after each such learning cycle,

FLORA3 inspects the current state of learning in order to decide whether it

should reconsider some old context (that is, a concept description that was

useful in some old context).

The idea is that when a context change seems to occur, the system should

consult its store of old concept descriptions to see whether some old concept

might better describe the examples currently in the window. Conversely, when

a stable concept hypothesis has been reached, it might be worthwhile to store

the current hypothesis for later reuse, when some similar context as the current

one reappears. It is the Window Adjustment Heuristic (WAH ) as embodied

in the function how many to forget in Table 2 that tries to determine precisely

these circumstances (the occurrence of a context change and the stability of

the learning situation). So in FLORA3, storage and re-examination of old

hypotheses are tightly linked to changes in the window size.

The corresponding function choose context, which is called at the end of

each learning loop, is sketched in Table 4. When the current concept is stable

according to the WAH, the system saves the current concept hypothesis for

later reuse, unless there is already a stored concept with the same set of ADES
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Table 4. Function choose context

denotations:

Stable : : : boolean variable; true if the current hypothesis is stable

according to the WAH; false otherwise;

Drift suspected : : : boolean variable; true if the WAH suspects a

concept drift and has narrowed the window;

functions:

. store current : : : store current description sets

. �nd best candidate : : : �nd best matching old context

. regeneralize old description : : : regeneralize according to current window

. replace if applicable : : : reinstall old hypothesis, if better than current

algorithm:

if Stable

then store current

else if Drift suspected then

begin Best := �nd best candidate;

G := regeneralize old description(Best);

replace if applicable(G)

end.

descriptions. On the other hand, if there is reason to believe that a context

change is taking place, i.e., when theWAH enforces a narrowing of the window,

the system examines its store of old concept descriptions in an attempt to �nd

one that �ts the current situation. If one is found that seems more appropriate

than the current hypothesis, it is re-installed as the new hypothesis.

Note that when a concept description pertaining to an old context is re-

trieved, it will usually not agree 100% with the examples in the current win-

dow. Therefore, all examples in the current window must be re-generalized.

The counters associated with the items of the retrieved hypothesis are set to

zero, and then the regular FLORA learning algorithm (Table 1) is invoked for

every example in the window. All description items that have counters equal

to zero after re-generalization are removed as incorrect or irrelevant.

The algorithm for re-assessing old concepts proceeds in three steps (see

Table 4):

1. Find the best candidate among the stored concepts: an old concept be-

comes a candidate if it is consistent with the current example. All the

candidates are evaluated with respect to the ratio of the numbers of pos-

itive and negative instances that they match (from the current window);
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2. Update the best candidate w.r.t. the current data by setting all the coun-

ters in the description sets to 0 and then re-processing all the examples

in the window;

3. Compare the updated best candidate C

b

to the current concept description

C: use some `measure of �t' to decide whether C

b

is better than the

C; if so, replace C with C

b

. In the current version of FLORA3, the

measure of �t is simply the relative complexity of the description: a

concept description is considered better if its ADES set is more concise.

(Remember that by construction, the ADES sets of both C and C

b

cover

all the positive and no negative instances from the window).

The algorithm tries to maintain e�ciency by limiting the number of ex-

pensive re-processing episodes. Old concepts are not reconsidered after every

new training instance; they are only retrieved when the window adjustment

heuristic suspects that a concept drift is taking place. And second, the ex-

pensive part of reconsidering an old concept|the re-generalization of all the

instances in the window|is done only for one of them { the best candidate.

The best candidate is determined through a simple heuristic measure, the num-

ber of positive and negative matches. This is a very weak measure, of course,

and can sometimes lead to an inappropriate candidate being chosen. Thus,

e�ciency is achieved at the possible expense of quality.

It seems worth pointing out once more exactly what the role of the retrieved

old concept/hypothesis is in this process: it is not simply retrieved and used

as the current concept hypothesis. Instead, it is used as a model or bias in

the process of re-generalizing the current examples. It simply provides a list

of generalizations that were useful in the past and that might, at least in part,

also be useful in the new context. This reects the insight that when an old

context returns, the target concepts will tend to be similar, but not necessarily

identical to how they appeared in the old context.

