
CN2-MCI: A two-step method for

constructive induction

Stefan Kramer

di stefan@ai.univie.ac.at

Austrian Research Institute for

Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

March 8, 1994

Abstract

Methods for constructive induction perform an automatic transforma-

tion of description spaces if representational shortcomings deteriorate the

quality of learning. In the context of concept learning and propositional

representation languages, feature construction algorithms have been devel-

oped in order to improve the accuracy and to decrease the complexity of

hypotheses. Particularly, so-called hypothesis-driven constructive induc-

tion (HCI) algorithms construct new attributes based upon the analysis of

induced hypotheses. Well-known HCI-systems analyze decision trees, or

employ a coarse-grained analysis of decision rules. This paper introduces a

new constructive operator o

�

and documents its applicability in the usual

HCI-framework. o

�

uses a cluster algorithm to map selected features into

a new binary feature.

A new method for constructive induction, CN2-MCI, is described that

applies o

�

as its only constructive operator to achieve a �ne-grained anal-

ysis of decision rules. The output of CN2-MCI is an inductive hypothesis

expressed in terms of the transformed representation, given training ex-

amples as input. CN2-MCI is theoretically and empirically compared with

existing methods for constructive induction.

1

CONTENTS 1

Contents

1 Introduction 2

1.1 Matheus' framework for feature construction : : : : : : : : : : : : 2

1.2 A taxonomy of constructive induction systems : : : : : : : : : : : 4

1.3 Motivation : 5

2 CN2-MCI: Description of the Method 6

2.1 The top-level of CN2-MCI : 6

2.2 Multi-strategy constructive induction in CN2-MCI : : : : : : : : 8

2.3 Step 1: Selection of constructive operands : : : : : : : : : : : : : 10

2.4 Step 2: Application of the constructive operator and �nal selection 11

2.4.1 The constructive operator o

�

: : : : : : : : : : : : : : : : : 11

2.4.2 A*-Cluster : 13

3 Empirical Results 16

3.1 Description of problem domains : : : : : : : : : : : : : : : : : : : 16

3.1.1 Problem Monk1 : 16

3.1.2 Problem Monk2 : 16

3.1.3 Problem Monk3 : 16

3.1.4 Problem Mux11 : 17

3.1.5 Problem Par5 : 17

3.1.6 Overview of problem domains : : : : : : : : : : : : : : : : 18

3.2 Results of CN2-MCI in 5 problem domains : : : : : : : : : : : : : 18

4 Related Work 19

4.1 FRINGE : 20

4.2 AQ17-HCI and DUCE : 20

5 Discussion 20

6 Summary and Future Work 21

7 Bibliography 23

1 INTRODUCTION 2

1 Introduction

Constructive Induction is the subject of a longstanding and still vital research

e�ort to overcome representational shortcomings that deteriorate the quality of

learning. If the initially given representation yields poor learning results, con-

structive induction methods perform an automatic, problem-oriented transfor-

mation of representation spaces to facilitate learning.

In the context of concept learning and propositional representation languages,

constructive induction methods have been developed which construct new at-

tributes out of existing attributes. These algorithms employ feature construction

in order to improve the accuracy and to decrease the complexity of hypotheses.

Particularly, a number of methods have been proposed over the last years that

construct new attributes based upon the analysis of induced hypotheses. These

so-called methods of hypothesis-driven constructive induction (HCI) typically

construct new attributes in iterations, where each iteration involves a learning

step and a step which constructs new attributes based on the hypotheses of the

learning step.

CN2-MCI is a new method for constructive induction, which works in a sim-

ilar way as many HCI-systems. CN2 [Clark & Niblett, 1989; Clark & Boswell,

1991], a well-known selective induction algorithm, provides the induced hypothe-

ses that are analyzed by other components of CN2-MCI. CN2-MCI iteratively

performs feature construction by means of a new, general constructive opera-

tor o

�

. However, CN2-MCI di�ers signi�cantly from HCI-systems like FRINGE

[Pagallo, 1989; Pagallo & Haussler, 1990] and AQ17-HCI [Wnek & Michalski,

1992a+b] in that it processes training examples in addition to induced hypothe-

ses. Therefore, it can be categorized as a multi-strategy constructive induction

system (MCI).

1.1 Matheus' framework for feature construction

CN2-MCI �ts well into a framework for feature construction which was introduced

by Matheus [Matheus & Rendell, 1989; Matheus, 1991]. The following terms will

be used in the description of CN2-MCI:

� A constructive operator is de�ned as a function mapping a tuple of existing

features into a new feature.

� A constructive operand is a tuple of features to which a constructive operator

is applied.

� A constructor is de�ned as a operator/operand pair, until it becomes a new

feature.

1 INTRODUCTION 3

Furthermore, Matheus distinguishes four inherent aspects to feature construc-

tion. They are not to be understood as phases of the feature construction process,

although many existing systems including CN2-MCI perform phases correspond-

ing to these aspects.

1. Detection: Feature construction is only required if the original feature set

is insu�cient for the selective induction algorithm to acquire the target

concept. Wnek and Michalski [1992b] state the reason for the importance

of detection as follows:

\In a domain description, irrelevant attributes play the same

role as noisy examples in training data. In both cases, removing

noise from the training set speeds up and improves induction."

Brie
y, the construction of irrelevant features should be avoided, because

irrelevant features deteriorate the quality of the induced hypotheses. An-

other reason for the relevance of detection is the constructive process itself,

which might be computationally expensive.

Matheus and Rendell [1991] enumerate two approaches to detecting when

a transformation of the representation spaces is required. One possibility is

to decide on the basis of the initial data set. Another method is to analyze

a concept description in order to detect the need for constructive induction.

Another approach to detection is taken by CN2-MCI: The system basically

performs a kind of look-ahead: it applies its constructive operator and eval-

uates its results. If the quality of the hypothesis induced in the transformed

representation is worse than the original hypothesis, CN2-MCI concludes

there is no need for a representation change.

Evidently, there is a close connection between detection and another as-

pect of feature construction, namely the evaluation of new features. The

evaluation of new features and the aspect of detection are both essentially

instances of the more general problem of how to evaluate a given represen-

tation.

2. Selection: Since the set of constructors is potentially very large and its de-

tailed evaluation is intractable in general, there needs to be a selection of

a subset of constructors which are to be turned into actual features. The

number of constructors is determined by the number of constructive oper-

ators and the number of existing attributes. The selection can be further

divided into the following sub-steps:

(a) Selection of constructive operands: In the �rst step, the existing fea-

tures from which the new features are to be constructed are selected.

Step one reduces the number of potentially constructed features.

1 INTRODUCTION 4

(b) Application of the constructive operators and �nal selection In the sec-

ond step, the constructive operators map the constructive operands

into the new features. Based on the results of the applied operators,

the �nal selection of constructors can be made.

3. Generalization: Generalization of de�nitions might e�ect an improvement,

if the new features are too speci�c to capture a meaningful relation be-

tween variables. However, most of the existing systems do not perform a

generalization of selected constructors.

4. Evaluation: The evaluation of new features is necessary for the same rea-

sons as detection. The goal of an evaluation is to �nd a subset of the

new features which should actually be included in the description of the

training examples. Another important aspect of evaluation is the need

for a global stopping criterion, which is rarely described explicitly in the

literature known to the author. Pragmatically, CN2-MCI takes the same

approach as the one to detection to determine when to stop the constructive

iterations.

1.2 A taxonomy of constructive induction systems

Wnek & Michalski [1992b] introduce a taxonomy of constructive induction sys-

tems. This taxonomy is useful for the classi�cation of the presented system.

� Data-driven constructive induction (DCI):DCI analyzes the training exam-

ples in order to perform constructive induction. Speci�cally, new descriptors

are found by the search for interrelationships among examples, attributes

and concepts.

� Hypothesis-driven constructive induction (HCI): HCI refers to methods of

transforming representation spaces by analyzing generated inductive hy-

potheses.

Methods for hypothesis-driven constructive induction typically construct

new attributes in iterations, where each iteration involves a learning step

and a step which constructs new attributes based on the hypotheses of

the learning step. The rationale behind this approach is to view the hy-

pothesis as information already mirroring the relation between the learning

capabilities and the problem representation. This information is utilized

to guide the construction of new attributes in order to provide the learner

with a transformed representation which is more suited to its learning ca-

pabilities. In particular, these methods provide a way to encode relations

between variables as binary attributes.

1 INTRODUCTION 5

� Knowledge-driven constructive induction (KCI):These systems apply expert-

provided domain knowledge to construct new descriptors. Furthermore,

representation changes can be validated by a domain expert.

� Multi-strategy constructive induction (MCI): MCI-systems combine di�er-

ent approaches to the transformation of description spaces. In this taxon-

omy, a system utilizing inductive hypotheses and input data for constructive

induction is categorized as MCI.

At last, the name CN2-MCI can be explained: The �rst step of the selection,

namely the selection of the constructive operands, is based on the analysis of the

hypothesis, whereas the second step, the application of the constructive operator,

requires access to the training examples. The selective learning algorithm CN2

[Clark & Niblett, 1989; Clark & Boswell, 1991] provides the rules which are

analyzed for detection, selection and evaluation.

Despite its categorization as MCI, it should be noted that especially the top-

level of CN2-MCI works in a very similar way as systems performing HCI.

1.3 Motivation

Well-known methods for HCI are based on the analysis of decision trees or em-

ploy a coarse-grained analysis of decision rules. FRINGE [Pagallo, 1989; Pa-

gallo & Haussler, 1990], for instance, utilizes repeatedly occurring subtrees at

the \fringe" of a decision tree as de�nitions of new features. Since the same

procedure is hardly applicable to decision rules, AQ17-HCI [Wnek & Michalski,

1992a+b] uses the most relevant disjuncts of a hypothesis as the de�nition of

a new attribute. However, little attention has been paid to the possibility of a

more �ne-grained analysis of decision rules. There are two closely related major

motivations for this research: On the one hand the goal was to generalize the

FRINGE idea in order to make it applicable to decision rules. On the other

hand, it appeared promising to take into account the structure of rules, which

are composed of attributes and their respective values. The construction process

has the same input as AQ17-HCI, namely decision rules, but goes further into

detail of a rule in the course of the construction process.

There are two expected bene�ts of a more �ne-grained analysis of decision rules.

Firstly, we expected a decreased complexity and an increased accuracy, simi-

lar to the e�ect of FRINGE-like feature construction. Secondly, we wanted to

obtain more intelligible features than the ones constructed by AQ17-HCI. The

constructed features should encode relations between features, which are \rele-

vant" with respect to the class attribute. Unlike AQ17-HCI, the features involved

should be clearly identi�able by the user.

2 CN2-MCI: DESCRIPTION OF THE METHOD 6

2 CN2-MCI: Description of the Method

2.1 The top-level of CN2-MCI

The top-level of CN2-MCI works in a similar way as systems performing hypothesis-

driven constructive induction (see Fig.1). The selective induction algorithm CN2

[Clark & Niblett, 1989; Clark & Boswell, 1991] provides the rules which are

analyzed for detection, selection and evaluation. After a single, initial learning

step, the system starts constructing attributes in iterations, one in each iteration.