3

5.2 An Experiment with recurring contexts

To measure the e�ectiveness of the context tracking (store/recall) mechanism,

we created a situation of recurring contexts by repeating the familiar STAG-

GER concepts three times, in the cyclic order 1-2-3-1-2-3-1-2-3. Training and

test instances were generated according to the same procedure as above. Again,

results are averaged over 10 runs.

Figure 9 compares FLORA3 (solid line) to FLORA2 (dashed line) on this

task. The curves show quite clearly that storing and re-using old concepts leads

3

Fashion certainly is a prime example of this phenomenon.

19



0

20

40

60

80

100

0 40 80 120 160 200 240 280 320 360
Instances processed

(1)             (2)            (3)             (1)             (2)            (3)             (1)             (2)            (3)

Figure 9: Learning in domain with recurring contexts.

to a considerable improvement over the simpler system when contexts actually

reappear: starting from the fourth period (the �rst re-occurrence of context 1)

the solid line shows faster readjustment and convergence in almost all cases.

An interesting phenomenon appears in the third period of the plot|the �rst

occurrence of context 3. Here, FLORA2 did better than FLORA3. This may

seem odd at �rst sight, as there is no context recurrence at this point, so ideally,

both systems should behave the same. However, the concept retrieval and

adaptation algorithm is driven by heuristics and can sometimes lead the system

to reinstall an old concept erroneously.

4

The context tracking mechanism thus

adds another degree of freedom (and source of potential errors) to the learning

process. However, when old contexts actually do reappear, the advantages of

the context tracking approach begin to outweigh the disadvantages, as can be

seen from the following phases in the experiment.

Similar results were achieved in experiments with a more complex world

(see Widmer and Kubat, 1993). However, there it also turned out that very

slow concept drift and especially noise in the training data destabilizedFLORA3 's

performance more than seemed strictly necessary. The following section dis-

cusses the problems with noise in more detail and describes an extension of

the FLORA strategy that tries to rectify that problem.

4

In fact, the system does not know how many hidden contexts there are. In the exper-

iment reported here, the number of contexts that FLORA3 stored was never exactly 3, as

we would expect, knowing the target concept. In most cases, it was between 4 and 7.
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6 Robustness Against Noise: FLORA4

Generally, it is very di�cult in strictly incremental learning to distinguish be-

tween `real' concept drift and slight irregularities that are due to noise in the

training data. Methods designed to react quickly to the �rst signs of concept

drift may be misled into over-reacting to noise, erroneously interpreting it as

concept drift. This leads to unstable behaviour and low predictive accuracy

in noisy environments. On the other hand, an incremental learner that is

designed primarily to be highly robust against noise runs the risk of not rec-

ognizing real changes in the target concepts and may thus adjust to changing

conditions very slowly, or only when the concepts change radically. An ideal

learner should combine stability and robustness against noise with exible and

e�ective context tracking capabilities. On the face of it, these two requirements

seem diametrically opposed. But we can at least try to achieve a compromise

between them.

A simple analysis of FLORA3 reveals that the algorithm's brittleness in the

face of noise is a result of the strict consistency condition that is used to decide

which generalizations to keep in ADES. As hypotheses in ADES (and NDES )

must be strictly consistent with the examples (e.g., an expression in ADES

must not cover any negative instances), one negative example is su�cient to

invalidate a hypothesis and cause it to be moved from ADES to PDES, even

if this hypothesis covers a large number of positive examples. This can lead

to somewhat unstable behavior even in noise-free domains, especially when a

concept drift is taking place, but it is particularly problematic when the input

data are noisy, i.e., when some of the training examples may be mislabelled.

6.1 Description of FLORA4

To counter this problem, FLORA4 drops the strict consistency condition and

replaces it with a `softer' notion of reliability or predictive power of general-

izations. The idea is to continuously monitor the predictive accuracy of each

generalization in the description sets and to statistically evaluate the con�-

dence of these accuracy estimates: FLORA4, like its predecessors, uses its

current hypothesis to classify each incoming example before learning from it.

Now the central idea in FLORA4 is to keep a classi�cation record for each in-

dividual description item (conjunction) and to construct statistical con�dence

intervals with a given con�dence level around these measures. Decisions as to

when to move an item from one set to another or when to drop it altogether

are now based on the relation between these con�dence intervals and the ob-

served class frequencies: a hypothesis is kept in ADES as long as its predictive

accuracy is higher (with high con�dence) than the observed frequency of the
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class it predicts.