CN2-MCI constructs one binary attribute out of two existing attributes in each

iteration. The approach to detection taken in CN2-MCI is to start constructing

features in iterations and record the quality change of the induced hypothesis in

each iteration. There exists a threshold � which speci�es for how many iterations

the quality is allowed to get worse relative to the best iteration so far. If after �

iterations the best hypothesis so far is the one found in the initial representation,

CN2-MCI concludes there is no need for a representation change. This approach

to detection is useful in avoiding the construction of irrelevant features, but obvi-

ously does not take into account the second argument for detection, i.e. it could

be computationally expensive.

After the construction of a new attribute, the examples are updated. The new

description of the examples contains the additional constructed feature. Follow-

ing another learning step, the quality of the representation change is estimated

using the quality change of the hypothesis which is induced in the transformed

hypothesis space. A lexicographic function tests if the current hypothesis is bet-

ter than the best one so far, considering the change in accuracy and complexity.

In order to determine the change in accuracy, the set of training examples has to

be split into a primary set and a secondary set [Bloedorn et al., 1993]. The pri-

mary set is used for learning via CN2, and the secondary set is used for assessing

the quality of the representation through the accuracy of the generated inductive

hypothesis. The reason for this is the need for a seperation between learning and

testing, which is a precondition of a reasonable evaluation of learning results.

Testing the quality of a new representation has to be done independently of the

testing examples that are employed for testing the �nal hypothesis of CN2-MCI.

1

In such a way, a stopping criterion can easily be obtained. Like the approach

taken to detection, the stopping criterion of the algorithm is based on testing

for an improvement of the current hypothesis relative to the best hypothesis so

far. In fact, detection and the stopping criterion are the same mechanism in

CN2-MCI. If there are � iterations without improvement relative to the best hy-

pothesis found so far, CN2-MCI stops with the respective, optimal representation

and re-learns a �nal theory using all training examples, and not just the primary

1

If the accuracy of the hypothesis is not explictly tested on a secondary training set, the

whole training set can be used for learning. In [Pfahringer, 1994a], the MDL-heuristic [Rissanen,

1978] is utilized to avoid the need for a secondary training set.

2 CN2-MCI: DESCRIPTION OF THE METHOD 7

Update of example sets

Selective induction algorithm (CN2)

Evaluation of the hypothesis

Multi-strategy constructive induction

Input: Examples expressed in

terms of original features

Transformed representation improves

the quality of the hypothesis

Initial learning step (CN2)

Final learning step (CN2)

Output: Hypothesis expressed

in terms of original and/or

constructed features

true

false

Figure 1: Schema of CN2-MCI

2 CN2-MCI: DESCRIPTION OF THE METHOD 8

set of training examples.

Generally, CN2-MCI provides a simple solution to the problem of evaluation

by applying representation changes and determining the quality relative to the

original representation. In other words, the absolute quality of descriptors might

be of interest to learning theory, but pragmatically CN2-MCI relates the origi-

nally given representation to the one it can achieve by applying its constructive

operator.

2.2 Multi-strategy constructive induction in CN2-MCI

The construction process by means of the operator o

�

is part of the MCI mod-

ule (see Fig. 1) and consists of two steps (Fig. 2). The �rst step includes the

Input: Hypothesis, primary training

examples and number of operands

Step 1: Selection of

Output: Definition of new

binary feature

constructive operands

Step 2: Application of constructive

operator and final selection

Input: Hypothesis and number

of operands (parameter m)

Step 1: Selection of

Output: m selected operands

(pairs of features)

constructive operands

Input: Primary training examples

and m selected operands

Step 2: Application of constructive

coperator and final selection

Output: Definition of new

binary feature

Figure 2: Two Steps of MCI in CN2-MCI

selection of the constructive operands, i.e. the pairs of attributes from which the

new attribute is to be constructed. CN2-MCI selects m attribute pairs as con-

structive operands based upon the co-occurrence of the attributes in important

rules of the hypothesis. The number of attribute pairs, m, is user-de�ned. In

the second step, the constructive operator maps the respective two constructive

operands into a new boolean feature. Following the application of o

�

to the m

selected operands, a single constructor will be chosen as new feature. The �nal

selection is based on the evaluation of the application of o

�

. In our approach,

the constructive operator searches for a \good" partitioning of pairs of the val-

ues of the constructive operands into two clusters, each cluster corresponding to

a value of the new boolean feature. After the applications of the constructive

2 CN2-MCI: DESCRIPTION OF THE METHOD 9

operator, CN2-MCI selects the best constructor according to the best resulting

partitioning.

If one is willing to put up with local optima, one way to obtain a partitioning

is through a hierarchical-agglomerative cluster algorithm. This kind of algorithm

merges those two clusters of pairs of values which result in the maximum im-

provement of some evaluation function. A (hill-climbing) cluster algorithm was

chosen for CN2-MCI because an exhaustive search for an optimal partitioning is

too expensive and not necessary to obtain good results.

There are m cluster analyses to be performed, because the best selection of

constructive operands is unknown a priori. It is crucial to keep in mind that

the optimal selection of the operands according to the selection heuristic does

not necessarily lead to an optimal result of the cluster algorithm. Fortunately,

a number of cluster steps can be saved if the m constructions are performed \in

parallel" and a kind of A*-search is applied.

The selection of operands is presented in the next section. In the subsequent

section, the cluster algorithm is described in detail. Finally, the use of A* is

discussed to demonstrate how m \parallel" constructions (i.e. hierarchical ag-

glomerative cluster algorithms) can be performed e�ciently.

2 CN2-MCI: DESCRIPTION OF THE METHOD 10

2.3 Step 1: Selection of constructive operands

The goal of the selection method is to encode the most relevant relations among

existing attributes as binary attributes. The common occurrence of two attributes

in many important rules is a necessary condition for a successful application of

the constructive operator in the second step of the construction algorithm.

As mentioned above, CN2-MCI employs a heuristic S to select those pairs

of attributes which occur in as many relevant rules as possible; in this stage the

system abstracts from the actual values of the attributes.

Let weight(r

i

) be the number of all examples covered by rule r

i

. Moreover,

let us write A

j

2 r

i

if attribute A

j

occurs in rule r

i

. CN2-MCI selects the pairs

of attributes A

i

; A

j

, for which

S(A

i

; A

j

) =

P

A

i

2r

k

^A

j

2r

k

weight(r

k

)

is maximal.

Example:

Consider the following rules induced by CN2 in a problem domain:

r

1

: if (A

1

= t) ^ (A

2

= t) ^ (A

3

= f) then (class = +) [20,0]

r

2

: if (A

1

= t) ^ (A

2

= f) then (class = +) [10,0]

r

3

: if (A

1

= f) ^ (A

2

= f) ^ (A

3

= f) then (class = �) [0,15]

r

4

: if (A

2

= f) ^ (A

3

= f) then (class = �) [0,5]

...

Attributes A

1

, A

2

and A

3

do not occur in other rules of the hypothesis. The

numbers in brackets denote the number of examples of a class covered by rule r

i

.

[20,0] means there are 20 positive examples covered by rule r

1

and no negative

examples. The weight of the rule is computed as the sum of these two numbers.

Then

S(A

1

; A

2

) = weight(r

1

) + weight(r

2

) + weight(r

3

) = 20 + 10 + 15 = 45

S(A

2

; A

3

) = weight(r

1

) + weight(r

3

) + weight(r

4

) = 40

S(A

1

; A

3

) = weight(r

1

) + weight(r

3

) = 35

According to the value of S, CN2-MCI prefers the �rst pair of features to the

second, etc.

2 CN2-MCI: DESCRIPTION OF THE METHOD 11

2.4 Step 2: Application of the constructive operator and

�nal selection

2.4.1 The constructive operator o

�

o

�

is a hierarchical agglomerative cluster algorithm [Eckes & Ro�bach, 1980;

Jain, 1986] that constructs a partitioning of the values of the operands selected

in the �rst step of the algorithm. The initial clusters contain the single pairs

of the Cartesian product of the operands. Subsequently, in each step of the

algorithm those two clusters are merged which result in the smallest increase of

the evaluation function.

Next, a function E is de�ned to evaluate a partitioning into clusters. A clus-

ter consists of pairs of values of the selected operands. Each partitioning into n

clusters corresponds to an extensional de�nition of an n-valued attribute. The

function E evaluates the occurrences of the values of the attribute-pair in the

training examples. The function considers the relevance (i.e. the number of

examples) as well as the impurity of the attribute values relative to the class

attribute. If the value of the function is large, the quality of the partitioning is

bad, because it contains large, unbalanced clusters.

Let n be the number of clusters in a partitioning c. Function E is de�ned as

follows:

E(c) =

P

n

i=1

p

i

�n

i

p

i

+n

i

;

where p

i

is the number of positive instances from the training examples for which

the projection to the two attributes is contained in cluster i of partitioning c.

Analogously, n

i

is the value for the negative examples.

The formula represents the weighted impurity, which is to be minimized in

order to avoid large, impure clusters. Alternatively, any other function estimat-

ing the a goodness of split of decision trees could be used as evaluation function.

It is crucial to consider that the operator performs hill-climbing and is therefore

generally not able to �nd globally optimal solutions. In constrast to o

�

, an oper-

ator introduced in [Breiman et al., 1984] is capable of �nding optimal solutions.

There are two major di�erences to be noted here: Firstly, o

�

is applicable to any

number of operands, and not just one. Secondly, \Breiman's operator" only �nds

globally optimal solutions, if the number of classes is two. o

�

is a feasible way to

compute \good" partitionings given n classes. Obviously, non-hillclimbing search

algorithms could be employed as well to �nd \good" or optimal partitionings.

2 CN2-MCI: DESCRIPTION OF THE METHOD 12

Example:

Two attributes, A

1

and A

2

are selected as operands (see Fig. 3). The attributes

can take the following values: Dom(A

1

) = ft; fg and Dom(A

2

) = ft; fg: The

initial clusters are c

1

= ff< t; t >g; f< t; f >g; f< f; t >g; f< f; f >gg and are

evaluated by

E(c

1

) =

23�2

23+2

+

12�3

12+3

+

1�1

1+1

+

2�16

2+16

= 6:51.

The numbers in brackets in Fig. 3 denote the class frequencies of the selected

attributes taking the respective values in the clusters. For instance, there are 23

positive instances where A

1

= t and A

2

= t, and 2 such negative instances, etc.

{<t,f>} {<f,t>} {<f,f>}

Dom(A1) = {t,f} Dom(A2) = {t,f}

Dom(A1) x Dom(A2) = {<t,t>,<t,f>,<f,t>,<f,f>}

{<t,t>}

[23,2] [12,3] [1,1] [2,16]

{<t,t>,<t,f>} [35,5]

{<t,t>,<t,f>,<f,t>} [36,6]

{<t,t>,<t,f>,<f,t>,<f,f>} [38,22]

c
o

st

Figure 3: Hierarchical agglomerative cluster algorithm

The smallest increase of E is attained if clusters f< t; t >g and f< t; f >g

are merged. The resulting partitioning is c

2

= ff< t; t >;< t; f >g; f< f; t >

g; f< f; f >gg and is evaluated as E(c

2

) = 6:67. This procedure is repeated

2 CN2-MCI: DESCRIPTION OF THE METHOD 13

until there are exactly two clusters left. The resulting partitioning corresponds

to an extensional de�nition of a binary attribute. Let c

3

= ff< t; t >;< t; f >

;< f; t >g; f< f; f >gg be the �nal partitioning. The new attribute NA

1

is then

de�ned as:

(NA

1

= t) iff ((A

1

= t) ^ (A

2

= t)) _

((A

1

= t) ^ (A

2

= f)) _

((A

1

= f) ^ (A

2

= t))

(NA

1

= f) iff ((A

1

= f) ^ (A

2

= f))

Obviously, the obtained extensional de�nition can \intensionally" be described

as ((A

1

= t) _ (A

2

= t)).