More precisely, let � = required con�dence level (parameter); assume that

each description item is associated with two numbers �

l

and �

u

that represent

the lower and upper endpoints, respectively, of the statistical con�dence in-

terval (with con�dence �) around the item's classi�cation accuracy, computed

over the instances in the current window; and let 

l

and 

u

be the lower and

upper endpoints, respectively, of the con�dence interval (with con�dence �)

around the relative frequency of the positive class observed so far (i.e., the

percentage of processed training instances that are positive examples of the

target concept). Con�dence intervals are computed as in (Aha et al., 1991).

FLORA4 then uses the following criteria to maintain its description sets

(compare this to Table 1):

� a description item X is kept in ADES if the lower endpoint of its ac-

curacy con�dence interval is greater than the class frequency interval's

upper endpoint (�

l

> 

u

); similarly, any X in PDES that satis�es this

condition is moved to ADES | we say that X is (temporarily) accepted

as a predictor;

� a description item X in ADES whose accuracy interval overlaps with the

class frequency interval (�

u

> 

l

) is moved to PDES | X is a mediocre

predictor; expressions in PDES are not used for classi�cation;

� a description item X is dropped completely if the upper endpoint of

its accuracy interval is lower than the class frequency interval's lower

endpoint (�

u

< 

l

) | X is rejected;

� description items in NDES are kept as long as they are acceptable pre-

dictors of negative instances (�

l

> 

u

, computed over the negative ex-

amples in the window). In contrast to FLORA2 and FLORA3, there is

no migration of generalizations between NDES and PDES. Unacceptable

hypotheses in NDES are simply dropped.

This general approach to deciding which hypotheses to trust has been

adopted from the instance-based learning method IB3 (Aha et al, 1991), which

also uses statistical con�dence measures to distinguish between reliable and

unreliable predictors (exemplars in IB3 ). The terms accepted, mediocre, and

rejected are used here to highlight this similarity. In all our experiments with

FLORA4, we used a con�dence level � = 80%.

The main e�ect of this strategy is that generalizations in ADES and NDES

may be permitted to cover some negative or positive instances, respectively,

and still to remain in ADES or NDES if their overall predictive accuracy war-

rants it. PDES is a reservoir of alternative generalizations that are recognized
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Figure 10: FLORA3 vs. FLORA4 on sequence of three concepts.

as unreliable at the moment, either because they cover too many negative

examples, or because the absolute number of instances they cover is still too

small (and thus the con�dence intervals are large). The rest of the FLORA3

strategy, including the generalization operator, remains unchanged. After ev-

ery learning step the window adjustment heuristic is invoked and may decide

to grow the window or shrink it. Predictive accuracy of hypotheses is always

computed with respect to the current window. In this way, FLORA4 com-

bines the advantages of the windowing approach with a less brittle strategy

for maintaining relevant generalizations.

6.2 Experiments

This section describes two sets of experiments that test FLORA4 vis-a-vis

FLORA3 (and IB3 ) both in noise-free and noisy concept drift scenarios. Again,

the arti�cial STAGGER domain with a sequence of three rather di�erent con-

cepts was used, and the results are averaged over 10 runs.

6.2.1 Adjusting to concept drift: FLORA4 vs. FLORA3 vs. IB3

Figure 10 compares FLORA4 to FLORA3 on the basic noise-free drift tracking

task. The characteristic di�erence between the two systems that is immediately

obvious from this result, and that appeared very clearly in all experiments, is

that FLORA4 is initially a bit slower in reacting to the change in the target

concept, but then soon picks up and eventually regains high accuracy faster

than FLORA3, and usually with a smoother curve. The explanation is to

be found in FLORA4 's statistical con�dence measure. FLORA4 reacts more

reluctantly initially because several contradicting examples are necessary to
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Figure 11: FLORA4 vs. IB3: cumulative on-line accuracy.

invalidate a hitherto stable hypothesis in ADES, while FLORA3 will drop a

description item as soon as the �rst contradicting instance appears.

The same observation also explains why FLORA4 later reaches high accu-

racy faster than its predecessor: a consequence of FLORA3 's strict consistency

conditions is that one old negative instance (pertaining to the outdated con-

text) erroneously still in the window may prevent a good generalization from

being included in ADES. FLORA4, with its `softer' consistency condition, is

less disturbed by remnants of the old context still in the window and thus

readjusts faster to the new context.