After the application of the constructive operator o

�

to m operands, a single,

best constructor according to E is turned into a new feature.

2.4.2 A*-Cluster

One possibility to achieve such a selection is a sequential performance ofm cluster

algorithms. However, CN2-MCI empoys a speci�c search strategy in order to save

a number of cluster steps (i.e., merging of two clusters). A* [Hart et al., 1968]

with a one-ply look-ahead is combined with beam search to construct m new

features in parallel. To �t a hierarchical-agglomerative cluster algorithm into

a search framework, each partitioning into clusters can be viewed as a node in

an acyclic directed graph and each cluster step is treated as an expansion of a

node. For each of the m cluster algorithms performed in parallel, a single, best

node is kept in the set of open nodes. The best node for a single construction is

determined by a bounded look-ahead of one ply. A*-Cluster proceeds as follows:

The best node of all current constructions is selected. If it is a goal node (i.e., if

it contains exactly two clusters), A*-Cluster stops with the optimal result of all

constructions, because all the other partitionings of other constructions can only

get worse. If it is not a goal node, the node is expanded and moved from the set

of open nodes into the set of closed nodes. There exists exactly one successor of

the selected node, because a one-ply look-ahead determines the best partitioning

according to evaluation function E. The best possible subsequent partitioning

according to E is inserted in the set of open nodes. The algorithm proceeds in

this way until a goal node is found.

An A* evaluation function f is the sum of two functions f(n) = g(n) + h(n).

g(n) evaluates the costs from the initial node to the actual node n and h(n) is a

lower bound for the costs to the cheapest goal node that can be reached from n.

On the one hand, A*-cluster performs pure A*, but A* only \sees" one successor

of a node and h is determined by a one-ply look-ahead. Therefore, problems of

A* regarding memory complexity can be avoided. In fact, another perspective

on A*-Cluster exhibits a beam-search with beam size m, where for each of the m

2 CN2-MCI: DESCRIPTION OF THE METHOD 14

c
o

st

{A1,A2} {A2,A3} {A1,A3}

Figure 4: A*-Cluster

cluster processes the most promising node is kept in the beam. This is the reason

why A*-Cluster cannot guarantee globally optimal solutions. The single cluster

algorithms are still hill-climbing, while A*-Cluster determines the best result of

these hill-climbing algorithms.

Example:

In Fig. 4, m is set to three. Thus, three pairs of attributes are selected as

operands and three cluster algorithms are performed in parallel. Fig. 4 shows

the values of the A* evaluation function f(n) = g(n) + h(n). The \costs" of

the actual partitionings (function g) are consisting of initial costs (depicted by

bold lines) and the costs by subsequent cluster steps leading to the actual states

(depicted by thin lines). The values of function h are depicted by dotted lines.

The next node to be expanded is the one for attributes fA

1

; A

2

g, since the next

cluster step obtains the best evaluation of all (according to f). If this step expands

a goal node, A*-Cluster stops with an optimal result relative to the single hill-

climbing cluster algorithms.

2 CN2-MCI: DESCRIPTION OF THE METHOD 15

The overall approach is useful for several reasons:

� There are several paths to a globally optimal partitioning into two clusters.

This is the reason why some minor sub-optimal decisions do not necessarily

lead to a sub-optimal result. Thus, the hillclimbing approach does not

deteriorate the quality of the partitionings too much.

� The h-part of an A*-function can be determined by means of a bounded

look-ahead.

� A constant memory complexity is achieved through the beam-search aspect

of A*-Cluster.

� The parallel construction provides a way to save cluster steps, although

calculation of h by a one-ply look-ahead is essentially the search for an

optimal successor.

� m operands are chosen in the �rst step of the selection, because an optimal

selection of the operands does not necessarily lead to an optimal partitioning

into two clusters. The result of the cluster algorithm is not known a priori.

� Evaluation is not problematic because of the \conservative" approach to

feature construction. In every iteration of the algorithm, only the best

feature that can be found is introduced. If the introduction of a new feature

negatively e�ects the quality of the hypothesis, CN2-MCI puts the blame

on the additional feature.

3 EMPIRICAL RESULTS 16

3 Empirical Results

3.1 Description of problem domains

3.1.1 Problem Monk1

The following attributes de�ne the description spaces for the \monk's problems"

[Thrun et al., 1991].

Dom(head shape) = fround, square, octagong

Dom(body shape) = fround, square, octagong

Dom(has tie) = ftrue, falseg

Dom(holding) = fsword,
ag, balloong

Dom(jacket color) = fred, yellow, green, blueg

Dom(is smiling) = ftrue, falseg

The target concept for the monk1 problem can be described as follows:

(head shape = body shape) or (jacket color = red)

The problem with the given representation is the non-existence of a CN2-

operator for testing equality between features or an equivalent feature represent-

ing equality. A reasonable transformation should be achieved by means of a new

feature representing equality.

3.1.2 Problem Monk2

The target concept of monk2 is de�ned as follows:

\exactly two of the six attributes take their �rst value"

Without some speci�c relations this target concept can only be given ex-

tensionally. The task of CN2-MCI will be to construct features which provide

\access" to relations between variables for the selective induction algorithm. For

instance, given features like \head shape and body shape do not take their �rst

value", the induced concept could be described more concisely.

3.1.3 Problem Monk3

The third problem domain is characterized by two major problems: Firstly, there

is a classi�cation noise level of 5 %. Secondly, CN2 does not include an operator

for negating a selector.

3 EMPIRICAL RESULTS 17

The de�nition of Monk3 is given by:

(jacket color = green and holding = sword) or

(not jacket color = blue and not body shape = octagon)

The problem with the original representation is in fact the problem of the se-

lective learning module, which is incapable of expressing a negation. Apart from

that, it is not clear how constructive induction operators can achieve an improve-

ment in the presence of noisy data. For an explicit discussion of constructive

induction in the presence of noise, see [Pfahringer, 1994b].

3.1.4 Problem Mux11

For each positive integer k there exists a multiplexer function which maps a tuple

of k + 2

k

binary attributes into a binary attribute.

The �rst k attributes are address bits and the last attributes are data bits.

The function takes the value of the data bit which is selected by the address bits.

In the case of Mux11, k = 3, which yields an instance space de�ned by 3 + 2

3

binary attributes.

Usual propositional learners cannot express this target concept concisely, be-

cause relations among attributes are essential for its description. Due to some

peculiar properties of this problem, CN2-MCI is only partially able to remedy the

problem with the originally given representation, although it constructs relations

between data and address bits, as will be seen.

3.1.5 Problem Par5

For each positive integer k there exists an \even parity"-function, which maps a

tuple of k binary attributes into a binary attribute. The function takes the value

\true" if and only if the number of attributes taking \true" is even, else it takes

\false".

The representational shortcomings are similar to the ones concerning the

multiplexer-function. There is not only a need for features encoding relations,

but generally also for new features computing some function out of the initial fea-

tures. For instance, a new feature counting the numbers of those original features

which take \true" would be useful for a simple concept description.

3 EMPIRICAL RESULTS 18

3.1.6 Overview of problem domains

Table 1 and Table 2 give a brief overview of the problem domains used for testing

CN2-MCI.

training examples # testing examples # attributes # classes

Monk1 124 308 6 2

Monk2 169 263 6 2

Monk3 122 310 6 2

Mux11 225 1823 11 2

Par5 25 7 5 2

Table 1: Overview of problem domains

�jDom(A

i

)j �jDom(Ai)j class. noise level # irrelevant attributes

Monk1 2.83 0.75 0 3

Monk2 2.83 0.75 0 0

Monk3 2.83 0.75 5 3

Mux11 2 0 0 0

Par5 2 0 0 0

Table 2: Overview of problem domains (continued)

3.2 Results of CN2-MCI in 5 problem domains

All results of the experiments were averaged over ten independent test runs. The

example sets were randomly generated using the known target concept de�nitions.

In such a way, more signi�cant results can be achieved than with the original set

of \monk"-examples used in [Thrun et al., 1991]. On the other hand, the results

cannot be directly compared with the ones from the report.

First of all, a good setting of parameters was determined by tests in the Monk2

problem domain. Optimal results were obtained using 85 % of the training ex-

amples as primary training set and 15 % as secondary training set. Secondly, a

rather large value of parameter � turned out to be useful. In subsequent experi-

ments, � was set to 6.

In Table 3, the average accuracy of CN2-hypotheses is compared with the aver-

age accuracy of CN2-MCI-hypotheses. Both methods were applied to the same

example sets. In all problem domains, CN2-MCI achieves better results than

CN2 (see Table 3, last column). The best results are obtained with the �rst two

monk-problems. In the case of Monk1, this is due to the construction of a binary

feature representing equality in the �rst iteration of CN2-MCI:

4 RELATED WORK 19

CN2-acc. # new attrs. CN2-MCI acc. �acc:

Monk1 96.2 2.0 99.6 3.4

Monk2 90.6 10.7 95.3 4.7

Monk3 96.2 5.7 97.4 1.2

Mux11 82.9 1.8 85.7 2.8

Par5 68.3 4.6 71.5 3.2

Table 3: Results of CN2-MCI in 5 problem domains

new att

0

= true , head shape = body shape

Regarding Monk2, the number of iterations is signi�cantly larger than for the

other problems. This indicates a steady improvement of the hypothesis through

the constructed features. When applied to the Monk2-problem, CN2-MCI in al-

most all cases constructs features like new att

i

:

new att

i

= true , not att

j

= first value and not att

k

= first value

In most of the experiments in the Monk3 problem domain CN2-MCI de�nes the

second disjunct as the �rst new feature. Further evaluation of the results indicates

that constructive induction through CN2-MCI is not able to improve hypotheses

in the presence of noise.

Interestingly, the method constructs few but e�ective features for the Mux11-

problem. However, further transformations do not improve the representation.

The structure of the multiplexer problem provides a variety of possible meaningful

relations among data bits and selection bits. Therefore, the results in this domain

are rather unexpected and require further analysis and explanation.

Results for Par5 indicate a mediocre performance of CN2-MCI in this domain.

Nevertheless, most of the constructed features are intelligible. Most of the new

features can be paraphrased by:

\The sum of bit

i

and bit

j

is 0"

\The sum of bit

i

and bit

j

is 1"

\The sum of bit

i

and bit

j

is 2"

4 Related Work

In this section a brief review of two closely related existing HCI-methods, FRINGE

[Pagallo, 1989; Pagallo & Haussler, 1990] and AQ17-HCI [Wnek & Michalski,

1992a+b], will be given.

5 DISCUSSION 20

4.1 FRINGE

FRINGE [Pagallo, 1989; Pagallo & Haussler, 1990] constructs new attributes us-

ing structural information of the decision tree. Like CN2-MCI, this HCI-system

introduces binary attributes in iterations. FRINGE searches for a repeatedly

occurring pattern at the \fringe" of the decision tree, which indicates a represen-

tational shortcoming. In order to improve representation, FRINGE employs the

pattern found (i.e. a subtree) as the de�nition of a new feature, where the values

in the leaves are the values of the new feature. In subsequent iterations, the

induced decision tree is signi�cantly simpli�ed by means of the new attributes.