Figure 11 compares FLORA4 to the publicly available version of IB3 (Aha

et al., 1991), from which our statistical method was adopted. As the method

of testing employed in the previous experiment (using separate test sets) would

have required substantial changes to that program, �gure 11 plots the accuracy

of the systems in classifying the incoming training examples, averaged over the

past 20 predictions. The improvement of FLORA4 over IB3 is evident.

Generally, our experience from various experiments with IB3 is that IB3

seems to require signi�cantly more examples to converge to a high level of pre-

dictive accuracy, and that it is slower in recovering from changes in the target

concept. The �rst e�ect is due to the general instance-based learning method.

The latter di�erence is clearly attributable to the combination in FLORA4 of

IB3 's statistical con�dence measures with a highly reactive window-based for-

getting strategy, which permits the system to get rid of outdated information

much faster. As a side note, one could also point out that a symbolic gener-

alizer like FLORA4 has certain advantages over an instance-based learner in

terms of the comprehensibility of the results of learning.

24



0

20

40

60

80

100

0 20 40 60 80 100 120
Instances processed

        (1)                                  (2)                                  (3)        

FLORA3
FLORA4

Figure 12: Performance of FLORA3 and FLORA4 at 20% noise.

6.2.2 Distinguishing between noise and concept drift

FLORA4 's strengths should come out evenmore clearly when the training data

are noisy. Both noise and concept drift make themselves known to the learner

in the form of prediction errors. Here we expect that FLORA4 's combined

strategy will come to bear. The statistical con�dence measures provide a

certain robustness against noise, especially in relatively stable situations, and

the window adjustment heuristic should recognize persistent misclassi�cations

that indicate a concept change, and should lead to e�ective adjustment by

shrinking the window in such situations.

In the following experiment, the same target concepts were used, but

the training data were corrupted with various levels of classi�cation noise.

FLORA4 was compared to FLORA3 throughout and turned out to be consis-

tently and signi�cantly superior. For instance, �gure 12 compares the perfor-

mance of the two systems at a noise level of 20% in the training data.

5

Here

again, we see the characteristic di�erence: FLORA4 is a bit slower in its initial

reaction to the concept change, but then soon outperforms FLORA3. How-

ever, the di�erence between the two curves is markedly greater than in the

noise-free case. FLORA3 has obvious problems, while FLORA4 's accuracy

quickly rises to a mark that corresponds roughly to the given level of noise

(remember that 20% noise means 10% misclassi�ed instances on average in a

two-class learning task).

A comparison of the average window sizes in this experiment (�gure 13)

illustrates the workings of the window adjustment heuristic and also the e�ect

5

In this article, �% class noise means that with probability �=100, the class label of an

instance will be assigned randomly. Thus, completely random data will be generated when

� = 100.
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Figure 13: Average window size at 20% noise level.
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Figure 14: Performance of FLORA4 at various noise levels.

of the statistical strategy of the generalizer. The expected characteristic shape

of the curve comes out clearer in the FLORA4 case. As theWAH reacts to fac-

tors (e.g., the number and complexity of accepted description items in ADES )

that are also a�ected by the generalizer's strategy, there is a synergy between

the two components: the generalizer's robustness against noise prevents the

WAH from erroneously growing or shrinking the window. This e�ect is clearly

visible in the third phase in �gure 13, where FLORA3 grows and shrinks the

window in the middle of a phase of concept stability, obviously confused by

noisy examples.

Figure 14 shows FLORA4 's performance at various noise levels (10, 20, and

40%). The qualitative shape of the performance curves remains unchanged.

The rapid drop in accuracy after a concept change is followed by relatively fast

re-convergence toward a quasi-optimal prediction accuracy. In no case does
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the performance really collapse. (The closest it comes to collapsing is with the

third (disjunctive) concept in the 40% noise situation, where FLORA4 's con-

vergence is rather slow, but still recognizable. This part of the concept seems

to be inherently more di�cult to adjust to than the other two, as evidenced

by FLORA3 's and FLORA4 's slower convergence even in the noise-free case

(�gure 10)).