4.2 AQ17-HCI and DUCE

Due to the relative lack of structure in decision rules, AQ17-HCI [Wnek & Michal-

ski, 1992a+b] uses the most relevant disjuncts of a hypothesis as the de�nition

of a new attribute. Like FRINGE, AQ17-HCI employs parts of the hypotheses

as de�nitions of the constructed attributes. This kind of analysis of hypotheses

is not capable of �nding intelligible relations among variables, because the gran-

ularity of analysis is too coarse. To achieve a �ne-grained analysis, a search for

patterns occurring in the decision rules is necessary. Actually, DUCE [Muggleton,

1987] performs a search for such patterns, but again treats variables and their

values as units, i.e. as binary attributes. Attributes taking di�erent values in dif-

ferent rules are processed like di�erent binary attributes. In other words, DUCE

presupposes binary attributes as input, and therefore ignores the occurrence of

the same attribute with a di�erent value in another rule, which is potentially

relevant to the construction process.

5 Discussion

In this section, we want to analyze and motivate some aspects of the method in

more detail. Initially, the system was designed to achieve a more �ne-grained

analysis of decision rules. The expected bene�ts of such an analysis were al-

ready stated in the introduction. Many problems not concerning prior work like

AQ17-HCI and DUCE arise, when the problem of a more �ne-grained analysis of

decision rules is tackled. Evidently, a more �ne-grained analysis should involve

a search for patterns occurring in the decision rules. The search for \optimal"

patterns seems to be a hard task for several reasons. First of all it is not at all

obvious which existing features the patterns should be composed of. Clearly, it

is reasonable to presuppose a co-occurence of at least two features in more than

one rule to designate it as a pattern. To simplify the task, a pattern is assumed

to be composed of only two existing features. If a pattern consists of more than

two features, this kind of regularity should be detected in a subsequent iteration.

6 SUMMARY AND FUTURE WORK 21

Moreover, the values of the features involved should exhibit some regularity re-

garding the class attribute of the rule, i.e. the same values should occur in rules

of the same class. The remaining task is to �nd a partitioning of the values of

the 2-feature-pattern occurring in the hypothesis into as many disjoint subsets

as there are values of the new feature. Furthermore and most importantly, the

partitioning should be optimal or near-optimal according to a function which

evaluates the regularity of the values of a pattern with respect to the rules in

which they occur.

Thus, the problem of �ne-grained analysis of decision rules is decomposed

into two sub-tasks. The �rst one is to select the constructive operands by some

heuristic which prefers pairs of attributes that are occurring in as many impor-

tant rules as possible. A heuristic selection of operands appears plausible for one

reason: If a pair of features does not occur in many important rules, it is unlikely

to achieve a good result in the second step. Therefore it is reasonable to search

for an occurrence of a pattern in many important rules. This procedure can be

viewed as an abstraction from the actual attribute values, which nevertheless

provides a necessary condition for �nding relevant 2-feature-patterns in the gen-

erated inductive hypotheses. In the second step, the omitted details (attribute

values and class membership of rules) of step one have to be considered again.

The task is to �nd a \good" partitioning of the values of the 2-feature-pattern

according to the evaluation function estimating the regularity with respect to the

class attribute.

Initially, CN2-MCI was designed to search for patterns in decision rules like

DUCE, but also processing attribute values. In later versions, the system was ex-

tended to process information from the training examples in the second step of the

construction process. The access to the input data gives the algorithm a
avour

of bottom-up (immediately generalizing input data) support of a (specializing)

top-down rule induction algorithm. In other words, the partially data-driven

construction of attributes enables the selective induction algorithm to perform

a look-ahead of at least two original features. In this respect CN2-MCI di�ers

signi�cantly from HCI-systems.

6 Summary and Future Work

CN2-MCI is a purely empirical method and therefore well-suited if there is not

much knowledge about the problem domain available. The method is designed to

search for relations among variables, which are otherwise hidden to the learner.

CN2-MCI can be applied either only to improve learning results, or to obtain a

set of new descriptors. Nevertheless it should be noted, that these descriptors

are constructed relative to the learning capabilities of a propositional selective

induction algorithm. CN2-MCI can be viewed as generalization of FRINGE-like

feature construction, where some major adaptations have to be made in order

6 SUMMARY AND FUTURE WORK 22

to compensate the relative lack of structure in decision rules. Brie
y, CN2-MCI

can be described by two essential features: Firstly, the selection of m operands

(i.e., pairs of features, from which a new feature is to be constructed) is based

on co-occurrence of features in relevant rules. Secondly, CN2-MCI searches for a

\good" partitioning of values of the operands into two clusters. The best resulting

partitioning is selected as extensional de�nition of a new binary feature.

Tests with the Par5 and Mux11 problem domains suggest there is a possibility

for an interesting extension of CN2-MCI: In these cases it might be a good idea

to construct n-valued features, where n is determined in the course of the con-

struction. Similar to ChiMerge [Kerber, 1992], CN2-MCI could decide how many

values are an appropriate abstraction from the initial partitioning into clusters.

In such a way, CN2-MCI could de�ne n-valued features if some statitical tests

suggest there is a real loss of information regarding the class attribute otherwise.

Furthermore, it would be interesting to involve background knowledge in the

constructive induction process. Certainly, background knowledge would e�ect an

improvement in intelligibility, which is still a problematic aspect of constructive

induction.

Acknowledgments

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftli-

chen Forschung (FWF) under grant number P8756-TEC. Financial support for the

Austrian Research Institute for Arti�cial Intelligence is provided by the Austrian Fed-

eral Ministry of Science and Research. I would like to thank Gerhard Widmer for his

encouragement, his patience, and his comments on earlier drafts of this paper. I also

thank Hermann Kaindl for comments on an earlier version of this paper, and Herbert

Dawid for helpful discussions on aspects of CN2-MCI.

7 BIBLIOGRAPHY 23

7 Bibliography

[Bloedorn et al., 1993] E. Bloedorn, R.S. Michalski, J. Wnek:

Multistrategy Constructive Induction: AQ17-MCI.

Proceedings of the 2

nd

International Workshop

on Multi-Strategy Learning,

Harper's Ferry, WV, 1993.

[Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen,

and C. Stone: Classi�cation and Regression Trees.

Wadsworth & Brooks, Paci�c Grove, CA, 1984.

[Clark & Boswell, 1991] P. Clark, R. Boswell:

Rule induction with CN2: some recent improvements.

Proceedings of the 5

th

European

Working Session on Learning, Porto.

Springer Verlag, Berlin, 1991.

[Clark & Niblett, 1989] P. Clark, T. Niblett: The CN2 Induction Algorithm.

Machine Learning 3:261-283, 1989.

[Eckes & Ro�bach, 1980] T. Eckes, H. Ro�bach: Clusteranalysen.

Kohlhammer, Stuttgart, 1980.

[Hart et al., 1968] P.E. Hart, N.J. Nilsson, B. Raphael:

A formal basis for the heuristic determination

of minimum cost paths.IEEE Transactions on SSC,

SSC-4:100-107, 1968.

[Jain, 1986] A.K. Jain: Cluster Analysis.

in: Handbook of Pattern Recognition

and Image Processing. T.Y. Young, K.S. Fu (Eds.),

Academic Press, New York, 1986.

[Kerber, 1992] Randy Kerber: ChiMerge:

Discretization of Numeric Attributes

Proceedings of the 11

th

National Conference on

Arti�cial Intelligence, 1992.

[Langley et al., 1986] Pat Langley, Jan M. Zytkow, Herbert A. Simon,

Gary L. Bradshaw:

The Search for Regularity:

Four Aspects of Scienti�c Discovery.

in: Machine Learning: An Arti�cial

Intelligence Approach. Vol. II.

Morgan Kaufmann, San Mateo, CA, 1986.

[Lenat, 1976] D. B. Lenat:

AM: An Arti�cial Intelligence Approach to Discovery

in Mathematics as Heuristic Search.

Ph.D. dissertation. Stanford University,

Stanford, CA, 1976.

[Matheus & Rendell, 1989] Christopher J. Matheus:

Constructive Induction On Decision Trees.

7 BIBLIOGRAPHY 24

Proceedings of the 11

th

International Conference on

Arti�cial Intelligence, 1989.

[Matheus, 1991] Christopher J. Matheus:

The Need for Constructive Induction.

Proceedings of the 8

th

International Conference on

Machine Learning, 1991.

[Michalski, 1983] Ryszard S. Michalski:

A Theory and Methodology of Inductive Learning.

in: Machine Learning: An Arti�cial

Intelligence Approach,

Tioga Publishing Company, Palo Alto, CA, 1983.

[Michalski, 1993] Ryszard S. Michalski:

Inferential Theory of Learning as a Conceptual

Basis for Multi-strategy Learning.

Machine Learning, 11, 111- 151, 1993.

[Muggleton, 1987] Steven Muggleton: DUCE, an oracle based approach

to constructive induction.

Proceedings of the 10

th

International Conference on

Arti�cial Intelligence, 1987.

[O'Rorke, 1982] P. O'Rorke: A comparative study of

inductive learning systems AQ11P and ID3

using a chess end-game test problem.

Technical Report ISG 82-2, University of Illinois,

Computer Science Department, Urbana, 1982.

[Pagallo, 1989] Giulia Pagallo: Learning DNF by Decision Trees.

Proceedings of the 11

th

International Conference on

Arti�cial Intelligence, 1989.

[Pagallo & Haussler, 1990] G. Pagallo, D. Haussler:

Boolean Feature Discovery in Empirical Learning.

Machine Learning, 5, pp. 71-97, 1990.

[Pfahringer, 1994a] Bernhard Pfahringer: Controlling

Constructive Induction in CIPF:

An MDL Approach.

Proceedings of the 7

th

European

Conference on Machine Learning, 1994.

[Pfahringer, 1994b] Bernhard Pfahringer:

Robust Constructive Induction

Report TR-94-11, Austrian Research

Institute for Arti�cial Intelligence

Vienna, 1994.

[Rissanen, 1978] J. Rissanen: Modelling by

Shortest Data Description.

In: Automatica, 14:465-471, 1978.

[Thrun et al., 1991] S.B. Thrun et al.: The MONK's Problems.

A Performance Comparison of

7 BIBLIOGRAPHY 25

Di�erent Learning Algorithms.

Technical Report, CMU-CS-91-197,

Carnegie Mellon University, 1991.

[Wnek & Michalski, 1992a] Janusz Wnek, Ryszard S. Michalski:

Hypothesis-driven Constructive Induction in

AQ17-HCI: A Method and Experiments.

MLI Report. Center for Arti�cial Intelligence,

George Mason University, 1992.

[Wnek & Michalski, 1992b] Janusz Wnek, Ryszard S. Michalski:

Hypothesis-driven Constructive Induction in

AQ17-HCI: A Method and Experiments.

MLI Report. Center for Arti�cial Intelligence,

George Mason University, 1992.

[Yang et.al. 1991] Der-Shung Yang, Larry Rendell, Gunnar Blix:

A Scheme for Feature Construction and

a Comparison of Empirical Methods.

Proceedings of the 12

th

International Conference on

Arti�cial Intelligence, 1991.