Schlimmer and Granger (1986) have noted that STAGGER distinguishes

between random (examples of both classes a�ected) and systematic noise (only

positive or only negative instances corrupted). In our experiments, we could

not detect a similar tendency in FLORA4. This seems reasonable, as there are

no components in our model comparable to STAGGER's LS and LNmeasures,

which are sensitive to one-sided variations. We conjecture that STAGGER

may be more robust than FLORA4 in situations with extremely high, but

systematic noise.

7 Related Work

The notions of concept drift and hidden contexts have a number of rami�ca-

tions, both from a machine learning and a more general point of view. In the

following section, we relate the FLORA approach to a number of approaches

and methods from the �eld of machine learning, especially those that realize

some form of forgetting. Then, some pertinent results from cognitive psychol-

ogy and their relevance to the FLORA philosophy are briey discussed.

7.1 Contexts and concept drift in machine learning

Although the notion of context drift is rarely discussed explicitly in the machine

learning literature, several well-known learning techniques can be ascribed a

certain plasticity in the face of changes in the concept de�nition. For instance,

the momentum function in the delta rule used in neural networks (see, e.g.,

Hecht-Nielsen, 1990) essentially realizes a form of memory decay; recent ex-

perience can be made to have a stronger inuence on the network's internal

weight con�guration than very old experiences. In principle, neural networks

can adjust to changing contexts. For instance, Adaptive Resonance Theory

(Carpenter and Grossberg 1988) represents a signi�cant step in this direction.

However, even though this architecture explicitly facilitates incremental learn-

ing, it is rather reluctant to dismiss outdated information.

Simple Instance-Based Learning (sometimes called memory-based learning)

algorithms like IB1 (Aha et al., 1991) can be viewed as incremental on-line

learners that �rst classify each newly arrived example by some nearest-neighbor
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method and then store it as a new exemplar. The basic IB1 algorithm cannot

adjust to drift, since all exemplars will remain in memory, even if the context

changes.

The more sophisticated variant IB3 (Aha et al., 1991) possesses a mech-

anism similar to FLORA4 's for deciding which of the exemplars are `trust-

worthy' predictors, which of them should be discarded as possibly noisy or

outdated, and which are as yet undecided. As in FLORA4, the decision about

the quality of an exemplar is based on its success in the tentative classi�cation

of the newly arriving examples. In the process, the individual exemplars can

move between the three categories in a way similar to the description items in

FLORA. This property gives the algorithm a strong capability to track concept

drift. However, as our experiments have con�rmed, there is a certain amount

of inertia in the statistical criterion used to assess the quality of exemplars.

IB3 is well-suited to situations of slow drift, but is somewhat reluctant to ad-

just quickly to radical changes. Also, instance-based algorithms are known

to be sensitive to attribute relevance: irrelevant attributes have a detrimental

e�ect on the predictive accuracy (though some approaches to improve on this

have recently been suggested|e.g., Salzberg, 1991; Cost and Salzberg, 1993).

In recent years, some authors have begun to explicitly address the prob-

lem of concept drift and context dependence. Probably the �rst system to

attack the problem of drift was STAGGER (Schlimmer and Granger, 1986),

which learns symbolic characterizations from classi�ed examples. The main

adjustment mechanism in STAGGER is again of a statistical nature: for each

description item, STAGGER maintains statistics of logical su�ciency (LS )

and necessity (LN ) of the item for the target concept, and these determine

which description items will be used in further generalization, and which ones

will be dropped. STAGGER adjusts to changes quite e�ectively. In contrast

to FLORA3, it does not possess the ability to recognize recurring contexts and

take advantage of this in periodic or otherwise regular environments. On the

other hand, it can use already learned concepts in the characterization of other,

more abstract concepts. This capability of constructive induction (Michalski,

1983) is not implemented in FLORA3, although the contexts recognized by

FLORA3 can be viewed as constructed higher-level attributes that might be

used explicitly to characterize di�erent situations.

The idea of introducing a forgetting operator to improve learning was

discussed in (Markovitch and Scott, 1988), in the context of a system that

learns macro operators in a search task. Their experiments had nothing to

do with concept drift, but were motivated by the so-called utility problem in

Explanation-Based Learning (Mitchell et al., 1986), that is, the problem that

learned macro-operators or schemata, even if correct, are not always helpful,

but may actually decrease the performance of the system. This has also been

28



noted by (Tambe and Newell, 1988) and (Minton, 1988), among others. The

general conclusion is that forgetting can be bene�cial even in stable domains.

Forgetting as a means of adjusting to concept drift was used in the orig-

inal FLORA system described in (Kubat, 1989), which was also applied to a

practical problem (Kubat, 1992). Forgetting was controlled by a window of

�xed size, which was su�cient for the particular application, but turned out to

be ine�ective in dealing with various types of concept drift. The window ad-

justment heuristic introduced in this paper signi�cantly increased the system's

exibility and power.

An alternative to a time window as a means of controlling forgetting is

ageing of knowledge. This method was used in the concept formation system

FAVORIT (Krizakova and Kubat, 1992), which performs conceptual clustering

in a way similar to Lebowitz' UNIMEM (Lebowitz, 1987). In FAVORIT, each

exemplar is assigned a weight which slowly decays with time. If the same

exemplar reappears, the weight is incremented. Exemplars whose weight drops

below some threshold are forgotten. Another recent concept formation system

using a forgetting operator is COBBIT (Kilander and Jansson, 1993), which

adapted FLORA's windowing philosophy to unsupervised clustering scenarios.

Both ageing and window-based forgetting refer to the temporal order of the

incoming training examples, i.e., to time. For numeric domains, an alternative

approach named density-adaptive forgetting has been proposed by Salganico�

(1993a). Here, the idea is not to rely solely on the age of exemplars. Rather,

exemplars are forgotten only if there is subsequent information in their vicinity

in attribute space to supersede them. In this way, the algorithm is more robust

to drifting sampling distributions during incremental learning. A combination

of some variant of this approach with exible windowing strategies might lead

to even more reactive systems. This is one of our current lines of research.

Finally, Turney (1993) discusses the problem of context-dependence from

a di�erent angle. In his scenario, the testing examples may come from a

di�erent context than the training examples. He presents various techniques

for normalization of learning results and for adapting learned concepts for

prediction in new contexts. Though this problem is somewhat di�erent from

ours, some of the techniques might well be transferable to the FLORA setting.

7.2 Relevant research in cognitive science

There is quite some work on conceptualization and categorization in the �eld of

cognitive science that touches on some aspects of the FLORA learning scenario.

For instance, Fodor et al. (1980) argue that real-world concepts, used as

words by humans, cannot be de�ned generally and independently from their

context. In a recent study, Johnson-Laird (1987) distinguishes three di�erent
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entailments of a context: (1) in the case of a concept with several meanings,

the context enables the selection of the particular meaning; (2) if the concept

has only one meaning, the context facilitates its speci�cation; and (3) if the

concept has several aspects, the context stresses some particular aspect at the

cost of other aspects.

These points do not directly translate into the FLORA3 world, as this

system does not explicitly represent contexts, though it does make conscious

decisions about when to switch from one to another context. However, it

should be easy to augment the system so that it constructs explicit context

identi�ers, which would allow it to explicitly reason about contexts and their

inuence on concept meanings or descriptions. This is a promising topic for

future research.

Bartlett (1932) was the �rst who suggested that, in human learning, the

acquisition of new knowledge is facilitated by schemata stored in long-term

memory. Schemata are typical structures acquired by an abstraction process.

The concept descriptions stored by FLORA3 and used as a model in the re-

generalization of the examples in a new context can be interpreted as such

schemata. Of course, the approach reported in this paper is a heavy simpli-

�cation of the general notion. Abstraction operators and a more expressive

representation language would move FLORA3 closer to this schema theory of

learning.

The di�erence between Short-Term Memory (STM) and Long-Term Mem-

ory (LTM) has been investigated in cognitive science for a long time, and is

analyzed at great length in (Klimesch, 1988). LTM takes from STM only those

pieces of information that are considered relevant, interesting, etc. In our case,

the window represents STM and the stored contexts represent LTM. In mod-

eling the phenomenon of forgetting, our work builds on the idea of memory

decay: any piece of information that enters memory tends to slowly fade out.

The only way how to prevent it from being completely forgotten is by revi-

sion or a strong emotional bias. In psychology, the principle of memory decay

was discovered and studied by Brown (1958), though, in principle, it relates

to the very early work by Ebbinghaus (1885); for a more recent analysis see

(Reitman, 1974).

Another important psychological �nding relevant to our study is that for-

gotten pieces of information are learned faster than new ones, as reported by

Nelson (1978). Even though forgotten, they leave a trace in the form of ten-

dencies and general structures. The reader will see that this aspect is also

reected in rudimentary form in FLORA3.
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8 Conclusion

To recapitulate briey, the article has presented a family of algorithms for on-

line learning in domains with context-dependent concepts and concept drift.

The main techniques constituting the basic method are (1) representation of

hypotheses in the form of three description sets that summarize both the pos-

itive and the negative information; (2) a forgetting operator, controlled by a

time window over the input stream; and (3) a method for the dynamic control

of forgetting through exible adjustment of the window during learning. The

central idea is that forgetting should permit faster recovery after a context

change by getting rid of outdated and maybe disturbing information.

Various experiments with an initial implementation of the basic method in

the program FLORA2 showed that the method behaves essentially as expected.

In particular, the window adjustment heuristic proved to be rather robust

under a variety of types of concept drift.

FLORA3 extends FLORA2 with a mechanism for storing concepts in stable

situations and recalling them in similar contexts. In environments with a

relatively small number of contexts, this capability speeds up the process of

re-learning concepts by biasing the learner towards generalizations that have

proven useful in the past. Again, the window adjustment heuristic plays an

important role in this process as an indicator of context changes.

Finally, FLORA4 uses a re�ned strategy based on the monitored predic-

tive performance of individual description items to deal with the problem noisy

data. FLORA4 's robustness derives from the fact that it integrates two dif-

ferent learning strategies. The statistical criteria used to distinguish between

reliable and unreliable generalizations make it robust against noise, and the

`forgetting' of outdated information, controlled by reactive window adjustment,

enables it to quickly adapt to new contexts. In terms of the framework of Sal-

ganico� (1993b), FLORA4 can be characterized as integrating \performance-

error weighted forgetting" and \time-weighted forgetting".

Generally, it is interesting to see how two conceptualizations of learning|

the three description sets in FLORA4 and Aha's categories of accepted, mediocre,

and rejected predictors|that were developed out of quite di�erent motivations

(the basic motivation and interpretation framework for the description sets in

the original FLORA approach was Pawlak's (1982) Rough Set Theory) �nally

converge on a common interpretation. We may take this as another indication

that one fruitful strategy for achieving powerful learning algorithms is to ac-

tively search for promising methods in machine learning research and try to

combine or integrate them in a more general framework.

There are numerous possibilities for further improvement. A general prob-

lem with the current system is that the window adjustment heuristic (WAH ) is
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dependent on parameters. Although the parameter settings we chose early on

(and never changed throughout all the experiments) turned out to yield rather

robust behavior in our arti�cial domains, this is not satisfactory. One possi-

ble solution might be to adapt a technique presented in (Moore, 1992), which

estimates task-speci�c forgetting parameters (for instance-based learning) via

cross-validation. Another possibility is to perform some kind of beam search in

the space of parameter settings by having several versions of FLORA4 run in

parallel and tune their parameters during learning. The algorithm's exibil-

ity could be further increased by combining the dynamic windowing approach

with more selective forgetting mechanisms like those described in (Salgani-

co�, 1993b). That is, decisions as to which instances (and generalizations) to

discard would be based not only on the items' age, but also on other char-

acteristics like the relative proximity of observations, observed distributions,

etc.

Another interesting extension would be the integration of a notion of expec-

tation. In many domains, the order in which contexts can occur is not random,

but highly constrained. The four seasons usually follow each other in a cycle,

and countries border only on a limited number of neighbors. A learner should

be able to develop expectations as to which context(s) will most likely become

relevant next. This will require an explicit representation of contexts, an exten-

sion which would open the door to a number of other interesting possibilities

(see section 7 above).

Also, the representation language should be extended. The introduction

of numeric attributes, though a relatively simple step, will be important for

possible applications in control or monitoring tasks. An extension of the ap-

proach to (some subset of) �rst-order logic will certainly be more di�cult;

incremental generalization and subsumption checking are no trivial problems.

However, the general ideas of dynamic forgetting and context tracking might

well be of interest also to relational learners.
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